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ABSTRACT

The collision of relativistic heavy-ion such as the AuAu-collisions studied at the Rel-

ativistic Heavy-Ion Collider produce a hot, dense medium with properties consistent with

that of a state of matter in which quarks and gluons become deconfined, the Quark-Gluon

Plasma. Collimated sprays of hadrons known as jets are produced by the fragmentation

of quarks and gluons during the early stages of a heavy-ion collision, and offer a valuable

probe of this medium. In particular, jets recoiling from energetic direct photons offer a

"golden channel" through which we may study the complex dynamics of the medium pro-

duced in heavy-ion collisions. However, to understand the interplay between jets and the

produced medium, a high-precision reference is needed in which no medium is produced.

Thus, this thesis presents a high precision measurement of the semi-inclusive yields of

charged jets recoiling from energetic γdir and π0 triggers in
√
s = 200 GeV pp-collisions

recorded by the STAR detector during the 2009 running year. The recoil jets were recon-

structed from charged particles using the anti-kT algorithm with jet resolution parameters

0.2 and 0.5. A regularized unfolding scheme was employed to correct the measured per-

trigger recoil jet yields for finite reconstruction efficiency and resolution. The energy

resolution of the triggers was assessed using a simulation of the STAR electromagnetic

calorimeter. The effect of a finite trigger resolution was applied to recoil jet spectra gener-

ated by PYTHIA 8.185 using a weighting scheme, and the corrected data were compared

against the weighted recoil jet spectra from PYTHIA 8.185.
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functions E and Ẽ applied to ϵtrk and ϵ̃trk respectively. The magenta curve
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1. Introduction

"By substance I understand what is in itself and is conceived through itself;

that is, that the concept of which does not require the conception of another

thing from which it has to be formed." – Spinoza, Definition 3 of The Ethics

[20]

What is the world? Is there some fundamental constituent, some indivisible atom1,

from which our experiential world of matter is built? If so, what characterizes it? Or

in the words of Spinoza, what are its "attributes," that "which the intellect perceives of a

substance as constituting its essence?" [20]. These sorts of questions have long occupied

humanity’s curiosity, and have motivated philosophy and science both ancient and modern.

In fact, science (particularly physics) as we understand it today has largely developed

up to this point as an effort to understand the substance (matter) from which our world is

built and its attributes. In its own way of grappling with the flux of sensory data that we

experience, science renders the world comprehensible by constructing quantitative theo-

ries which describe causal relations between various bodies of nature [21]. The theory

which describes nature at its smallest scale (at time of writing) is the Standard Model

[22], a profound achievement of 20th century particle physics, and represents our current

understanding of what matter is.

1.1 The Standard Model

The Standard Model consists of seventeen fundamental particles whose attributes are

described by a handful of so-called quantum numbers. For instance, we can class these

seventeen particles into two types: fermions, which comprise matter, and bosons which

mediate fundamental interactions between the fermions. These classes are indexed by a
1From atomus (Greek), literally "uncuttable."
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particle’s intrinsic spin, angular momentum intrinsic to a particle rather than being due to

any sort of motion of the particle. The spins of fermions come in half-integer multiples

of the fundamental unit of angular momentum (the reduced Planck Constant2, ~), while

the spins of bosons come in integer multiples. In addition to spin, other quantum numbers

which describe the nature of a particle are its rest mass, which describes the strength

of its gravitational interaction with other objects; its parity or handedness, which is the

orientation of its intrinsic spin relative to its momentum; its flavor (described below);

and its electric charge, weak isospin/charge, and color charge which each describe which

interactions the particle participates in. Figure 1.1 shows the set of particles comprising

the Standard Model.

Each fundamental interaction consists of the exchange of a gauge boson between par-

ticles. For example, particles which carry an electric charge participate in the electromag-

netic interaction by exchanging photons. Those which carry weak isospin participate in

the charged weak interaction by exchanging W±, while those which carry weak charge

participate in the neutral weak interaction by exchanging Z0 bosons. And those with color

charge participate in the strong interaction via the exchange of gluons. The strong interac-

tion and color charge will be described in detail in chapter 2.

We may then further subdivide the fermions into sub-classes according to which inter-

actions each participates in: the quarks, which carry color charge and compose the proton

and neutron, and the leptons, which do not carry color charge. Both the quarks and leptons,

however, participate in the weak and electromagnetic interactions.

The quarks come in six flavors – up (u), down (d), charm (c), strange (s), top (t),

and bottom (b) – which are arranged into three generations, doublets made of an "up-type"

quark, which carries +2/3 units of electric charge, and a "down-type" quark, which carries

−1/3 units of electric charge:

2Its value is ≈ 1.054× 10−34 J·s in SI units or ≈ 6.582× 10−22 MeV·s in eV units [6].
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Figure 1.1: The particles of the Standard Model of Physics. From [1].

{q} =

 u

d

⊕

 c

s

⊕

 t

b

 (1.1)

Here the top row of each of doublet is the up-type quark, and the bottom row the down-

type. The mass, electric charge, and spin of each quark are listed below in table 1.1. The

generations are ordered according to increasing mass of each pair, where the first consists

of the least massive quarks, the up and down, and the last consists of the most massive

quarks, the top and bottom.

