1 2 3		STAR Analysis Note: Measurement of transverse polarization of Λ in unpolarized p_{1} collision at 200GeV	р
4		Taoya Gao, Qinghua Xu, Yi Yu, and Jinlong Zhang	
5		January 25, 2025	
6	\mathbf{C}	ontents	
7	1	Dataset	6
8	2	$\Lambda/\overline{\Lambda}\ {f reconstruction}$	6
9 10 11 12	3	V0 jet reconstruction 3.1 Modification of jet reconstruction 3.2 Anti-proton annihilation correction 3.3 Underlying events correction	7 10 10 12
13 14 15 16	4	MC Simulation 4.1 Parameters set 4.2 Particle identification correction 4.3 Comparison of pure MC and data	14 14 14 16
17 18 19 20	5	Mixed Events 5.1 The research of Mixed-event methods 5.2 Closure test in MC 5.3 Mixed-events sample	17 18 22 28
21 22 23 24	6	Transverse polarization $P_{\Lambda/\overline{\Lambda}}$ extraction of $\Lambda/\overline{\Lambda}$ 6.1 Detector acceptance correction6.2 Zero-test with K_s^0 6.3 Comparison of results extracted by mixed events and MC	32 32 36 37
25 26 27 28 29	7	Systematic uncertainties7.1Trigger Bias7.2Mixed event method7.3Background estimation7.4Decay parameter	37 38 38 38 40
30 31 32	8	Results and conclusion8.1 $P_{\Lambda/\overline{\Lambda}}$ vs jet p_T 8.2 $P_{\Lambda/\overline{\Lambda}}$ vs z and j_T	42 42 42

