

Measurements of longitudinal double-spin asymmetries of inclusive jet and dijet production at STAR

Amilkar Quintero Temple University For the STAR collaboration 12 October 2021

- 1. Motivation
- 2. Gluon polarization
- 3. RHIC complex
- 4. STAR experiment
- 5. Inclusive jets
- 6. Dijets at midrapidity
- 7. Dijets at intermediate rapidity
- 8. Summary

Supported in part by:

Proton Spin Puzzle

Measure the individual contributions of quarks, antiquarks and gluons, to the spin of the proton.

The proton spin sum rule (Jaffe-Manohar 1990):

 $\Delta\Sigma$

Polarized DIS results ΔΣ ≈ 0.3
Flavor separation from STAR, Phys. Rev. D 99 (2019) 051102

 $< S_p$

Gluon polarization

Quark and gluon orbital angular momentum contribution poorly constrained 2/12

 $\Delta G + L_q + L_g$

Amilkar Quintero

DNP2021, Online, October 2021

Gluon helicity distribution

$$\langle S_p \rangle = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

- Gluon polarization can be measured using A_{LL} of jets in proton-proton collisions.
- Dominating processes at RHIC are gg and qg scatterings.
- STAR 2009 dijet A_{LL} results at 200 GeV, were included in the latest DSSV analysis.

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \propto \frac{\Delta f_a \Delta f_b}{f_a f_b} \hat{a}_{LL}$$

$$\Delta G = \int dx \Delta g(x)$$

Including 2009 STAR dijet measurements:

Before reweighting:
$$\int_{0.1}^{1} \Delta g(x) dx = 0.133 \pm 0.035$$

After reweighting:
$$\int_{0.1}^{1} \Delta g(x) dx = 0.126 \pm 0.023$$

Amilkar Quintero

DNP2021, Online, October 2021

DSSV, Phys. Rev. D 11 (2019) 114027

Relativistic Heavy Ion Collider

Polarized proton runs at RHIC

Longitudinally polarized runs

Year	√s (GeV)
2009	200
2012	510
2013	510
2015	200

Experimentally

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{1}{P_1 P_2} \frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}}$$
$$N = \sigma L, R = \frac{L^{++}}{L^{+-}}$$

STAR detector

The main tracking device is a Time Projection Chamber (TPC) at $|\eta| < 1$.

The Barrel Electromagnetic Calorimeter (BEMC) covering $|\eta| < 1$, is used to trigger high momentum jets via EM energy deposit.

An Endcap Electromagnetic Calorimeter (EEMC) complements the BEMC by extending the coverage to $1.1 < \eta < 2$

Luminosity is measured with the Vertex Position Detector (VPD) and the Zero Degree Calorimeter (ZDC).

Inclusive jets at 200 GeV and $|\eta| < 1$

STAR, PRD 103 (2021) L091103

- Inclusive jet A_{LL} results from 2015 data, consistent with previous STAR results and global fits.
- Twice larger figure of merit with improved systematics.
- This result will reduce uncertainty of gluon polarization for *x* > 0.05.

Inclusive jets at 510 GeV and $|\eta| < 0.9$

STAR, PRD 100 (2019) 052005

- Inclusive jet A_{LL} results from 2012 data, consistent with previous STAR results and global fits.
- Higher center of mass energy pushes sensitivity to *x* > 0.015.
- Run 2013 A_{LL} measurement, publication in preparation.

Dijets at 200 GeV and $|\eta| < 1$

STAR, PRD 103 (2021) L091103

n=0

η=1

n=2

n=-1

- Dijet A_{LL} results from 2015 data, consistent with previous STAR results and global fits.
- Dijet production constrains the gluon polarization in narrower x regions than inclusive jets.

Dijets at 510 GeV and $|\eta| < 0.9$

 Different dijet configurations are sensitive to different kinematic regions.

- Four different η topology bins
- Better constraints on the functional form of $\Delta g(x,Q^2)$.
- Run 2013 A_{LL} measurement with same topologies, publication in preparation.

Dijets at 510 GeV and -0.8< η < 1.8

Preliminary results using 2012 data and consistent with 2009 results STAR Phys. Rev. D 98, 032001 (2018).
More statistics for 2013 data (~2.5x).

Amilkar Quintero

DNP2021, Online, October 2021

Summary

√s	Run	Central Jets (ŋ <1)	Central Dijets (η <1)	Inter. Dijets (0.8 < η < 1.8)
200	2009	Published x > 0.05	Published x > 0.05	Published x > 0.01
200	2015	Published x > 0.05	Published x > 0.05	
510	2012	Published x > 0.015	Published x > 0.015	Preliminary x > 0.004
510	2013	In preparation x > 0.015	for publication x > 0.015	In Progress x > 0.004

- New sets of measurements available, to be included in global fits.
- Collection of longitudinally polarized data concluded in 2015.
- STAR measurements enable unique QCD physics before the Electron-Ion Collider (EIC) that will access even lower *x*-values.

Amilkar Quintero

DNP2021, Online, October 2021