33	8.3 Conclusions	44
34	References	46
35	Appendices	47

³⁶ List of Figures

2.1 (Left) particle identification of TPC by dE/dx, (Right) the schematic of A reconstruction	37	1.1	distribution of the primary vertex z	7
39struction.8402.2The invariant mass distribution of reconstructed A8413.1The A jet reconstruction process, where dashed black lines inside cone denote42daughter tracks: p, π that will be excluded from particle list. The red rectangle43means tower energy deposited in BEMC or EEMC. The big blue arrow indicates44the reconstructed jet direction.1043.2Comparison of tower energy of p and \bar{p} matched to BEMC or EEMC.11443.3Tower map of BEMC that p and p matched.11473.4Comparison of 3 × 3 tower energy of p and \bar{p} matched.1243.5Diagram of Off-axis method.123.6Underlying events p_T and average UE p_T versus number of jets.13383.7Underlying events p_T and average UE p_T versus number of jets.15393.7Underlying events p_T and average UE p_T versus number of jets.15314.1Jet contributions of proton in data and MC sample16344.2Left: 2-dimensional distribution of proton m as a function of momentum; Right:35the mean value of $n\sigma_p$ versus proton momentum17365.1Mixed event procedure18375.2Azimuth phase space18385.3The near-jet mixed events19365.4The near-jet mixed events2036The near-jet mixed events2037Top panel: comparisons of jet p_T between SE and random M	38	2.1	(Left) particle identification of TPC by dE/dx, (Right) the schematic of Λ recon-	
402.2The invariant mass distribution of reconstructed A9413.1The A jet reconstruction process, where dashed black lines inside cone denote42daughter tracks: p, π that will be excluded from particle list. The red rectangle43means tower energy deposited in BEMC or EEMC. The big blue arrow indicates44the reconstructed jet direction.453.246Comparison of tower energy of p and \bar{p} matched to BEMC or EEMC.473.448Comparison of 3× 3 tower energy of p and \bar{p} matched to BEMC or EEMC.493.540Underlying events p_T and average UE p_T versus number of jets.413.442Contraine from different ptHard ranges.431.444Jet contributions from different ptHard ranges.454.246ade/dx vs momentum distributions of proton in data and MC sample475.148de/dx vs momentum distribution of proton $n\sigma$ as a function of momentum; Right:49the mean value of na_p versus proton momentum401.441Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum; Right:42the mean value of na_p versus proton momentum43The near-jet mixed events44Left: 2-dimensions of jet p_T between SE and random ME; Bottom panel:45The off-jet mixed events46Conparisons of jet p_T between SE and random ME; Bottom panel:47comparisons of jet p_T between SE and random ME; Bottom panel	39		struction.	8
4:3.1The A jet reconstruction process, where dashed black lines inside cone denote daughter tracks: p, π that will be excluded from particle list. The red rectangle means tower energy deposited in BEMC or EEMC. The big blue arrow indicates the reconstructed jet direction.104:3.2Comparison of tower energy of p and \bar{p} matched to BEMC or EEMC.114:3.3Tower map of BEMC that p and \bar{p} matched.114:3.4Comparison of 3 × 3 tower energy of p and \bar{p} matched.124:3.5Diagram of Off-axis method.124:3.6Underlying events p_T and average UE p_T versus number of jets.135:1.1Jet contributions from different ptHard ranges.155:4.2 $n\sigma$ distributions of proton in data and MC sample164:Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum ; Right: the mean value of $n\sigma_p$ versus proton momentum175:5.1Mixed event procedure185:3The near-jet mixed events195:Top panel: comparisons of jet p_T between SE and random ME; Bottom panel: comparisons of jet p_T between SE and random ME; Bottom panel: com- parisons of j_T between SE and near-jet ME206:5.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: com- parisons of j_T between SE and near-jet ME216:5.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: com- parisons of j_T between SE and near-jet ME216:5.7Top panel: comparisons of j_T	40	2.2	The invariant mass distribution of reconstructed Λ	9
$\begin{array}{llllllllllllllllllllllllllllllllllll$	41	3.1	The Λ jet reconstruction process, where dashed black lines inside cone denote	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	42		daughter tracks: p, π that will be excluded from particle list. The red rectangle	
44the reconstructed jet direction.10453.2Comparison of tower energy of p and \bar{p} matched to BEMC or EEMC.11463.3Tower map of BEMC that p and \bar{p} matched to BEMC or EEMC.12473.4Comparison of 3×3 tower energy of p and \bar{p} matched to BEMC or EEMC.12483.5Diagram of Off-axis method.12493.6Underlying events p_T and average UE p_T versus number of jets.13501.4Jet contributions from different ptHard ranges.1551 4.2 $n\sigma$ distributions of proton in data and MC sample15524.2 $n\sigma$ distributions of proton mor as a function of momentum; Right:53the mean value of $n\sigma_p$ versus proton momentum17541.4Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum; Right:55the mean value of $n\sigma_p$ versus proton momentum1756The near-jet mixed events1957The near-jet mixed events195853The ong-jet mixed events2050Top panel: comparisons of jet p_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME20585.6Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet Mixed event21510Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events2252Comparison of ΔA^r , z, j_T distribution of Λ between SameEvents and MixedEvents26 <t< td=""><td>43</td><td></td><td>means tower energy deposited in BEMC or EEMC. The big blue arrow indicates</td><td></td></t<>	43		means tower energy deposited in BEMC or EEMC. The big blue arrow indicates	
3.2Comparison of tower energy of p and \bar{p} matched to BEMC or EEMC.113.3Tower map of BEMC that p and \bar{p} matched.113.4Comparison of 3×3 tower energy of p and \bar{p} matched to BEMC or EEMC.123.4Diagram of Off-axis method.123.6Underlying events p_T and average UE p_T versus number of jets.133.7Underlying events p_T and average UE p_T versus number of jets.133.41.1Jet contributions from different ptHard ranges.154.2 $n\sigma$ distributions of proton in data and MC sample164.3 dE/dx vs momentum distributions of proton in data and MC sample164.4Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum; Right:the mean value of $n\sigma_p$ versus proton momentum175.1Mixed event procedure185.2Azimuth phase space185.3The near-jet mixed events195.4Top panel: comparisons of jet p_T between SE and random ME; Bottom panel:comparisons of j tr p_T between SE and random ME; Bottom panel: comparisons of jr between SE and near-jet ME205.4Comparison of $\Delta R, z, j_T$ distribution of A between SameEvents and MixedEvents215.510Left: ΔR vs z of A at mixed events.215.6Comparison of $\Delta R, z, j_T$ distribution of A between SameEvents and MixedEvents225.7Top panel: comparisons of jr between SE and near-jet ME225.8Comparison of $\Delta R, z, j_T$ distribution of A between same events and Mixe	44		the reconstructed jet direction.	10
463.3Tower map of BEMC that p and \bar{p} matched.11473.4Comparison of 3×3 tower energy of p and \bar{p} matched to BEMC or EEMC.12483.5Diagram of Off-axis method.12493.6Underlying events p_T and average UE p_T versus number of jets.1350Underlying events p_T and average UE p_T versus number of jets.13514.1Jet contributions for motion in data and MC sample15524.2 $n\sigma$ distributions of proton in data and MC sample16544.4Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum ; Right:17555.1Mixed event procedure18565.2Azimuth phase space1857The near-jet mixed events1954The off-jet mixed events1955Top panel: comparisons of jet p_T between SE and random ME; Bottom panel:2056Top panel: comparisons of j between SE and random ME; Bottom panel: comparisons of jat p_T between SE and random ME; Bottom panel: comparisons of jat p_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T distribution of Λ between SameEvents and Mixed Even	45	3.2	Comparison of tower energy of p and \bar{p} matched to BEMC or EEMC	11
ar3.4Comparison of 3×3 tower energy of p and \bar{p} matched to BEMC or EEMC.123.5Diagram of Off-axis method.123.6Underlying events p_T and average UE p_T versus number of jets.133.7Underlying events p_T and average UE p_T versus number of jets.133.8Underlying events p_T and average UE p_T versus number of jets.133.4Jet contributions from different ptHard ranges.154.2 $n\sigma$ distributions of proton in data and MC sample154.3 dE/dx vs momentum distributions of proton in data and MC sample164.4Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum; Right:the mean value of $n\sigma_p$ versus proton momentum175.1Mixed event procedure185.2Azimuth phase space185.3The near-jet mixed events195.4The off-jet mixed events195.5Top panel: comparisons of jet p_T between SE and random ME; Bottom panel:comparisons of jet p_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME5.6Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME5.8Comparison of $\Delta R, z, j_T$ distribution of A between SameEvents and MixedEvents5.9Comparison of $\Delta R, z, j_T$ distribution of A between SameEvents and Mixed events75.10Left: ΔR vs z of A at mixed	46	3.3	Tower map of BEMC that p and \bar{p} matched.	11
483.5Diagram of Off-axis method.12493.6Underlying events p_T and average UE p_T versus number of jets.13503.7Underlying events p_T and average UE p_T versus number of jets.13513.7Underlying events p_T and average UE p_T versus number of jets.13524.2 $n\sigma$ distributions of proton in data and MC sample15534.3 dE/dx vs momentum distributions of proton $n\sigma$ as a function of momentum; Right:54the mean value of $n\sigma_p$ versus proton momentum1755.1Mixed event procedure18575.2Azimuth phase space18585.3The near-jet mixed events19595.4The off-jet mixed events19505.5Top panel: comparisons of $jet p_T$ between SE and random ME; Bottom panel: comparisons of jz between SE and near-jet ME20626Top panel: comparisons of jz between SE and random ME; Bottom panel: comparisons of jx between SE and near-jet ME21645.8Comparison of Δs^{T} , j_T distribution of Λ between SameEvents and MixedEvents22655.9Comparison of ΔR , z , j_T distribution of Λ between same events and mixed events23705.11Comparison of ΔP_T distribution between same events and mixed events25715.2Comparison of $\Lambda \eta$ distribution between same events and mixed events25725.13Comparison of $\Lambda \eta$ distribution between same events and mixed events2573 <t< td=""><td>47</td><td>3.4</td><td>Comparison of 3×3 tower energy of p and \bar{p} matched to BEMC or EEMC</td><td>12</td></t<>	47	3.4	Comparison of 3×3 tower energy of p and \bar{p} matched to BEMC or EEMC	12
3.6Underlying events p_T and average UE p_T versus number of jets.133.7Underlying events p_T and average UE p_T versus number of jets.133.4Jet contributions from different ptHard ranges.154.1Jet contributions of proton in data and MC sample154.2 $n\sigma$ distributions of proton in data and MC sample164.4Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum; Right:5.6the mean value of $n\sigma_p$ versus proton momentum175.75.1Mixed event procedure185.85.2Azimuth phase space185.3The near-jet mixed events195.4The off-jet mixed events195.5Top panel: comparisons of jet p_T between SE and random ME; Bottom panel:206.6Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME216.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME216.6Comparison of $\alpha O co \theta^{2}$ between SE and near-jet ME216.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME216.8Comparison of $\Delta R_{n}, z_{jT}$ distribution of A between SameEvents and MixedEvents237.8S.10Left: ΔR vs z of A at mixed events.237.9Comparison of $\Delta R_{n}, z_{jT}$ distribution between same events and mixed events. </td <td>48</td> <td>3.5</td> <td>Diagram of Off-axis method.</td> <td>12</td>	48	3.5	Diagram of Off-axis method.	12
503.7Underlying events p_T and average UE p_T versus number of jets.13514.1Jet contributions from different ptHard ranges.15524.2 $n\sigma$ distributions of proton in data and MC sample15534.3 dE/dx vs momentum distribution of proton $n\sigma$ as a function of momentum; Right:544.4Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum; Right:55the mean value of $n\sigma_p$ versus proton momentum17561Mixed event procedure18575.2Azimuth phase space18585.3The near-jet mixed events1954The off-jet mixed events1955Top panel: comparisons of jet p_T between SE and random ME; Bottom panel:665.6Top panel: comparisons of z between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME675.6Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME685.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME695.7Top panel: comparisons of j_T between SE and near-jet mixed event615.10Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events625.9Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events.635.12Comparison of $\Delta R, z, j_T$ distribution between same events and mixed events.645.12Compariso	49	3.6	Underlying events p_T and average UE p_T versus number of jets	13
514.1Jet contributions from different ptHard ranges.15524.2 $n\sigma$ distributions of proton in data and MC sample15534.3 dE/dx vs momentum distributions of proton $n\sigma$ as a function of momentum; Right:544.4Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum; Right:55the mean value of $n\sigma_p$ versus proton momentum17565.1Mixed event procedure1852Azimuth phase space1853The near-jet mixed events1954The off-jet mixed events1955Top panel: comparisons of jet p_T between SE and random ME; Bottom panel:56Top panel: comparisons of z between SE and near-jet ME2056Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME2057Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet mixed event2158Comparison of $\cos\theta^*$ between random and near-jet mixed event2259Comparison of $\Delta R, z, j_T$ distribution of A between same events and MixedEvents2359Comparison of $\Delta R, z, j_T$ distribution of A between same events and mixed events.25513Comparison of Λp_T distribution between same events and mixed events.25514Comparison of Λp_T distribution between same events a	50	3.7	Underlying events p_T and average UE p_T versus number of jets	13
524.2 $n\sigma$ distributions of proton in data and MC sample15534.3 dE/dx vs momentum distributions of proton $n\sigma$ as a function of momentum; Right:544.4Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum; Right:55the mean value of $n\sigma_p$ versus proton momentum17565.1Mixed event procedure18575.2Azimuth phase space18585.3The near-jet mixed events1954The off-jet mixed events1955Top panel: comparisons of jet p_T between SE and random ME; Bottom panel:60comparisons of jet p_T between SE and random ME; Bottom panel:61comparisons of jet p_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME625.6Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME63Sampaneison of $\cos\theta^*$ between SE and near-jet ME645.8Comparison of $\cos\theta^*$ between random and near-jet mixed event65Somparison of $\cos\theta^*$ between random and near-jet mixed event665.10Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events755.11Comparison of $\Delta R, z, j_T$ distribution of Λ between SameEvents and MixedEvents765.13Comparison of $\Lambda \eta$ distribution between same events and mixed events.765.14Comparison of $\Lambda \eta$ distribution between same events and mixed events.775.13Comparison of $\Lambda \delta$ distribution between same e	51	4.1	Jet contributions from different ptHard ranges.	15
534.3 dE/dx vs momentum distributions of proton in data and MC sample16544.4Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum; Right: the mean value of $n\sigma_p$ versus proton momentum17555.1Mixed event procedure18565.2Azimuth phase space18575.3The near-jet mixed events19585.3The off-jet mixed events19595.4The off-jet mixed events19505.5Top panel: comparisons of jet p_T between SE and random ME; Bottom panel: comparisons of jet p_T between SE and near-jet ME205.6Top panel: comparisons of z between SE and random ME; Bottom panel: com- parisons of z between SE and near-jet ME205.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: com- parisons of j_T between SE and near-jet ME21645.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21655.0Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events22665.10Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events24705.11Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events.25715.13Comparison of Λp_T distribution between same events and mixed events.25735.14Comparison of $\Lambda \phi$ distribution between same events and mixed events.26745.14Comparison of $\Lambda \phi$ distribution between same events	52	4.2	$n\sigma$ distributions of proton in data and MC sample	15
544.4Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum; Right: the mean value of $n\sigma_p$ versus proton momentum17551Mixed event procedure18575.2Azimuth phase space18585.3The near-jet mixed events1954The off-jet mixed events1955Top panel: comparisons of jet p_T between SE and random ME; Bottom panel: comparisons of jet p_T between SE and random ME; Bottom panel: comparisons of z between SE and near-jet ME20645.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: com- parisons of z between SE and near-jet ME20657Top panel: comparisons of j_T between SE and random ME; Bottom panel: com- parisons of j_T between SE and near-jet ME21665.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21675.9Comparison of $\Delta R, z, j_T$ distribution of Λ between Same Events and MixedEvents before reweighting23705.11Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events24715.12Comparison of $\Lambda \eta$ distribution between same events and mixed events25735.14Comparison of $\alpha \theta^*$ of Λ at marked event same events and mixed events26745.12Comparison of $\Lambda \eta$ distribution between same events and mixed events25745.14Comparison of $\Lambda \eta$ distribution between same events and mixed events26755.15Comparison of $\Lambda \eta$ distribution between same events a	53	4.3	dE/dx vs momentum distributions of proton in data and MC sample	16
55the mean value of $n\sigma_p$ versus proton momentum17565.1Mixed event procedure18575.2Azimuth phase space18585.3The near-jet mixed events1954The off-jet mixed events1955Top panel: comparisons of jet p_T between SE and random ME; Bottom panel:20605.6Top panel: comparisons of z between SE and near-jet ME20615.6Top panel: comparisons of jet p_T between SE and random ME; Bottom panel:20625.6Top panel: comparisons of jet between SE and random ME; Bottom panel:20645.7Top panel: comparisons of j_T between SE and random ME; Bottom panel:20656Top panel: comparisons of j_T between SE and random ME; Bottom panel:20665.7Top panel: comparisons of j_T between SE and near-jet ME20675.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21685.9Comparison of \cosA^* , z, j_T distribution of Λ between SameEvents and MixedEvents23695.10Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events24715.12Comparison of ΔP_T distribution between same events and mixed events.25735.13Comparison of $\Lambda \eta$ distribution between same events and mixed events.26745.12Comparison of $\Lambda \phi$ distribution between same events and mixed events.26755.13Comparison of $\Lambda \phi$ distribution between same events	54	4.4	Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum; Right:	
565.1Mixed event procedure18575.2Azimuth phase space18585.3The near-jet mixed events19595.4The off-jet mixed events19505.5Top panel: comparisons of jet p_T between SE and random ME; Bottom panel: comparisons of jet p_T between SE and random ME; Bottom panel: com- parisons of z between SE and near-jet ME20625.6Top panel: comparisons of z between SE and random ME; Bottom panel: com- parisons of z between SE and near-jet ME20635.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: com- parisons of j_T between SE and near-jet ME20645.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: com- parisons of j_T between SE and near-jet ME21655.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21665.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21675.10Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events23685.11Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events.25795.11Comparison of Λp_T distribution between same events and mixed events.26715.12Comparison of Λq distribution between same events and mixed events.26735.14Comparison of Λq distribution between same events and mixed events.26745.16Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detect	55		the mean value of $n\sigma_p$ versus proton momentum	17
575.2Azimuth phase space18585.3The near-jet mixed events19595.4The off-jet mixed events19505.5Top panel: comparisons of jet p_T between SE and random ME; Bottom panel: comparisons of jet p_T between SE and near-jet ME20625.6Top panel: comparisons of z between SE and random ME; Bottom panel: com- parisons of z between SE and near-jet ME20635.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: com- parisons of j_T between SE and near-jet ME20645.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: com- parisons of j_T between SE and near-jet ME20655.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21665.9Comparison of $\cos\theta^*$ between random and near-jet mixed event22675.9Comparison of $\Delta R, z, j_T$ distribution of Λ between SameEvents and MixedEvents before reweighting23705.11Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events24715.12Comparison of Λp_T distribution between same events and mixed events25735.14Comparison of $\alpha\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level26745.16Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level27755.17Extracted polarization vs input polarization of $\Lambda, \overline{\Lambda}$ and K_s^0 27765.18Left: $\Delta\eta$ vs η_{jet} in mixed events. Ri	56	5.1	Mixed event procedure	18
585.3The near-jet mixed events19595.4The off-jet mixed events19505.5Top panel: comparisons of jet p_T between SE and random ME; Bottom panel: comparisons of jet p_T between SE and near-jet ME20625.6Top panel: comparisons of z between SE and random ME; Bottom panel: comparisons of z between SE and near-jet ME20635.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME20645.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME20655.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21665.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21675.10Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events23685.9Comparison of $\Delta R, z, j_T$ distribution of Λ between same Events and MixedEvents24705.11Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events25735.13Comparison of Λp_T distribution between same events and mixed events.26745.14Comparison of $\Lambda \phi$ distribution between same events and mixed events.26755.15Comparison of αS^* of Λ between same events and mixed events.26765.16Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level27775.17Extracted polarization vs input po	57	5.2	Azimuth phase space	18
595.4The off-jet mixed events19605.5Top panel: comparisons of jet p_T between SE and random ME; Bottom panel: comparisons of jet p_T between SE and near-jet ME20625.6Top panel: comparisons of z between SE and random ME; Bottom panel: com- parisons of z between SE and near-jet ME20645.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: com- parisons of j_T between SE and near-jet ME20656Comparison of $\cos\theta^*$ between random and near-jet mixed event21665.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21675.10Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events22685.9Comparison of $\Delta R, z, j_T$ distribution of Λ between SameEvents and MixedEvents before reweighting.23705.11Comparison of $\Delta R, z, j_T$ distribution between same events and mixed events.25735.13Comparison of Λp_T distribution between same events and mixed events.26745.14Comparison of $\Lambda \phi$ distribution between same events and mixed events.26755.13Comparison of $\Lambda \phi$ distribution between same events and mixed events.26765.16Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level27775.17Extracted polarization vs input polarization of $\Lambda, \overline{\Lambda}$ and K_s^0 27785.19Comparisons of three kinematic quantities p_T, η, ϕ of Λ and jet between SE and28795.19<	58	5.3	The near-jet mixed events	19
605.5Top panel: comparisons of jet p_T between SE and random ME; Bottom panel: comparisons of jet p_T between SE and near-jet ME20625.6Top panel: comparisons of z between SE and random ME; Bottom panel: com- parisons of z between SE and near-jet ME20645.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: com- parisons of j_T between SE and near-jet ME20645.7Top panel: comparisons of j_T between SE and near-jet ME206565Comparison of $\cos\theta^*$ between random and near-jet mixed event21665.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21675.10Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events22685.9Comparison of $\Delta R, z, j_T$ distribution of Λ between SameEvents and MixedEvents23705.11Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events24715.12Comparison of Λp_T distribution between same events and mixed events.25735.13Comparison of Λq distribution between same events and mixed events.26745.14Comparison of $\cos\theta^*$ of Λ between same events and mixed events.26755.15Comparison of $\cos\theta^*$ of Λ between same events and mixed events.26765.16Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level27775.18Left: $\Delta\eta$ vs η_{jet} in mixed events. Right: $\Delta\eta$ vs η_{jet} in same events.2879	59	5.4	The off-jet mixed events	19
61Comparisons of jet p_T between SE and near-jet ME20625.6Top panel: comparisons of z between SE and random ME; Bottom panel: comparisons of z between SE and near-jet ME20635.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME20645.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME21655.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21665.10Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events22675.9Comparison of $\Delta R, z, j_T$ distribution of Λ between SameEvents and MixedEvents23685.11Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events24705.12Comparison of Λp_T distribution between same events and mixed events.25735.13Comparison of Λp_T distribution between same events and mixed events.26745.14Comparison of $\cos\theta^*$ of Λ between same events and mixed events.26755.15Comparison of $\cos\theta^*$ of Λ between same events and mixed events.26765.16Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level27775.17Extracted polarization vs input polarization of $\Lambda, \overline{\Lambda}$ and K_s^0 27785.18Left: $\Delta\eta$ vs η_{jet} in mixed events. Right: $\Delta\eta$ vs η_{jet} in same events.28795.19Comparisons of three	60	5.5	Top panel: comparisons of jet p_T between SE and random ME; Bottom panel:	
625.6Top panel: comparisons of z between SE and random ME; Bottom panel: com- parisons of z between SE and near-jet ME20645.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: com- parisons of j_T between SE and near-jet ME21655.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21665.0Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events22675.0Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events23685.9Comparison of $\Delta R, z, j_T$ distribution of Λ between SameEvents and MixedEvents2369before reweighting.24705.11Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events2471after reweighting.25735.13Comparison of Λp_T distribution between same events and mixed events.25745.14Comparison of $\Lambda \phi$ distribution between same events and mixed events.26755.15Comparison of $\cos\theta^*$ of Λ between same events and mixed events.26765.16Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level27775.17Extracted polarization vs input polarization of $\Lambda, \overline{\Lambda}$ and K_s^0 27785.19Comparisons of three kinematic quantities p_T, η, ϕ of Λ and jet between SE and28	61		comparisons of jet p_T between SE and near-jet ME	20
63parisons of z between SE and near-jet ME20645.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME21655.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21665.10Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events22675.10Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events22685.9Comparison of $\Delta R, z, j_T$ distribution of Λ between SameEvents and MixedEvents2369before reweighting.23705.11Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events2471after reweighting.24725.12Comparison of Λp_T distribution between same events and mixed events.25735.13Comparison of Λq distribution between same events and mixed events.26745.14Comparison of $\Lambda \phi$ distribution between same events and mixed events.26755.15Comparison of $\Lambda \phi$ distribution between same events and mixed events.26765.16Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level27775.17Extracted polarization vs input polarization of $\Lambda, \overline{\Lambda}$ and K_s^0 27785.19Comparisons of three kinematic quantities p_T, η, ϕ of Λ and jet between SE and	62	5.6	Top panel: comparisons of z between SE and random ME; Bottom panel: com-	
645.7Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME2165parisons of $cos\theta^*$ between random and near-jet mixed event21665.8Comparison of $cos\theta^*$ between random and near-jet mixed event21675.10Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events22685.9Comparison of $\Delta R, z, j_T$ distribution of Λ between SameEvents and MixedEvents2369before reweighting.23705.11Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events2471after reweighting.24725.12Comparison of Λp_T distribution between same events and mixed events.25735.13Comparison of $\Lambda \eta$ distribution between same events and mixed events.26745.14Comparison of $\Lambda \phi$ distribution between same events and mixed events.26755.15Comparison of $cos\theta^*$ of Λ between same events and mixed events.26765.16Left: $cos\theta^*$ of Λ at particle level. Right: $cos\theta^*$ of Λ at detector level27775.17Extracted polarization vs input polarization of $\Lambda, \overline{\Lambda}$ and K_s^0 27785.19Comparisons of three kinematic quantities p_T, η, ϕ of Λ and jet between SE and	63		parisons of z between SE and near-jet ME	20
65parisons of j_T between SE and near-jet ME21665.8Comparison of $\cos\theta^*$ between random and near-jet mixed event21675.10Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events22685.9Comparison of $\Delta R, z, j_T$ distribution of Λ between SameEvents and MixedEvents2369before reweighting.23705.11Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events2471after reweighting.24725.12Comparison of Λp_T distribution between same events and mixed events.25735.13Comparison of $\Lambda \eta$ distribution between same events and mixed events.25745.14Comparison of $\Lambda \phi$ distribution between same events and mixed events.26755.15Comparison of $\cos\theta^*$ of Λ between same events and mixed events.26765.16Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level27775.17Extracted polarization vs input polarization of $\Lambda, \overline{\Lambda}$ and K_s^0 27785.19Comparisons of three kinematic quantities p_T, η, ϕ of Λ and jet between SE and28	64	5.7	Top panel: comparisons of j_T between SE and random ME; Bottom panel: com-	
665.8Comparison of $\cos\theta^*$ between random and near-jet mixed event	65		parisons of j_T between SE and near-jet ME	21
5.10 Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events	66	5.8	Comparison of $\cos\theta^*$ between random and near-jet mixed event	21
5.9 Comparison of $\Delta R, z, j_T$ distribution of Λ between SameEvents and MixedEvents before reweighting	67	5.10	Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events	22
69before reweighting.23705.11Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events2471after reweighting.24725.12Comparison of Λp_T distribution between same events and mixed events.25735.13Comparison of $\Lambda \eta$ distribution between same events and mixed events.25745.14Comparison of $\Lambda \phi$ distribution between same events and mixed events.26755.15Comparison of $cos \theta^*$ of Λ between same events and mixed events.26765.16Left: $cos \theta^*$ of Λ at particle level. Right: $cos \theta^*$ of Λ at detector level27775.17Extracted polarization vs input polarization of $\Lambda, \overline{\Lambda}$ and K_s^0 27785.18Left: $\Delta \eta$ vs η_{jet} in mixed events. Right: $\Delta \eta$ vs η_{jet} in same events.28795.19Comparisons of three kinematic quantities p_T, η, ϕ of Λ and jet between SE and	68	5.9	Comparison of $\Delta R, z, j_T$ distribution of Λ between SameEvents and MixedEvents	
705.11 Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events71after reweighting	69		before reweighting.	23
71after reweighting.24725.12Comparison of Λp_T distribution between same events and mixed events.25735.13Comparison of $\Lambda \eta$ distribution between same events and mixed events.25745.14Comparison of $\Lambda \phi$ distribution between same events and mixed events.26755.15Comparison of $\cos\theta^*$ of Λ between same events and mixed events.26765.16Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level27775.17Extracted polarization vs input polarization of Λ , $\overline{\Lambda}$ and K_s^0 27785.18Left: $\Delta\eta$ vs η_{jet} in mixed events. Right: $\Delta\eta$ vs η_{jet} in same events.28795.19Comparisons of three kinematic quantities p_T, η, ϕ of Λ and jet between SE and	70	5.11	Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events	
725.12 Comparison of Λp_T distribution between same events and mixed events.25735.13 Comparison of $\Lambda \eta$ distribution between same events and mixed events.25745.14 Comparison of $\Lambda \phi$ distribution between same events and mixed events.26755.15 Comparison of $\cos\theta^*$ of Λ between same events and mixed events.26765.16 Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level27775.17 Extracted polarization vs input polarization of Λ , $\overline{\Lambda}$ and K_s^0 27785.18 Left: $\Delta\eta$ vs η_{jet} in mixed events. Right: $\Delta\eta$ vs η_{jet} in same events.28795.19 Comparisons of three kinematic quantities p_T, η, ϕ of Λ and jet between SE and	71		after reweighting.	24
735.13 Comparison of $\Lambda \eta$ distribution between same events and mixed events.25745.14 Comparison of $\Lambda \phi$ distribution between same events and mixed events.26755.15 Comparison of $\cos\theta^*$ of Λ between same events and mixed events.26765.16 Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level27775.17 Extracted polarization vs input polarization of Λ , $\overline{\Lambda}$ and K_s^0 27785.18 Left: $\Delta\eta$ vs η_{jet} in mixed events. Right: $\Delta\eta$ vs η_{jet} in same events.28795.19 Comparisons of three kinematic quantities p_T, η, ϕ of Λ and jet between SE and	72	5.12	Comparison of Λp_T distribution between same events and mixed events	25
⁷⁴ 5.14 Comparison of $\Lambda \phi$ distribution between same events and mixed events	73	5.13	Comparison of $\Lambda \eta$ distribution between same events and mixed events	25
⁷⁵ 5.15 Comparison of $\cos\theta^*$ of Λ between same events and mixed events	74	5.14	Comparison of $\Lambda \phi$ distribution between same events and mixed events	26
⁷⁶ 5.16 Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level	75	5.15	Comparison of $\cos\theta^*$ of Λ between same events and mixed events	26
5.17 Extracted polarization vs input polarization of Λ , $\overline{\Lambda}$ and K_s^0	76	5.16	Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level	27
5.18 Left: $\Delta \eta$ vs η_{jet} in mixed events. Right: $\Delta \eta$ vs η_{jet} in same events	77	5.17	Extracted polarization vs input polarization of Λ , $\overline{\Lambda}$ and K_s^0	27
5.19 Comparisons of three kinematic quantities p_T, η, ϕ of Λ and jet between SE and	78	5.18	Left: $\Delta \eta$ vs η_{iet} in mixed events. Right: $\Delta \eta$ vs η_{iet} in same events	28
	79	5.19	Comparisons of three kinematic quantities p_T, η, ϕ of Λ and jet between SE and	
80 ME	80		ME	29
5.20 Comparisons of three kinematic quantities p_T , η , ϕ of $\overline{\Lambda}$ and jet between SE and	81	5.20	Comparisons of three kinematic quantities p_T, η, ϕ of $\overline{\Lambda}$ and jet between SE and	
82 ME	82		ME	30

83	5.21	Comparisons of $\Delta R, z, j_T$ of Λ between SE and ME	31
84	5.22	Comparisons of $\Delta R, z, j_T$ of $\overline{\Lambda}$ between SE and ME	31
85	5.23	Comparisons of $\Delta R, z, j_T$ of K_s^0 between SE and ME	32
86	6.1	$\cos\theta^*$ distribution of Λ for the same event(left) and mixed events(right)	32
87	6.2	\cos^{θ^*} distribution of Λ after acceptance correction and was fitted with a linear	
88		function (red line) to extract polarization	33
89	6.3	Extraction of transverse polarization of Λ as a function of jet p_T	34
90	6.4	Extraction of transverse polarization of $\overline{\Lambda}$ as a function of jet p_T	35
91	6.5	Transverse polarization of K_s^0 as a function of jet p_T	36
92	6.6	Transverse polarization of K_s^0 as a function of z at different jet p_T ranges	36
93	6.7	Transverse polarization of K_s^0 as a function of j_T at different jet p_T ranges	37
94	6.8	Transverse polarization extracted by MC	37
95	6.9	Transverse polarization extracted by mixed events	37
96	7.1	Flavor fraction distribution of Λ at different jet p_T	38
97	7.2	Relative change between inputted and extracted polarization	39
98	7.3	The extracted Λ polarization under varied side-band shift. The top two panels	
99		show polarization extraction under left shift of side-band, the bottom two panels	
100		show the polarization extraction under right shift of side-band	40
101	8.1	Transverse polarization of Λ and Λ as a function of jet p_T in unpolarized pp	
102		collisions at $\sqrt{s} = 200 \text{ GeV}$ at STAR. Statistical uncertainties are shown as vertical	
103		bars. Systematic uncertainties are shown as boxes.	42
104	8.2	Transverse polarization of Λ , and Λ as a function of z at different jet p_T ranges	
105		of 6 < p_T^{jet} < 8.4 GeV (left), 8.4 < p_T^{jet} < 12 GeV (middle) and p_T^{jet} > 12	
106		GeV (right). Statistical uncertainties are shown as vertical bars. Systematic	
107		uncertainties are shown as boxes.	43
108	8.3	Transverse polarization of Λ , and Λ as a function of j_T at different jet p_T ranges	
109		of $6 < p_T^{jet} < 8.4$ GeV (left), $8.4 < p_T^{jet} < 12$ GeV (middle) and $p_T^{jet} > 12$	
110		GeV (right). Statistical uncertainties are shown as vertical bars. Systematic	
111		uncertainties are shown as boxes.	44

112 List of Tables

113	1.1	Dataset in this analysis.	6
114	1.2	Triggers used in the analysis	6
115	2.1	The table of $\Lambda(\overline{\Lambda})$ topological cuts at different p_T ranges	8
116	2.2	The table of K_s^0 topological cuts at different p_T ranges $\ldots \ldots \ldots \ldots \ldots$	8
117	5.1	The table of Λ extracted polarization and input polarization	27
118	7.1	The table of Λ extracted polarization, statistical uncertainties and summary of	
119		systematic uncertainties at different jet p_T ranges	41
120	7.2	The table of $\overline{\Lambda}$ extracted polarization, statistical uncertainties and summary of	
121		systematic uncertainties at different jet p_T ranges	41
122	8.1	The table of Λ and $\overline{\Lambda}$ extracted polarization, statistical uncertainties and summary	
123		of systematic uncertainties at different jet p_T ranges $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	43
124	8.2	The table of Λ and $\overline{\Lambda}$ extracted polarization, statistical uncertainties and summary	
125		of systematic uncertainties at different z ranges $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	44
126	8.3	The table of Λ and $\overline{\Lambda}$ extracted polarization, statistical uncertainties and summary	
127		of systematic uncertainties at different z ranges $\ldots \ldots \ldots$	45

128 1 Dataset

The data set (summarized in Table 1.1) used in this analysis includes pp200long_2015, pp200long2_2015 and pp200trans_2015 at present, which were taken in RHIC-STAR at $\sqrt{s} = 200$ GeV in pp collision with 689, 557 and 686 good physics runs respectively. The sum of the integrated luminosity of the three samples is about 133 pb^{-1} . Jet-Patch triggers(JP1, JP2), as shown in Table.1.2, are used in the analysis.

System and energy	pp collisions at $\sqrt{s}=200{ m GeV}$						
Data	pp200long_2015	pp200trans_2015	pp200long2_2015				
Number of run	689	686	557				
Total events	436 M	862 M	728 M				
Luminosity(pb^{-1})	29	52	52				
Production	P16id						
Trigger	JP1(470404, 480404, 480414, 490404) JP2(470401, 480401, 480411, 490401)						

Table 1.1: Dataset in this analysis.

Trigger ID		Threshold (ADC channels)	Equivalent E_T (GeV)		
JP1	490404	28	5.4		
JP2	490401	36	7.3		

Table 1.2: Triggers used in the analysis

Some sub-detectors of STAR such as the TPC, BEMC, and EEMC are used in this analysis. The Events with primary vertex z within ± 90 cm from the center of TPC along the beam direction are selected. The primary vertex rank must be larger than 10*e*6, with about 5.93×10^8 events after z cuts. Fig. 1.1 showed the primary vertex z distribution before the selection of primary vertex z.

139 2 $\Lambda/\overline{\Lambda}$ reconstruction

The Λ hyperon characterized by self-analyzing weak decay has played a special role in the field of spin physics [1]. The $\Lambda(\overline{\Lambda})$ candidates are reconstructed via the weak decay channel: $\Lambda \to p + \pi^{-1}$ $(\overline{\Lambda} \to \overline{p} + \pi^{+})$, following a similar procedure as in Ref. [2] except that the Time of Flight (TOF) hit matching is not required for the pion track. Firstly, good-quality tracks are obtained by following criteria:

• Track flag: $0 \sim 1000$

Figure 1.1: distribution of the primary vertex z.

- $p_T :> 0.15 \,\mathrm{GeV}$
- NHits > 15
- NHits/NHitsPoss > 0.52
- DCA < 30cm

The TPC detector provides charge tracking and particle identification, which is used to select 150 protons and π from a bunch of particles by ionization energy loss dE/dx. Because of the 151 limited resolution of TPC detector, the capability of particle identification is reduced for charge 152 particles with large momentum that are shown in Fig.2.1 (a) [3] that present ionization energy 153 loss of four type particles, e^{\pm} , $p(\bar{p})$, π^{\pm} and K^{\pm} . The $n\sigma$ cut of proton candidate, for example, 154 was required to be within $\pm 3\sigma$ to the theoretical values of dE/dx for proton. This cut is 155 a reasonable value to balance the statistics and particle identification quality. Two daughter 156 tracks with opposite charges are paired and hyperon p_T -dependent topological selection criteria, 157 summarized in Tab. 2.1 and 2.2, are applied to suppress the background with an acceptable 158 percentage of about 10%. Figure 2.2 shows the invariant mass distribution of Λ . 159

$_{160}$ 3 V_0 jet reconstruction

In order to implement the measurement of Λ polarization contribution from the fragmentation process, we need to reconstruct jet. The momentum direction of jet will be regarded as the direction of the fragmenting parton. This is also critical to determine the polarization direction of Λ . In this analysis, the jet was reconstructed with anti- k_T algorithm with following parameter sets.

- Reconstruction: anti- k_T with R = 0.6
- Tracks: primary track with $p_T > 0.2$ GeV and DCA < 3 cm
- Towers are required to have $E_T > 0.2 \text{ GeV}$

Figure 2.1: (Left) particle identification of TPC by dE/dx, (Right) the schematic of Λ reconstruction.

$\Lambda(\overline{\Lambda})$ topological cuts										
$p_T \; [\text{GeV}/c]$	0-1	1 - 2	2 - 3	3 - 4	4 - 5	5 - 6	> 6			
$ n\sigma <$	1.5	1.5	1	1	1	1	1			
DCA2(cm) <	0.65	0.65	0.60	0.55	0.50	0.45	0.40			
$DCA_p(cm) >$	0.45	0.35	0.30	0.15	0.005	0.005	0.005			
$DCA_{\pi}(cm) >$	0.65	0.65	0.60	0.55	0.50	0.50	0.50			
DCAV0(cm) <	0.55	0.65	0.75	1.0	1.0	1.0	1.0			
DecayLength(cm) >	3.0	3.0	3.5	3.5	4.0	4.5	4.5			
cosrp >	0.995	0.995	0.995	0.995	0.995	0.995	0.995			

Table 2.1: The table of $\Lambda(\overline{\Lambda})$ topological cuts at different p_T ranges

K_s^0 topological cuts										
$p_T \; [\text{GeV}/c]$	0 - 1	1 - 2	2 - 3	3 - 4	4 - 5	5 - 6	> 6			
$ n\sigma <$	1.35	1.35	1.35	1.40	1.45	1.50	1.70			
DCA2(cm) <	0.65	0.65	0.65	0.55	0.55	0.50	0.35			
$DCA_p(cm) >$	0.60	0.55	0.50	0.35	0.30	0.25	0.20			
$DCA_{\pi}(cm) >$	0.60	0.55	0.50	0.35	0.30	0.25	0.20			
DCAV0(cm) <	0.65	0.70	0.80	0.90	0.90	0.90	0.90			
DecayLength(cm) >	3.55	3.60	3.70	3.75	3.80	4.0	5.5			
cosrp >	0.995	0.995	0.995	0.995	0.995	0.995	0.995			

Table 2.2: The table of K_s^0 topological cuts at different p_T ranges

Figure 2.2: The invariant mass distribution of reconstructed Λ .

• The jet $p_T > 5 \text{ GeV}$

• Anti-proton energy correction

The final production of the whole fragmentation process consists of a variety of charge particles 171 and neutral particles. We aim to probe the Λ polarization in final states. Therefore, the jets used 172 here is full-jet consisting of both charge tracks from TPC and neutral energy from EEMC and 173 BEMC. Only primary tracks with DCA < 3cm are utilized for jet reconstruction. To reduce noise 174 background, the track p_T and tower energy E_T are required to be larger than 0.2 GeV. In case 175 of the additional energy deposits in detector from possible annihilation effects of \bar{p} with proton 176 from material of BEMC and EEMC, the \bar{p} annihilation correction is necessary (see Section 3.2). 177 Besides, to reduce the other effects from underlying events (UE), we applied off-axis method to 178 do the UE corrections, which helps to reduce the pile-up events. The jet candidates satisfying 179 follow selection cuts are considered in this analysis. 180

- Jet p_T UE $p_T > 5$ GeV and pass trigger threshold
- Neutral fraction R < 0.95
- Jet $\eta: -1 < \eta < 1$
- Jet detector η_{det} : $-0.7 < \eta_{det} < 0.9$

The goal of neutral fraction R < 0.95 requirements is to avoid the contribution from charge tracks of TPC is too low. The difference between jet η and detector η_{det} is that η_{det} indicates the pseudorapidity of tower position in EMC relative to the TPC center.

188 3.1 Modification of jet reconstruction

¹⁸⁹ Unlike traditional jet reconstruction in STAR, in this analysis, the reconstructed $\Lambda/\overline{\Lambda}$ candidates ¹⁹⁰ will also be added to the input list for jet reconstruction. Meanwhile, the primary tracks ¹⁹¹ associated with the $\Lambda/\overline{\Lambda}$ daughter tracks will be excluded to avoid double counting. The diagram ¹⁹² of this process is presented in Fig. 3.1. In some cases, $\Lambda/\overline{\Lambda}$ and K_S^0 may share the same daughter ¹⁹³ track due to the misidentification between protons and pions. This effect will introduce potential ¹⁹⁴ double counting if $\Lambda/\overline{\Lambda}$ and K_S^0 are both added to the same input list for jet reconstruction. To ¹⁹⁵ avoid such double counting, the $\Lambda/\overline{\Lambda}$ -jets and K_S^0 -jets were reconstructed separately.

Figure 3.1: The Λ jet reconstruction process, where dashed black lines inside cone denote daughter tracks: p, π that will be excluded from particle list. The red rectangle means tower energy deposited in BEMC or EEMC. The big blue arrow indicates the reconstructed jet direction.

¹⁹⁶ 3.2 Anti-proton annihilation correction

¹⁹⁷ The annihilation effects of antiproton produced in the final state with materials of BEMC/EEMC ¹⁹⁸ are non-negligible. For example, the \bar{p} decayed from $\bar{\Lambda}$, especially for low momentum, would ¹⁹⁹ likely annihilate with protons from BEMC/EEMC materials and deposit additional energy in ²⁰⁰ BEMC/EEMC. This additional energy will also impact the neutral fraction in the process of ²⁰¹ jet reconstruction and increase the original actual jet energy. Fig.3.2 displays the tower energy distribution deposited in BEMC and EEMC that match to p and \bar{p} . According to parity con-

servation, the behaviors of p and \bar{p} should be similar, which are different from the results in the

plots. There is an apparent enhancement at large tower energy for \bar{p} . And the mean value of

proton tower energy is 0.6 GeV, even only about half of that for \bar{p} .

Figure 3.2: Comparison of tower energy of p and \bar{p} matched to BEMC or EEMC.

Nevertheless, the deposited energy of \bar{p} was still less than the theoretical value (twice of proton mass), if annihilated with other detector protons. One of the reasons we suppose might be that the additional energy extended to surrounding towers, which caused the tower energy matched to \bar{p} shift to the low energy range. To include annihilation energy of \bar{p} deposited in calorimeters as much as possible, the tower region matched to charge particle expands from one tower to surrounding 9 towers. As shown in Fig.3.3, the number denotes the tower index in detectors within the phase space constructed by η and ϕ axis.

Significantly, the energy distribution including 9 towers matched to \bar{p} shifts to the large value range with a peak at about 2 GeV. At the same time, No significant changes were observed for p. Such results demonstrate that the annihilation effects of \bar{p} can not be ignored and it is necessary to make corrections. In this analysis, 3×3 towers energy with it central tower matched to \bar{p} are removed from the jet reconstruction.

Figure 3.3: Tower map of BEMC that p and \bar{p} matched.

Figure 3.4: Comparison of 3×3 tower energy of p and \bar{p} matched to BEMC or EEMC.

218 3.3 Underlying events correction

The typical method, off-axis cone[4], was used in this analysis to subtract contributions from underlying events (UE), which contribute mostly low p_T tracks. They are corresponding to all particles produced directly from pile-up or hard scattering of partons, which are regarded as the contamination of jet. The two cones with the same η as jet, but perpendicular to the jet cone, are adopted to evaluate the UE particle yield. As shown in Fig. 3.5, the UE cones, dashed circular line with the radius equal to the jet resolution parameter (R = 0.6), are offset by an azimuthal angle $\phi = \pi/2$ with respect to the jet axis.

A general strategy for the UE contamination correction is to subtract the UE contribution to the jet p_T jet-by-jet. The p_T spectra of all particles inside these two UE cone are accumulated and divided by cone area, namely $2\pi R^2$, to obtain the UE p_T density ρ . Hence, the average UE p_T could be obtained through $\rho \times A_{jet}$, where A_{jet} is the area of the jets calculated by the Fastjet package[5].

Figure 3.5: Diagram of Off-axis method.

However, in the multi-jet events, two or more jets with the same η but the $\Delta \phi = \pi/2$ probably occurred in the same event. It means the UE contribution to the jet p_T would be significantly overestimated, which will enhance the UE p_T . Figure 3.6 shows the UE p_T spectra with jet number dependence, and the average UE p_T increases with jet numbers. As a result, the jet p_T will be over corrected, if using these raw UE p_T that was enhanced by contribution from a real jet. What we did for this issue is to modify the UE region selection by including a protection

that when a jet was found nearby UE cones ($\Delta R \leq 1.2$), particles in that UE cones will be 237

Figure 3.6: Underlying events p_T and average UE p_T versus number of jets.

The threshold of the jet that was regarded as a jet found nearby UE cones is set as 4 GeV. 239 Following plots, Fig. 3.7, show the UE results after applying a protection mechanism in two 240 UE cones. Apparently, this protection mechanism impacts largely on the UE p_T calculations, 241 especially for multi-jets events. On the other hand, the threshold setup of a jet is also a crucial 242 factor. Lower threshold means a jet would be identified as a real jet easier. See for the two plots 243 of Fig. 3.7, the different minimum jet p_T are 4 GeV and 2.5 GeV respectively and resulted in 244 different average UE p_T . In the left plot, the label '3coneUE' denotes another cone at opposite 245 azimuth relative to the jet was regarded as UE cone either, which aimed to compensate the 246 deficiency of UE cone resulted by protection mechanism but was canceled at final analysis. To 247 keep things consistent, all parameters of jet nearby UE cones are the same as jet parameters 248 above. 249

Figure 3.7: Underlying events p_T and average UE p_T versus number of jets.

250 4 MC Simulation

To correct acceptance effects from limited detector acceptance range and efficiency, we need to obtain acceptance functions corresponding to the STAR detector, which could be available by Monte Carlo (MC) simulation. There are many MC generators for the simulation of the pp collisions. In this analysis, simulation events are generated by PYTHIA6.4.28 [6] and then run through GEANT3 [7] based on STAR detectors.

256 4.1 Parameters set

The simulated events should be embedded into "zero-bias" data which was taken by triggered randomly in the period of run. Because these events with zero-bias trigger could be used to simulate beam background and pile-up events to make the simulation closer to the actual conditions. However, based on our study, we find it does not greatly affect the acceptance function without zero-bias data from simulation. The simulation setup are listed following:

- PYTHIA6.4.28 + GEANT3
- ptHard > 4 GeV

• Energy 200 GeV

- Geometry: y2015c
- $\Lambda/\overline{\Lambda}$ filter: promise every event include at least one $\Lambda/\overline{\Lambda}$ with $p_T > 0.5$ GeV

• Primary vertex: Gaussian distributions with $\sigma_x = 0.026 \text{ cm}, \sigma_y = 0.015 \text{ cm}, \sigma_z = 41.48 \text{ cm}$

The reason why ptHard is larger than 4 GeV, rather than the usual several separate regions 268 from 2 to 35, is to increase simulation efficiency with jet-patch trigger as much as possible while 269 suppress edge effects of trigger threshold as low as possible, simultaneously. Figure 4.1 shows 270 the ratio of contributions of different ptHard ranges to jet p_T spectra. The left plot is for the 271 JP1 trigger and the right one is for the JP2 trigger. The percentage of the contribution to jet p_T 272 spectrum from ptHard $2 \sim 3$ GeV is about 5.68% and from ptHard $3 \sim 5$ GeV is about 7.53%. 273 Moreover, the efficiency for a event from ptHard $2 \sim 4$ GeV that passes trigger threshold is 274 too low to obtain sufficient statistics within acceptable time duration. Therefore, 4 GeV is an 275 appropriate value for minimum ptHard. 276

The goal of applying $\Lambda/\overline{\Lambda}$ filter is to increase simulation efficiency and save disk space by selecting events that include at least one Λ or $\overline{\Lambda}$ with $p_T > 0.5$ GeV. For the JP1 and JP2 triggers, we also applied the trigger simulator to simulate the trigger response. The same algorithms as the data are applied in MC simulation to reconstruct $\Lambda/\overline{\Lambda}$ and jet.

281 4.2 Particle identification correction

In the analysis, we encountered a severe issue with the MC sample: the central value of $n\sigma$ 282 distribution from the MC sample significantly deviated from its theoretical value and also differed 283 from the real data distribution. The distributions of $n\sigma$ for protons in both the MC and real 284 data samples are shown below in Fig.4.2. The center of the proton $n\sigma$ distribution in the MC 285 sample is shifted towards negative values by approximately one sigma. In contrast, the center of 286 the proton $n\sigma$ distribution in the data sample is consistent with zero. This issue will introduce 287 potential biases to the measurements as same $n\sigma$ selection cuts were applied to both read data 288 and MC samples. 289

Figure 4.1: Jet contributions from different ptHard ranges.

Figure 4.2: $n\sigma$ distributions of proton in data and MC sample

Upon careful examination, we found that the cause of this phenomenon is due to inadequate simulation of particle ionization energy loss in the gas during the generation of the MC sample. The blue and green lines in the Fig. 4.3 below represent the fits to the ionization energy loss as a function of momentum for protons at the detector level and association level in the MC sample, respectively. These do not match the distribution of ionization energy loss versus momentum for protons in the real data sample. Similar issues are observed for other types of particles as well.

Figure 4.3: dE/dx vs momentum distributions of proton in data and MC sample

To avoid the bias introduced by suboptimal simulation of ionization energy loss, we must apply 297 a correction. The method involves fitting the distribution of the $n\sigma$ mean values as a function 298 of momentum to ascertain the deviation from the theoretical curve. For this step, we require a 299 clean sample of particles, so we extracted particles at the association level, which are associated 300 directly with pure particles produced by PYTHIA. The left plot of Fig.4.4 shows a 2-dimensional 301 distribution of proton $n\sigma$ as a function of momentum. And right plot is the distribution of 302 the mean value of $n\sigma_p$ versus proton momentum, which shows a complex dependence. Then, 303 we subtract the corresponding deviation value from each particle's $n\sigma$, realigning it with the 304 theoretical value. 305

³⁰⁶ 4.3 Comparison of pure MC and data

The reconstruction of Λ , $\overline{\Lambda}$, and K_s^0 in both MC and data employed identical reconstruction methods, selection criteria, and topological cuts to ensure consistency. Comparisons of the data and MC simulation are shown in the Appendices. We can find a good agreement for p_T between the data and MC simulation.

For pseudo-rapidity η and azimuth angle ϕ , some sectors of TPC issued this year resulted in the nonuniform distributions of azimuth angle ϕ and asymmetrical η distribution relative to zero. However, MC simulation is not consistent with data, which means GEANT3 based on

Figure 4.4: Left: 2-dimensional distribution of proton $n\sigma$ as a function of momentum ; Right: the mean value of $n\sigma_p$ versus proton momentum

the STAR detector did not simulate perfectly the true status of the STAR detector. These will influence acceptance correction. Simultaneously, the statistic of the MC simulation sample is highly hard to produce due to low efficiency and limited resources. We just utilize it to check the new method of acceptance correction and estimate trigger bias.

318 5 Mixed Events

The biggest disadvantage of MC simulation is its statistics are still not enough for acceptance correction of data, which resulted statistical uncertainty of results are too large to obtain a definite conclusion. Thus, another alternative method, named mixed-event method[8], is proposed for this analysis. This is a popular method utilized widely to estimate combination backgrounds by mixing different tracks from randomly different events, the details can be found in reference [8]. An important reason we want to use the mixed event method is its fast production and smaller storage space, which could save lots of time and computer resources.

In this analysis, the mixed method is a little different but with the same principle. A recon-326 structed Λ particle will be embedded into a different event to form a mixed event, then using 327 this event to reconstruct Λ jet. The procedures are shown in Fig.5.1. Of course, these two events 328 must be required with the same trigger and their discrepancy of primary vertex z is smaller than 329 5 centimeters, and mixed events must be applied to the individual run aiming to ensure similar 330 conditions as much as possible. Owing to there being no correlation between Λ and jet from 331 different events, no physic signal of polarization will be obtained theoretically, and the original 332 correlation between Λ and jet at the SE is also broken simultaneously. 333

Figure 5.1: Mixed event procedure

³³⁴ 5.1 The research of Mixed-event methods

There are two types of mixed events in this analysis based on constraints of Λ and jet in different 335 events. For example, at one event, the azimuth phase space is separated into two sections, the 336 jet areas and off-axis regions, as shown in Fig.5.2. The Fig. 5.3 shows near-jet mixed events and 337 corresponding comparison of ΔR distribution. If there are no constraints between Λ and jet at 338 mixed event, the Λ will located randomly at any region that was described above that named as 339 random mixed events. Therefore, it is possible for Λ to reconstruct a fake jet when it located at 340 off-axis regions where none jet exist. It means this jet was dominated by Λ particle, which was 341 verified in Fig. 5.4. This condition might affect jet p_T distribution and acceptance correction. 342 The Fig. 5.4 shows mixed events when Λ located at off-axis regions, likely to underlying event 343 (UE) cone. The ΔR distribution is inconsistent with the same event. 344

Figure 5.2: Azimuth phase space

Figure 5.3: The near-jet mixed events

Figure 5.4: The off-jet mixed events

To assess the magnitude of the influence, Λ was required to be near the jet with $\Delta R < 0.7$ in 345 mixed events prior to jet reconstruction. The quality comparison between random mixed events 346 and near-jet mixed events is illustrated in the following figures. There is no significant difference 347 in the jet p_T distribution, with the exception of the low p_T range. Removing mixed events 348 from the off-axis region would significantly reduce the number of fake jets with low p_T that are 349 predominantly composed of Λ particle. A positive outcome is that near-jet mixed events have 350 improved the consistency of the z distribution with SE. Nevertheless, j_T distribution has not 351 352 seen substantial improvement, and inconsistency persists.

Figure 5.5: Top panel: comparisons of jet p_T between SE and random ME; Bottom panel: comparisons of jet p_T between SE and near-jet ME

Figure 5.6: Top panel: comparisons of z between SE and random ME; Bottom panel: comparisons of z between SE and near-jet ME

Figure 5.7: Top panel: comparisons of j_T between SE and random ME; Bottom panel: comparisons of j_T between SE and near-jet ME

³⁵³ We also compared Λ and $\overline{\Lambda} \cos\theta^*$ distributions of mixed events generated by the different meth-³⁵⁴ ods. The consistency of their distributions was very good, indicating that the off-axis region has ³⁵⁵ a minor impact on the correction of the acceptance. However, the near-jet mixed events were ³⁵⁶ closer to the true events, so we still used this method for acceptance correction in this analysis.

Figure 5.8: Comparison of $\cos\theta^*$ between random and near-jet mixed event

357 5.2 Closure test in MC

The closure test for this method is unavoidable to confirm whether the mixed event method could be useful for acceptance correction in this analysis. The following study about mixed events is based on unpolarized MC samples, produced by Pythia6 and GEANT3 as mentioned above. Firstly, we need to verify whether the mixed-event method will generate a non-physical fake signals.

We have produced a mixed-events sample using MC simulation data. The same algorithm and 363 criteria of jet reconstruction are also applied in mixed-events sample. Because $\Lambda/\overline{\Lambda}$ does not 364 originate from the jet in mixed events, the correlation between $\Lambda/\overline{\Lambda}$ and the jet will differ from 365 that in the same event. Figure 5.9 shows the comparisons of three quantities, ΔR , z, j_T that 366 can describe the correlation between Λ and jets, distributions between mixed and same events. 367 $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ means the distance in η - ϕ between a hyperon and a jet. The hyperon 368 z, the definition of which is shown in the following, denotes the longitudinal momentum fraction 369 of a jet carried by the hyperon. The hyperon j_T denotes the transverse momentum of Λ/Λ w.r.t. 370 the jet axis. 371

$$z = \frac{\vec{p}_{\Lambda} \cdot \vec{p}_{jet}}{|\vec{p}_{jet}|^2} \tag{5.1}$$

372

$$\mathbf{j}_{\mathrm{T}} = \frac{\vec{p}_{\Lambda} \times \vec{p}_{jet}}{|\vec{p}_{jet}|} \tag{5.2}$$

where \vec{p}_{Λ} and the \vec{p}_{jet} are the momenta of Λ and jet, respectively. These three distributions of mixed events are all inconsistent with that of the same event, which means reweighting is necessary for mixed events.

These three quantities are correlated with each other from the above equations Eq. (5.1) and Eq. (5.2). Based on our study, 2-dimensional distributions of ΔR vs z are able to be capable of reweighting. We will reweight 2-dimensional distributions of ΔR vs z from mixed events, as shown in the left of Figure 5.10, to the same events, shown in the right of Figure 5.10. The distributions of ΔR , z will be consistent between the same events and mixed events as expected. Fortunately, the hyperon j_T also becomes consistent. Figure 5.11 shows the comparisons of Λ ΔR , z, j_T between real data and mixed events after reweighting.

Figure 5.10: Left: ΔR vs z of Λ at mixed events. Right: ΔR vs z of Λ at same events

Figure 5.9: Comparison of $\Delta R, z, j_T$ distribution of Λ between SameEvents and MixedEvents before reweighting.

Figure 5.11: Comparison of $\Delta R, z, j_T$ distribution of Λ between same events and mixed events after reweighting.

- ³⁸³ Moreover, the Λp_T also becomes consistent after reweighting by comparing subplots (a) and
- $_{384}$ (b) of Fig. 5.12, which means the mixed events will also change Λ momentum distribution and
- the reweighting procedure is necessary. With regard to $\Lambda \eta$ and ϕ distributions, there are no large variations.

Figure 5.12: Comparison of Λp_T distribution between same events and mixed events.

Figure 5.13: Comparison of $\Lambda \eta$ distribution between same events and mixed events.

386

The most important thing is whether the mixed event could describe detector acceptance effects 387 in our analysis. Fortunately, the behavior of $\cos\theta^*$ with detector acceptance effects is described 388 well by mixed event, even though before reweighting as shown in Figure 5.15 (a). After reweight-389 ing, $\cos\theta^*$ become more consistent than before based on the slope of ratio is consistent with 0 390 as shown in Figure 5.15 (b), which means no extra polarization signal from the mixed event. 391 However, it does not mean the mixed-event method could be applied to extract polarization in 392 a polarized sample. We do not know how large the impacts of mixed events are for the $\cos\theta^*$ 393 distribution of polarized Λ , which is the last step of the closure test. 394

To confirm whether the mixed-event method works well in polarization extraction and how large impacts are for the polarized Λ sample, we generate a MC sample with polarized Λ by throwing some Λ randomly by a linear function of $\cos \theta^*$:

$$f = \alpha P_{\Lambda}(\cos\theta^* + 1) + 1, \tag{5.3}$$

where P_{Λ} is the input polarization and α is the weak decay constant of Λ . The blue flat line in the left plot of Fig. 5.16 is $\cos\theta^*$ distribution with $P_{\Lambda} = 0$, and the red line is $\cos\theta^*$ distribution with $P_{\Lambda} = -0.1$. We fit this red line and get the same polarization signal as the input value. So

Figure 5.14: Comparison of $\Lambda \phi$ distribution between same events and mixed events.

Figure 5.15: Comparison of $\cos\theta^*$ of Λ between same events and mixed events.

we used the same method at the detector level. Then, we use this polarized lambda sample to

402 make the mixed event.

Figure 5.16: Left: $\cos\theta^*$ of Λ at particle level. Right: $\cos\theta^*$ of Λ at detector level

 $_{403}$ The results with different input polarization are shown in Fig. 5.17. The y-axis denotes extracted

⁴⁰⁴ polarization, and the x-axis is input polarization. The red dashed line is a reference axis with the

⁴⁰⁵ function y=x. As we can see, the extracted polarizations are consistent with input polarizations.

⁴⁰⁶ Therefore, the mixed event method is reliable in the polarization extraction.

Figure 5.17: Extracted polarization vs input polarization of $\Lambda,\,\overline{\Lambda}$ and K^0_s

		Closure test		
Input polarization	-0.1	-0.07	-0.05	-0.03
Extracted P_{Λ}	-0.095 ± 0.005	-0.065 ± 0.006	-0.049 ± 0.005	$-0.025 {\pm} 0.007$
Extracted $P_{\overline{\Lambda}}$	-0.094 ± 0.005	-0.072 ± 0.006	-0.045 ± 0.005	-0.033 ± 0.007
Extracted P_K	$-0.097 {\pm} 0.005$	$-0.072 {\pm} 0.006$	-0.053 ± 0.005	-0.033 ± 0.007
Input polarization	0.03	0.05	0.07	0.10
Extracted P_{Λ}	0.027 ± 0.008	$0.047{\pm}0.008$	$0.073 {\pm} 0.009$	$0.116{\pm}0.008$
Extracted $P_{\overline{\Lambda}}$	$0.027{\pm}0.008$	$0.041{\pm}0.008$	$0.064{\pm}0.009$	$0.11 {\pm} 0.009$
Extracted P_K	$0.027{\pm}0.008$	$0.058 {\pm} 0.008$	$0.08{\pm}0.008~0$	$0.11 {\pm} 0.008$

Table 5.1: The table of Λ extracted polarization and input polarization

407 5.3 Mixed-events sample

A thorough quality assessment (QA) of the mixed-event sample is crucial before applying accep-408 tance corrections. As noted above, this involves comparing the distributions of several quantities 409 between the mixed events and the corresponding single events. Meanwhile, it was observed that 410 discrepancies in the $\Delta \eta$ vs η_{jet} distribution might impact acceptance correction, even after 3-411 dimensional reweighting in $\Delta R, z, p_T^{jet}$. $\Delta \eta$ here was defined as $\Delta \eta = \eta_H - \eta_{jet}$. Figure 5.18 displays a 2D distribution of $\Delta \eta$ vs η_{jet} distributions for K_s^0 in both mixed events and same 412 413 event. A clear asymmetry in $\Delta \eta$ was observed at opposite η_{jet} regions in the mixed events, 414 inconsistent with the same event distribution. In order to remove potential effects on the ac-415 ceptance correction, a 2D reweighting of $\Delta \eta$ vs η_{jet} was implemented in addition to the existing 416 3-dimensional reweighting of $\Delta R, z, p_T^{jet}$. 417

Figure 5.18: Left: $\Delta \eta$ vs η_{jet} in mixed events. Right: $\Delta \eta$ vs η_{jet} in same events.

The kinematic consistencies, such as transverse momentum (p_T) , pseudorapidity (η) , and azimuthal angle (ϕ) , are well-maintained after the reweighting process. Furthermore, the comparison of certain correlated quantities between hyperons and jets post-reweighting is presented below. The results demonstrate satisfactory consistencies for these quantities, indicating that

⁴²² the mixed events sample is capable of effectively performing acceptance corrections.

Figure 5.19: Comparisons of three kinematic quantities p_T, η, ϕ of Λ and jet between SE and ME.

Figure 5.20: Comparisons of three kinematic quantities p_T, η, ϕ of $\overline{\Lambda}$ and jet between SE and ME.

Figure 5.21: Comparisons of $\Delta R, z, j_T$ of Λ between SE and ME.

Figure 5.22: Comparisons of $\Delta R, z, j_T$ of $\overline{\Lambda}$ between SE and ME.

Figure 5.23: Comparisons of $\Delta R, z, j_T$ of K_s^0 between SE and ME.

⁴²³ 6 Transverse polarization $P_{\Lambda/\overline{\Lambda}}$ extraction of $\Lambda/\overline{\Lambda}$

424 6.1 Detector acceptance correction

Here shows the procedure of acceptance correction and lambda polarization extraction. The cos θ^* distribution of Λ is not linear, as shown in Figure 6.1, which is attributed to the detector acceptance effects. Here, the mass peak window of the candidates Λ is set at 1.112 ~ 1.120 GeV/c and background contribution had been subtracted from the cos θ^* distribution under the mass peak using the sideband method, as shown in Figure 2.2.

Figure 6.1: $\cos\theta^*$ distribution of Λ for the same event(left) and mixed events(right)

⁴³⁰ The acceptance correction can be done via mixed events. The $\cos\theta^*$ distribution of Λ that could ⁴³¹ reflect detector acceptance can be seen in the right panel of Figure 6.1. The same background ⁴³² subtraction procedure was also applied for mixed events. Once the acceptance correction is ⁴³³ done, polarization can be extracted by fitting the $\cos\theta^*$ distribution with a linear function:

$$dN/d(\cos\theta^*) = A(\cos\theta^*)(1 + \alpha P_{\Lambda}\cos\theta^*)$$
(6.1)

where $A(\cos\theta^*)$ denotes acceptance function. The α is the weak decay constant of Λ , which is $\alpha = 0.747 \pm 0.009$ [9]. The magnitude of weak decay constant for $\overline{\Lambda}$ is $\alpha = 0.757 \pm 0.004$.

Figure 6.2, as an example, shows the $\cos\theta^*$ distribution of Λ after acceptance correction, and it was fitted by above function Eq. (6.1) to obtain polarization. The first fitting parameter p_0 is the extracted polarization. Its uncertainty from the fitting is treated as statistical uncertainty.

Figure 6.3 and 6.4 show the fitting results at each jet bin for Λ and $\overline{\Lambda}$ respectively.

Figure 6.2: $\cos\theta^*$ distribution of Λ after acceptance correction and was fitted with a linear function (red line) to extract polarization

Figure 6.3: Extraction of transverse polarization of Λ as a function of jet p_T

Figure 6.4: Extraction of transverse polarization of $\overline{\Lambda}$ as a function of jet p_T

440 6.2 Zero-test with K_s^0

In order to confirm the validity of polarization extraction of Λ and $\overline{\Lambda}$, the K_s^0 particle with zero spin is used to make zero-test. If extracted polarizations of K_s^0 are consistent with 0, it means the Λ and $\overline{\Lambda}$ polarizations extracted in this analysis are credible. The same procedure of polarization extraction is applied for K_s^0 particle. The transverse polarization of K_s^0 as a function of jet p_T is consistent with 0 as shown in Figure 6.5.

Figure 6.5: Transverse polarization of K_s^0 as a function of jet p_T

Besides, figure 6.6 and 6.7 present the transverse polarization of K_s^0 as a function of z and j_T . They are all consistent with 0 as expected, which means the method of polarization extraction

448 in this analysis is credible.

Figure 6.6: Transverse polarization of K_s^0 as a function of z at different jet p_T ranges

Figure 6.7: Transverse polarization of K_s^0 as a function of j_T at different jet p_T ranges

⁴⁴⁹ 6.3 Comparison of results extracted by mixed events and MC

⁴⁵⁰ We also make a cross-check by comparing the results extracted by two different methods. The ⁴⁵¹ results are consistent with each other.

Figure 6.8: Transverse polarization extracted by MC

Figure 6.9: Transverse polarization extracted by mixed events

452 **7** Systematic uncertainties

Four sources of systematic uncertainties are taken into account. The first one is resulted from trigger effects, which will impact jet flavor and transverse momentum. The next systematic uncertainty originates from the variation of side-band range for background subtraction. The precision of decay parameter of Λ and $\overline{\Lambda}$ also contribute to the systematic uncertainties. The last one is contributed from the mixed event method.

458 7.1 Trigger Bias

In the data taking of STAR, trigger sets will impact jet transverse momentum and flavor fraction, especially at the edge of trigger threshold. This effect was simulated using embedding sample to estimate how large variation of jet flavor resulted by it. The two flavor fraction distributions at different jet p_T are presented at Fig. 7.1. The left plot is for no-bias sample and right one is for triggered sample. By comparing these two distributions from Fig. 7.1, the variation of quark fraction are used to estimate the systematic uncertainty with the following formula:

$$\sigma_{\rm trig} = \left| \frac{f_{\rm nobias} - f_{\rm trigger}}{f_{\rm nobias}} \right| \times \max(P_{\Lambda}, \sigma_{\rm stat}), \tag{7.1}$$

where f_{nobias} and f_{trigger} are the sum of all quark fraction of no-bias sample and trigger-bias sample, respectively. Here, P_{Λ} is measured Λ polarization and σ_{stat} is statistical error of Λ polarization. In case σ_{trig} is too small as the measured Λ polarization is closed to zero, the maximum of P_{Λ} and σ_{stat} is applied to calculation.

(a) Flavor fraction distribution without no-bias sam- (b) Flavor fraction distribution with triggered sample ple

Figure 7.1: Flavor fraction distribution of Λ at different jet p_T .

469 7.2 Mixed event method

The second source comes from the ME correction in correcting the detector acceptance. A closure test is performed with the MC sample by manually putting a polarization signal into the generator level and then extract the polarization at detector level using the ME method. The extracted results are consistent with input value as shown before. The following figure 7.2 shows the relative difference between them. We fitted 6 points from -0.07 to 0.07, which is close to the range of our polarization results, and obtain mean value of the relative differences up to $3\% \pm 5\%$. The higher value 5% as a scale uncertainty is taken as systematic uncertainty.

477 7.3 Background estimation

The side-band method was applied to make background estimation and subtraction, as shown in Fig. 2.2. The background $dN/d(\cos\theta)$ distribution is subtracted from $dN/d(\cos\theta)$ distribution

Figure 7.2: Relative change between inputted and extracted polarization.

under Λ peak range. The estimated background varies with different choices of side-band region. Therefore, the choice of side-band will introduce a potential uncertainty to the measured polarization. This uncertainty is estimated by varying the side-band region. The polarizations are calculated with the varied side-band region and the maximum of change of P_{Λ} resulted by variation of side-band window are treated as the systematic uncertainties.

$$\sigma_{\rm bkg} = \Delta P_{\Lambda} = |\max(P_{\Lambda} - P_{bkg})| \tag{7.2}$$

where P_{bkg} is the extracted Λ polarization under varied side-band shift. And σ_{bkg} denotes background systematic uncertainty.

Figure 7.3: The extracted Λ polarization under varied side-band shift. The top two panels show polarization extraction under left shift of side-band, the bottom two panels show the polarization extraction under right shift of side-band.

487 7.4 Decay parameter

The last source of systematic uncertainties is from the precision of weak decay constants of Λ and $\overline{\Lambda}$. In this analysis, the weak decay constant α of Λ and $\overline{\Lambda}$ are: 0.747 ± 0.009 and -0.757 ± 0.004 respectively [9]. The systematic uncertainties from decay parameter relative to P_{Λ} is calculated by the following equation:

$$\sigma_{\alpha} = 0.009/0.747 \times |P_{\Lambda}| \tag{7.3}$$

492 The total systematic uncertainty $\sigma_{\rm sys}$ is calculated through following formula:

$$\sigma_{\rm sys} = \sqrt{\sigma_{\rm trig}^2 + \sigma_{\rm bkg}^2 + \sigma_{\alpha}^2 + \sigma_{\rm mix}^2} \tag{7.4}$$

The systematic uncertainties σ_{sys} at different jet p_T range for Λ and $\overline{\Lambda}$ are summarized in Table 7.1 and 7.2 respectively. The systematic uncertainties for the polarization as the function of zand j_T are estimated with the same procedure.

Λ									
jet p_T [GeV]	P_{Λ}	$\sigma_{ m stat}$	$\sigma_{ m bkg}$	σ_{lpha}	$\sigma_{ m trig}$	$\sigma_{ m mixed}$	$\sigma_{ m sys}$		
6-7	-0.0098	0.0058	0.0007	0.0001	0.0009	0.0005	0.0012		
7-8.4	-0.0089	0.0057	0.001	0.0001	0.0008	0.0004	0.0014		
8.4-10	-0.0051	0.0038	0.0005	0.0001	0.0000	0.0003	0.0005		
10-12	0.0025	0.0042	0.0012	0.0000	0.0007	0.0001	0.0014		
12-14	-0.0002	0.0057	0.0004	0.0000	0.0002	0.0000	0.0005		
14-18	0.0154	0.0065	0.001	0.0002	0.0021	0.0008	0.0025		
18-50	0.0246	0.0113	0.0009	0.0003	0.003	0.0012	0.0033		

Table 7.1: The table of Λ extracted polarization, statistical uncertainties and summary of systematic uncertainties at different jet p_T ranges

Λ									
jet p_T [GeV]	$P_{\overline{\Lambda}}$	$\sigma_{ m stat}$	$\sigma_{ m bkg}$	σ_{lpha}	$\sigma_{ m trig}$	$\sigma_{\rm mixed}$	$\sigma_{ m sys}$		
6-7	-0.0165	0.0052	0.0007	0.0001	0.0015	0.0008	0.0019		
7-8.4	0.0028	0.0056	0.001	0.0000	0.0005	0.0002	0.0012		
8.4-10	-0.0125	0.0037	0.0005	0.0001	0.0001	0.0006	0.0008		
10-12	-0.0057	0.0045	0.0012	0.0000	0.0009	0.0003	0.0015		
12-14	-0.0208	0.0063	0.0004	0.0001	0.0008	0.001	0.0014		
14-18	-0.0104	0.0075	0.001	0.0001	0.0015	0.0006	0.0019		
18-50	-0.0299	0.0134	0.0009	0.0002	0.0036	0.0015	0.0040		

Table 7.2: The table of $\overline{\Lambda}$ extracted polarization, statistical uncertainties and summary of systematic uncertainties at different jet p_T ranges

496 8 Results and conclusion

In this analysis, we measure the dependence of Λ and $\overline{\Lambda}$ transverse polarization on jet p_T , z and j_T .

499 8.1 $P_{\Lambda/\overline{\Lambda}}$ vs jet p_T

Figure 8.1 shows the results of transverse polarization of Λ as a function of jet p_T . The red and blue markers denote Λ and $\overline{\Lambda}$ respectively. We can observe the significant transverse polarization of both Λ and $\overline{\Lambda}$ and clear jet p_T dependence. The Λ polarization increases with jet p_T and changes its sign from negative to positive at jet $p_T \sim 12$ GeV. The $\overline{\Lambda}$ polarization also increases with jet p_T but is always negative. In this figure, the vertical bars denote statistical uncertainties, and open boxes denote systematic uncertainties. The numerical values of the results are summarized in Tab. 8.1.

Figure 8.1: Transverse polarization of Λ and $\overline{\Lambda}$ as a function of jet p_T in unpolarized pp collisions at $\sqrt{s} = 200$ GeV at STAR. Statistical uncertainties are shown as vertical bars. Systematic uncertainties are shown as boxes.

507 8.2 $P_{\Lambda/\overline{\Lambda}}$ vs z and j_T

To provide further constraints for the pFFs, the transverse polarizations of Λ and $\overline{\Lambda}$ are also measured as functions of z and j_T , as shown in Figure 8.2 and 8.3. Because the Λ polarization as a function of jet p_T cross zero from negative to positive. There might be different z and j_T dependence of polarization at different jet p_T ranges. Hence, We separate jet p_T into three different ranges of: $6 < p_T^{jet} < 8.4 \text{ GeV}, 8.4 < p_T^{jet} < 12 \text{ GeV}$ and $p_T^{jet} > 12 \text{ GeV}$, respectively. The polarizations of Λ and $\overline{\Lambda}$ show different z dependence at different jet p_T ranges. At low jet p_T range of $6 < p_T^{jet} < 8.4 \text{ GeV}$, no clear z dependence of Λ or $\overline{\Lambda}$ polarization is observed. The polarization trend with z of Λ is similar to $\overline{\Lambda}$ at $8.4 < p_T^{jet} < 12 \text{ GeV}$ range. At high jet p_T

		1	١		$\overline{\Lambda}$			
jet p_T [GeV]	P_{Λ}	$\sigma_{ m stat}$	$\sigma_{ m sys}$	jet p_T [GeV]	$P_{\overline{\Lambda}}$	$\sigma_{ m stat}$	$\sigma_{ m sys}$	
6.4821	-0.0098	0.0058	0.0012	6.47	-0.0165	0.0052	0.0019	
7.6453	-0.0089	0.0057	0.0014	7.627	0.0028	0.0056	0.0012	
9.1596	-0.0051	0.0038	0.0005	9.1422	-0.0125	0.0037	0.0008	
10.9155	0.0025	0.0042	0.0014	10.8958	-0.0057	0.0045	0.0015	
12.9024	-0.0002	0.0057	0.0005	12.8898	-0.0208	0.0063	0.0014	
15.586	0.0154	0.0065	0.0025	15.5532	-0.0104	0.0075	0.0019	
21.2445	0.0246	0.0113	0.0033	21.1216	-0.0299	0.0134	0.0040	

Table 8.1: The table of Λ and $\overline{\Lambda}$ extracted polarization, statistical uncertainties and summary of systematic uncertainties at different jet p_T ranges

range, the polarization of Λ and $\overline{\Lambda}$ become opposite and increase with z. But no j_T dependence of polarization is observed at these three jet p_T range.

Figure 8.2: Transverse polarization of Λ , and $\overline{\Lambda}$ as a function of z at different jet p_T ranges of $6 < p_T^{jet} < 8.4$ GeV (left), $8.4 < p_T^{jet} < 12$ GeV (middle) and $p_T^{jet} > 12$ GeV (right). Statistical uncertainties are shown as vertical bars. Systematic uncertainties are shown as boxes.

Figure 8.3: Transverse polarization of Λ , and $\overline{\Lambda}$ as a function of j_T at different jet p_T ranges of $6 < p_T^{jet} < 8.4$ GeV (left), $8.4 < p_T^{jet} < 12$ GeV (middle) and $p_T^{jet} > 12$ GeV (right). Statistical uncertainties are shown as vertical bars. Systematic uncertainties are shown as boxes.

	$6 < p_T^{je}$	$t \leq 8.4$			$8.4 < p_{2}^{j}$	$T_T^{iet} \le 12$			$p_T^{jet} > 12$			
z	P_{Λ}	$\sigma_{ m stat}$	$\sigma_{ m sys}$	z	P_{Λ}	$\sigma_{ m stat}$	$\sigma_{ m sys}$	z	P_{Λ}	$\sigma_{ m stat}$	$\sigma_{ m sys}$	
0.1528	0.0006	0.0085	0.0022	0.1426	0.0077	0.0044	0.0018	0.1243	0.0067	0.0053	0.0018	
0.2484	-0.0099	0.0072	0.0020	0.2449	-0.004	0.0051	0.0008	0.2463	0.015	0.008	0.0012	
0.3448	-0.0072	0.0087	0.0009	0.3459	-0.0036	0.0065	0.002	0.3432	0.0053	0.012	0.0023	
0.4457	-0.0056	0.0113	0.003	0.4434	-0.0227	0.0094	0.0019	0.4424	0.0254	0.0193	0.0049	
0.6033	-0.0251	0.0124	0.0103	0.5926	-0.0164	0.0124	0.0040	0.5908	0.0253	0.0291	0.0059	
z	$P_{\overline{\Lambda}}$	$\sigma_{ m stat}$	$\sigma_{\rm sys}$	z	$P_{\overline{\Lambda}}$	$\sigma_{ m stat}$	$\sigma_{\rm sys}$	z	$P_{\overline{\Lambda}}$	$\sigma_{ m stat}$	$\sigma_{\rm sys}$	
0.157	-0.0076	0.0083	0.0010	0.1229	0.0035	0.0019	0.0022	0.1251	-0.0104	0.0061	0.0011	
0.2491	-0.0042	0.007	0.0017	0.247	-0.0017	0.003	0.0009	0.2463	-0.0288	0.0088	0.0047	
0.3458	-0.016	0.0081	0.0012	0.3454	0.0001	0.0043	0.0020	0.343	-0.019	0.0133	0.0063	
0.4464	0.0037	0.0101	0.0047	0.4445	-0.0023	0.0064	0.0014	0.442	-0.0556	0.022	0.0397	
0.6198	-0.013	0.01	0.0022	0.6065	-0.0044	0.0074	0.0047	0.6071	-0.0415	0.0343	0.0172	

Table 8.2: The table of Λ and $\overline{\Lambda}$ extracted polarization, statistical uncertainties and summary of systematic uncertainties at different z ranges

518 8.3 Conclusions

- Our analysis is the first measurement of transverse polarization of Λ and $\overline{\Lambda}$ within jet in unpolarized pp collisions at $\sqrt{s} = 200$ GeV.
- Significant polarizations of Λ and $\overline{\Lambda}$ are observed with clear dependence on jet p_T .
- The z and j_T dependence of polarization are measured, and visible z dependencies are observed for medium to high jet p_T .
- These measurements provide important constraints on polarizing Fragmentation Functions.

	$6 < p_T^{je}$	$t \le 8.4$			$8.4 < p_2^3$	$T_T^{iet} \le 12$			p_T^{jet} :	> 12	
j_T	P_{Λ}	$\sigma_{ m stat}$	$\sigma_{ m sys}$	j_T	P_{Λ}	$\sigma_{ m stat}$	$\sigma_{ m sys}$	j_T	P_{Λ}	$\sigma_{ m stat}$	$\sigma_{ m sys}$
0.1345	-0.0159	0.0105	0.0016	0.136	0.011	0.0083	0.0025	0.1381	-0.0068	0.0134	0.0014
0.2993	-0.0004	0.0069	0.0018	0.3006	-0.0067	0.0052	0.0009	0.3014	0.0086	0.0081	0.0014
0.49	-0.0047	0.0073	0.0004	0.4926	-0.0032	0.0051	0.0016	0.494	0.0112	0.0076	0.0010
0.6821	-0.0204	0.0103	0.0017	0.6873	0.0026	0.0063	0.0012	0.6901	0.0119	0.0087	0.0023
0.9026	-0.0238	0.0176	0.0050	0.9506	-0.008	0.0078	0.0028	1.006	0.017	0.0084	0.0021
j_T	$P_{\overline{\Lambda}}$	$\sigma_{ m stat}$	$\sigma_{\rm sys}$	j_T	$P_{\overline{\Lambda}}$	$\sigma_{ m stat}$	$\sigma_{\rm sys}$	j_T	$P_{\overline{\Lambda}}$	$\sigma_{ m stat}$	$\sigma_{\rm sys}$
0.1349	0.0047	0.0092	0.0019	0.1366	-0.0129	0.0083	0.0038	0.1376	-0.0139	0.0155	0.0032
0.2985	-0.0125	0.0063	0.0008	0.3009	-0.0114	0.0053	0.0013	0.3023	-0.0212	0.0091	0.0048
0.4898	-0.0153	0.007	0.0019	0.4928	-0.0065	0.0053	0.0019	0.4947	-0.0164	0.0087	0.0036
0.6831	0.0015	0.0102	0.0017	0.6882	-0.0059	0.0066	0.0021	0.6909	-0.0162	0.01	0.0017
0.9057	-0.0072	0.0171	0.0065	0.9597	-0.0103	0.0079	0.0026	1.0123	-0.0247	0.0097	0.0075

Table 8.3: The table of Λ and $\overline{\Lambda}$ extracted polarization, statistical uncertainties and summary of systematic uncertainties at different z ranges

526 **References**

- ⁵²⁷ [1] T. D. Lee and C. N. Yang, Phys. Rev. **108**, 1645 (1957).
- ⁵²⁸ [2] M. I. Abdulhamid et al. [STAR collaboration], Phys. Rev. D **109**, 012004 (2024) Ming Shao et al. PRC 75, 064901 (2007)
- ⁵³⁰ [3] Ming Shao et al. Phys. Rev. C **75**, 064901 (2007)
- ⁵³¹ [4] B. Abelev et al. [ALICE Collaboration], Phys. Rev. D **91**, 112012 (2015).
- ⁵³² [5] M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J. C **72**, 1896 (2012).
- [6] T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 64 physics and manual, JHEP 05 026
 (2006).
- 535 [7] R Brun et al. Report No.CERN-DD-EE-84-1 (1987)
- ⁵³⁶ [8] S.F. Pate et al. JINST **18** P10032 (2023)
- [9] Zyla, P.A., et al. [Particle Data Group], The Review of Particle Physics, Phys. Rev. D 110,
 030001 (2024)

Appendices

540	16042102	16045032	16046016	16048002	16050070	16052022	16053065	16055127	16058080
541	16060042	16062018	16042103	16045033	16046017	16048003	16050071	16052023	16053066
542	16055128	16058082	16060043	16062019	16042105	16045043	16046018	16048004	16050072
543	16052028	16053067	16055129	16058083	16060044	16062020	16042116	16045044	16046019
544	16048009	16050073	16052030	16053073	16055130	16058084	16060045	16062021	16042117
545	16045045	16046020	16048014	16050075	16052031	16053074	16055131	16058085	16060046
546	16062022	16042118	16045047	16046021	16048015	16050076	16052032	16053075	16055132
547	16058086	16060053	16062023	16042126	16045048	16046032	16048016	16051001	16052034
548	16053077	16055133	16058087	16060054	16062024	16043002	16045049	16046033	16048017
549	16051003	16052035	16053078	16055134	16058088	16060055	16062025	16043004	16045052
550	16046034	16048018	16051004	16052036	16053079	16056004	16058089	16060056	16062045
551	16043006	16045054	16046035	16048019	16051007	16052037	16054001	16056016	16058090
552	16060057	16062046	16043007	16045055	16046036	16048022	16051008	16052038	16054005
553	16056017	16058091	16060058	16062047	16043009	16045056	16046037	16048023	16051009
554	16052039	16054006	16056018	16058093	16060059	16062049	16043013	16045067	16046038
555	16048024	16051022	16052040	16054007	16056019	16058095	16060060	16062050	16043016
556	16045068	16046039	16048025	16051026	16052041	16054010	16056022	16058096	16060061
557	16062051	16043019	16045070	16046040	16048026	16051027	16052042	16054011	16056023
558	16058100	16060062	16062052	16043020	16045082	16046041	16048027	16051028	16052043
559	16054012	16057003	16059011	16060063	16062053	16043021	16045083	16046042	16048028
560	16051029	16052044	16054013	16057004	16059012	16060064	16062054	16043022	16045084
561	16046043	16048109	16051030	16052045	16054014	16057005	16059013	16060065	16062055
562	16043024	16045085	16046044	16048110	16051031	16052046	16054018	16057006	16059015
563	16061008	16062056	16043026	16045086	16046045	16048111	16051032	16052048	16054019
564	16057007	16059016	16061009	16062057	16043031	16045087	16046046	16048115	16051033
565	16052049	16054020	16057008	16059017	16061010	16062058	16043033	16045088	16046048
566	16048116	16051034	16052050	16054022	16057009	16059018	16061011	16062078	16043035
567	16045089	16046049	16048117	16051035	16052051	16054059	16057010	16059019	16061012
568	16063001	16043037	16045090	16046050	16048118	16051036	16052087	16054060	16057011
569	16059022	16061013	16063002	16043079	16045093	16046057	16048119	16051037	16052088
570	16054061	16057012	16059024	16061014	16063003	16043082	16045094	16046058	16048120
571	16051038	16052089	16054062	16057013	16059025	16061015	16063004	16043084	16045095
572	16046059	16048121	16051039	16053001	16054063	16057016	16059026	16061016	16063005
573	16043085	16045096	16046061	16048122	16051040	16053002	16054064	16057017	16059027
574	16061017	16063006	16043086	16045097	16046062	16048125	16051041	16053003	16054069
575	16057018	16059030	16061018	16063007	16043089	16045098	16046064	16048126	16051042
576	16053004	16054070	16057046	16059031	16061019	16063091	16043091	16045099	16046065
577	16048127	16051044	16053005	16054072	16057047	16059041	16061035	16063092	16043092
578	16045100	16046066	16048128	16051045	16053006	16054073	16057048	16059062	16061037
579	16063093	16043096	16045102	16046067	16049010	16051046	16053007	16054074	16057049
580	16059064	16061038	16063094	16043105	16045103	16046073	16049012	16051047	16053008
581	16054075	16057050	16059065	16061039	16063095	16043106	16045104	16046074	16049013
582	16051048	16053009	16054077	16057051	16059066	16061041	16063096	16044017	16045105
583	16046075	16049017	16051049	16053010	16054078	16057053	16059067	16061042	16063097
584	16044019	16045106	16046076	16049018	16051050	16053011	16054079	16058001	16059068

585	16061049	16063099	16044022	16045108	16046077	16049020	16051051	16053012	16054080
586	16058002	16059069	16061060	16063100	16044023	16045109	16046078	16049022	16051052
587	16053017	16054082	16058005	16060001	16061061	16063111	16044027	16045110	16046080
588	16049023	16051056	16053019	16054086	16058006	16060002	16061062	16063112	16044028
589	16045111	16046081	16049024	16051057	16053030	16054087	16058007	16060003	16061075
590	16063113	16044029	16045112	16046082	16049025	16051058	16053031	16055002	16058008
591	16060004	16061076	16064001	16044030	16045113	16046083	16050009	16051059	16053043
592	16055003	16058015	16060005	16061077	16064002	16044033	16045114	16047004	16050010
593	16051060	16053044	16055004	16058016	16060008	16061078	16064006	16044036	16045115
594	16047005	16050036	16051101	16053045	16055005	16058017	16060011	16061083	16064007
595	16044037	16045116	16047008	16050037	16051102	16053046	16055007	16058018	16060014
596	16061084	16064008	16044038	16045117	16047101	16050038	16051103	16053047	16055010
597	16058019	16060016	16062001	16064009	16044046	16045118	16047102	16050039	16051104
598	16053048	16055011	16058020	16060017	16062002	16064010	16044047	16045119	16047103
599	16050040	16051105	16053049	16055012	16058021	16060018	16062003	16064013	16044050
600	16045120	16047104	16050041	16051106	16053051	16055013	16058022	16060026	16062004
601	16064017	16044061	16046003	16047106	16050042	16051107	16053052	16055018	16058023
602	16060027	16062005	16064018	16044110	16046005	16047108	16050043	16051108	16053053
603	16055019	16058024	16060028	16062006	16064019	16044111	16046006	16047121	16050044
604	16051109	16053054	16055021	16058025	16060030	16062008	16044112	16046007	16047122
605	16050048	16051110	16053055	16055022	16058026	16060031	16062009	16044114	16046008
606	16047124	16050049	16051111	16053056	16055024	16058070	16060032	16062010	16044115
607	16046009	16047125	16050050	16052013	16053057	16055025	16058071	16060034	16062011
608	16044120	16046010	16047126	16050051	16052015	16053058	16055120	16058072	16060036
609	16062012	16044123	16046011	16047131	16050052	16052016	16053059	16055121	16058073
610	16060037	16062013	16044133	16046012	16047136	16050053	16052017	16053060	16055122
611	16058074	16060038	16062014	16044138	16046013	16047137	16050054	16052018	16053062
612	16055123	16058077	16060039	16062015	16044139	16046014	16047138	16050065	16052019
613	16053063	16055124	16058078	16060040	16062016	16045001	16046015	16048001	16050066
614	16052021	16053064	16055125	16058079	16060041 1	6062017			
615	16065023	16067016	16069064	16073013	16078041	16080043	16082050	16085032	16087021
616	16089020	16091009	16065024	16067017	16069065	16073017	16078042	16080045	16082051
617	16085033	16087022	16089024	16091010	16065025	16067019	16069067	16073018	16078056
618	16080046	16082052	16085035	16087023	16089026	16091011	16065026	16067020	16070003
619	16073019	16079001	16080047	16082053	16085036	16087024	16089027	16091012	16065027
620	16067021	16070004	16073020	16079010	16080048	16082054	16085037	16087025	16089028
621	16091013	16065028	16067022	16070005	16073021	16079011	16080049	16082055	16085051
622	16087026	16089029	16091014	16065036	16067040	16070006	16073029	16079013	16080050
623	16082056	16085052	16087027	16089030	16091061	16065037	16067041	16070008	16073030
624	16079014	16080051	16082057	16085054	16087028	16089031	16091062	16065038	16067042
625	16070009	16073031	16079015	16080052	16083005	16085055	16087029	16089041	16091063
626	16065039	16067043	16070010	16073032	16079016	16080053	16083006	16085056	16087030
627	16089042	16092001	16065041	16067044	16070012	16073033	16079017	16080054	16083007
628	16085057	16087031	16089043	16092002	16065042	16068001	16070013	16073034	16079018
629	16080055	16083008	16085058	16087032	16089044	16092003	16065044	16068003	16070014
630	16073035	16079019	16081001	16083009	16085061	16087033	16089045	16092015	16065045
631	16068004	16071016	16073037	16079020	16081002	16083010	16085062	16087042	16089046

632	16092016	16065046	16068005	16071050	16073038	16079021	16081003	16083011	16085065
633	16087043	16089047	16092017	16065047	16068006	16071051	16073039	16079022	16081012
634	16083012	16085067	16087044	16089048	16092018	16065048	16068007	16071052	16073040
635	16079023	16081013	16083013	16085069	16087045	16089049	16092019	16065060	16068008
636	16071053	16073045	16079024	16081015	16083014	16085071	16087046	16089050	16092020
637	16065061	16068009	16071054	16073046	16079027	16081016	16083015	16085072	16087047
638	16089051	16092021	16065072	16068010	16071055	16073047	16079028	16081017	16083016
630	16085073	16087048	16089052	16092022	16066001	16068013	16071056	16073048	16079029
640	16081018	16083017	16085074	16087049	16080053	16002023	16066002	16068014	16071058
641	16073040	16070030	16081010	16083018	16086001	16087050	16080054	16000014	16066003
041	16068015	16071050	16073050	16070031	16081020	16083010	16086002	16092055	16000000
042	16002034	16066004	16068016	16071060	16077021	16070032	16081091	16083042	16086003
643	16092034	16000004	16002025	16066005	16068017	16071061	16077027	16070022	16081099
644	16092042	16096004	16092055	16000000	16002026	16066006	16069019	16071076	16077022
645	10083043	10080004	10087033	10090005	10092050	10000000	10000010	100/10/0	10077028
646	10079034	10081024	10083044	10080000	10087054	10090004	10092037	10000007	10008021
647	16071077	16077029	16079035	16081025	16083045	10080000	16087055	16090005	16092042
648	16066008	16068022	16071078	16077030	16079036	16081036	16083046	16086007	16088001
649	16090015	16092044	16066009	16068023	16071079	16077031	16079046	16081037	16083048
650	16086008	16088016	16090016	16092048	16066011	16068024	16072001	16077032	16079047
651	16081048	16083049	16086025	16088017	16090017	16092049	16066012	16068025	16072002
652	16077033	16079048	16081049	16083050	16086026	16088018	16090018	16092050	16066015
653	16068028	16072003	16077034	16079049	16081050	16083052	16086027	16088019	16090019
654	16092051	16066016	16068029	16072006	16077037	16079052	16081052	16083053	16086028
655	16088020	16090020	16092052	16066017	16068030	16072007	16077038	16079054	16081053
656	16083055	16086030	16088021	16090021	16092053	16066018	16068032	16072008	16077039
657	16079057	16081054	16083056	16086031	16088022	16090022	16092054	16066019	16068034
658	16072009	16077040	16079058	16081055	16083057	16086032	16088023	16090023	16092055
659	16066020	16068035	16072010	16077041	16079059	16081056	16083058	16086033	16088025
660	16090024	16092063	16066021	16068036	16072012	16077043	16079060	16081057	16083059
661	16086034	16088026	16090025	16092064	16066026	16068037	16072013	16077047	16079061
662	16081058	16083060	16086035	16088027	16090026	16092065	16066027	16068038	16072014
663	16078002	16079062	16081059	16084004	16086036	16088028	16090027	16092066	16066030
664	16068039	16072022	16078003	16079063	16081060	16084006	16086037	16088029	16090028
665	16092067	16066031	16068040	16072023	16078004	16080002	16081061	16084007	16086038
666	16088030	16090029	16092068	16066032	16068042	16072024	16078005	16080004	16082001
667	16084008	16086039	16088031	16090030	16092070	16066033	16068056	16072025	16078006
668	16080005	16082002	16084009	16086040	16088040	16090038	16092071	16066035	16068057
669	16072026	16078008	16080006	16082012	16084011	16086041	16088041	16090039	16093001
670	16066047	16068058	16072033	16078009	16080012	16082013	16084012	16086042	16088042
671	16090041	16093002	16066049	16069001	16072034	16078010	16080013	16082017	16084013
672	16086051	16088043	16090042	16093003	16066050	16069002	16072035	16078011	16080014
672	16082018	16084014	16086052	16088044	16090044	16093004	16066051	16069003	16072036
674	16078013	16080015	16082010	1608/015	16086053	16088045	16000001	16003000	16066052
675	16060004	16072038	16078014	16080020	16082022	16085008	16086054	16088046	160000002
0/5	16002012	16066052	16060005	16072020	16078029	16080091	16089092	16085000	16087001
0/0	16089047	16000000	16002012	16066054	16060006	16072040	16072020	1608009	16089095
υ <i>((</i>	16085011	16087009	16060010	16000004	16002014	16066055	16060007	16079041	16079090
0/8	160000011	16082027	16095019	16097002	16099040	160000000	16002015	16066050	16060000
679	10000023	10002027	10000012	10091003	10000049	10090049	10039019	10000098	T0009008

680	16072042	16078031	16080024	16082028	16085013	B 16087004	4 16088050	16090050	16093016
681	16066060	16069010	16072043	16078032	16080025	5 16082029	9 16085014	4 16087005	16089001
682	16090051	16093017	16067001	16069011	16072058	8 1607803	3 16080026	6 16082039	16085024
683	16087006	16089002	16090052	16093018	16067003	3 16069012	2 16072059	9 16078034	16080027
684	16082040	16085025	16087007	16089003	16090053	3 16067004	4 16069016	6 16072060	16078035
685	16080028	16082041	16085026	16087008	16089004	4 16091003	3 16067005	5 16069053	16072061
686	16078036	16080029	16082042	16085027	16087009	0 1608900	5 16091004	16067006	16069054
687	16072062	16078037	16080030	16082043	16085028	3 16087010	0 16089016	6 16091005	16067013
688	16069055	16073001	16078038	16080031	16082046	$6\ 16085029$	9 16087011	16089017	16091006
689	16067014	16069062	16073010	16078039	16080032	2 1608204'	7 16085030) 16087019	16089018
690	16091007	16067015	16069063	16073012	16078040) 1608003;	3 16082048	8 16085031	16087020
691	16089019	16091008							
692	16094016	16094019	16094020	16094021	16094022	16094025	16094026	16094027	
693	16094028	16094029	16094030	16094032	16094033	16094034	16094035	16094048	
694	16094049	16094050	16094051	16094052	16094053	16094054	16095006	16095007	
695	16095008	16095019	16095020	16095028	16095029	16095030	16095031	16095032	
696	16095033	16095035	16095038	16095039	16095041	16095042	16095043	16095044	
697	16095045	16095046	16096053	16096054	16096062	16096063	16096064	16096065	
698	16096066	16096067	16096068	16096069	16097001	16097002	16097003	16097004	
699	16097005	16097006	16097007	16097008	16097009	16097011	16097012	16097013	
700	16097015	16097016	16097030	16097031	16097032	16097033	16097035	16097036	
701	16097037	16097038	16097039	16097042	16097044	16097045	16097049	16097050	
702	16097057	16097058	16097059	16097064	16097065	16097066	16098001	16098002	
703	16098003	16098004	16098008	16098009	16098010	16098011	16098027	16099002	
704	16099003	16099004	16099005	16099006	16099007	16099008	16099009	16099010	
705	16099011	16099012	16099013	16099014	16099026	16099027	16099028	16099029	
706	16099030	16099042	16099043	16099046	16099048	16099049	16099050	16099051	
707	16099053	16099054	16099055	16099056	16099057	16099059	16099060	16099061	
708	16100052	16100053	16100054	16100055	16100056	16100069	16100070	16100072	
709	16100073	16100074	16100077	16100078	16100079	16100080	16100081	16100082	
710	16100083	16100084	16100085	16100086	16100088	16101002	16101003	16101012	
711	16101013	16101014	16101016	16101019	16101020	16101034	16101035	16101036	
712	16101037	16101038	16101039	16101040	16101041	16101042	16101043	16101044	
713	16101045	16101046	16101047	16101048	16101057	16101058	16102001	16102002	
714	16102003	16102004	16102005	16102007	16102010	16102012	16102014	16102015	
715	16102016	16102017	16102018	16102019	16102020	16102033	16102034	16102035	
716	16102036	16102038	16102039	16102040	16102041	16102042	16102043	16102044	
717	16102045	16102046	16102047	16102048	16102053	16102054	16102055	16102056	
718	16102058	16102061	16102062	16102063	16102064	16102065	16102066	16103002	
719	16103003	16103005	16103006	16103007	16103008	16103009	16103010	16103011	
720	16103012	16103013	16103014	16103015	16103016	16103017	16103018	16103029	
721	16103031	16103032	16103033	16103034	16103035	16103038	16103039	16103041	
722	16103042	16103043	16103044	16103045	16103046	16103047	16103048	16103051	
723	16103052	16104010	16104011	16104015	16104016	16104017	16104018	16104019	
724	16104020	16104021	16104023	16104025	16104027	16104029	16104031	16104034	
725	16104035	16104044	16104045	16104046	16104047	16104049	16104050	16104051	
726	16104052	16104053	16104054	16104055	16104056	16104057	16104059	16104060	

727	16105038	16105039	16105040	16105041	16105042	16105045	16105046	16106002
728	16106003	16106004	16106005	16106006	16106007	16106008	16106009	16106016
729	16106017	16106018	16106019	16106020	16106021	16106045	16106048	16106049
730	16106050	16106051	16106052	16106053	16106054	16106058	16107007	16107010
731	16107012	16107013	16107014	16107015	16107016	16107018	16107020	16107021
732	16107022	16107047	16107052	16107055	16107058	16107060	16107061	16107062
733	16107063	16108001	16108002	16108003	16108004	16108005	16108010	16108011
734	16108013	16108017	16108018	16108019	16108020	16108028	16108033	16108035
735	16108036	16108039	16108044	16108056	16108057	16108058	16109001	16109023
736	16109025	16109026	16109031	16109032	16109033	16109034	16109035	16109037
737	16109038	16109049	16109050	16109051	16109052	16109053	16109054	16109056
738	16109057	16109058	16109059	16109060	16109061	16110001	16110002	16110009
739	16110010	16110011	16110012	16110013	16110014	16110015	16110016	16110017
740	16110018	16110019	16110020	16110021	16110035	16110036	16110038	16110039
741	16110040	16110041	16110042	16111001	16111002	16111005	16111025	16111026
742	16111027	16111028	16111029	16111030	16111031	16111032	16111033	16111034
743	16111036	16111037	16111038	16111039	16111040	16111041	16111042	16111043
744	16111049	16111050	16112001	16112002	16112003	16112004	16112005	16112006
745	16112007	16112008	16112009	16112010	16112011	16112012	16112013	16113003
746	16113008	16113010	16113011	16113012	16113014	16113015	16113016	16113017
747	16113019	16113020	16113021	16113022	16113028	16113029	16113040	16113041
748	16113042	16113043	16113044	16113045	16113048	16113049	16113050	16113051
749	16113052	16113053	16113055	16113056	16114002	16114003	16114004	16114005
750	16114006	16114007	16114008	16114009	16114010	16114011	16114012	16114013
751	16114014	16114015	16114016	16114017	16114018	16114026	16114027	16114028
752	16114029	16114030	16114031	16114032	16114033	16114041	16114046	16114047
753	16114048	16114049	16115001	16115002	16115029	16115030	16115033	16115034
754	16115036	16115037	16115039	16115040	16115041	16115042	16115044	16115045
755	16115046	16115047	16115048	16115054	16115055	16115056	16115057	16115058
756	16115059	16115060	16115061	16115062	16115063	16115064	16115065	16115066
757	16116001	16116002	16116007	16116008	16116009	16116010	16116011	16116033
758	16116034	16116035	16116037	16116038	16116039	16116040	16116041	16116042
759	16116043	16116044	16116045	16116046	16116047	16116053	16116054	16116055
760	16117001	16117002	16117003	16117004	16117005	16117006	16117007	16117011
761	16117012	16117014	16117017	16117018				