When a quark participates in the charged weak interaction, it emits or absorbs a W±

boson which transforms it from one flavor into another. For instance, an up quark can
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Name Mass Electric Charge Intrinsic Spin

Up (u) 2.16+0.49
−0.26 MeV/c2 +2e/3 1/2

Down (d) 4.67+0.48
−0.17 MeV/c2 −e/3 1/2

Strange (s) 93+11
−5 MeV/c2 −e/3 1/2

Charm (c) 1.27± 0.02 GeV/c2 +2e/3 1/2
Bottom (b) 4.18+0.03

−0.02 GeV/c2 −e/3 1/2
Top (t) 172.76± 0.30 GeV/c2 +2e/3 1/2

Table 1.1: The six quarks and their mass, electric charge, and intrinsic spin. The listed
value of the top mass is derived from direct measurements. All values are from [6].

transform into a down quark by emitting a W−. Note that these transformations do not

occur between quarks of the same type, e.g. a charm quark will never transform into an

up quark via W± exchange. Oddly, only left-handed quarks – quarks whose spin is anti-

parallel with their momentum – have been observed to participate in the charged weak

interaction.

Like the quarks, the leptons also come in three generations of doublets. Each doublet

is composed of an electron-type lepton, which carries one unit of electric charge, and a

corresponding electrically neutral neutrino:

{l} =

 e−

νe

⊕

 µ−

νµ

⊕

 τ−

ντ

 (1.2)

Here the top row of the doublets are the three flavors of electron-type leptons – the electron

(e−), muon (µ−), and tau (τ−) – and the bottom row are the three corresponding flavors of

neutrinos, referred to as the electron, muon, and tau neutrinos. The leptons and their mass,

electric charge, and spin are listed in table 1.2. As with the quarks, the generations are

ordered according to increasing mass of the electron-type lepton with the electron being

the least massive and the tau being the most massive.

Also like the quarks, only left-handed leptons participate in the charged weak interac-
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Name Mass Electric Charge Intrinsic Spin

Electron (e−) 0.5109989461±3.1×10−9

MeV/c2
−e 1/2

Muon (µ−) 105.6583745± 2.4× 10−6

MeV/c2
−e 1/2

Tau (τ−) 1776.86± 0.12 MeV/c2 −e 1/2
The Neutrinos
(νe, νµ, and ντ )

< 1.1 eV/c2 0 1/2

Table 1.2: The six leptons and their mass, electric charge, and intrinsic spin. All values
are from [6].

tion: an electron-type lepton can transform into its neutrino counterpart by emitting a W±

boson and vice versa. As before, transformation between leptons of the same type can-

not occur through W± exchange. It is worth noting here that while right-handed quarks

and electron-type leptons and – whose spin is parallel with their momentum – abound in

nature, no right-handed neutrinos have been observed (as of time of writing).

There are two remaining particles in the Standard Model to be discussed, the Z0 and

Higgs bosons. The Z0 boson mediates the neutral weak interaction which, in contrast to

the charged weak interaction, only involves transfers of spin or momentum between parti-

cles. Some examples of neutral weak interactions are the elastic scattering of neutrinos in

matter, or the decay of a Z0 into a fermion-anti-fermion pair.

The Higgs boson carries no electric or color charge, and is the only currently known

fundamental particle to carry zero spin. It mediates the famous Higgs Interaction which

is responsible for generating the mass of the fermions and the W±/Z0 bosons. Table 1.3

summarizes the mass, electric charge, and spin of the gauge bosons of the Standard Model.

Lastly, for each electrically charged particle there is a corresponding antiparticle with

opposite quantum numbers but identical mass. The neutral bosons, the photon and Z0, are

their own antiparticles, but (at time of writing) it is not known whether or not neutrinos are
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Name Mass Electric Charge Intrinsic Spin

Photon (γ) 0 (< 10−18) eV/c2 0 1
Gluon (g) 0 eV (Theoretical value) 0 1
W± 80.739± 0.012 GeV/c2 ±e 1
Z0 91.1876± 0.0021 GeV/c2 0 1
Higgs (H0) 125.25± 0.17 GeV/c2 0 0

Table 1.3: The gauge and Higgs bosons and their mass, electric charge, and intrinsic spin.
All values are from [6].

their own antiparticles. Antiparticles are typically notated with a bar (e.g. the antiparticle

of the u quark is denoted ū) or with a specific symbol. For example, the positron, the

antiparticle of the electron, is denoted e+. By convention, the species of particle which is

not naturally occurring (like the e+) is taken to be the antiparticle of the pair.

The laws of physics are almost identical between particles and antiparticles. However,

violations of this symmetry have been observed in the decays of neutral kaons (particles

made up of pairs of up or down and strange quarks) [23] and in the decays of charmed D0

particles (particles containing up and charm quarks) [24].

These seventeen particles, the corresponding antiparticles, and their interactions form

the basis of the Standard Model. It is worth noting that this model is strangely asymmetric.

For instance, why is it that only left-handed particles participate in the charged weak inter-

action? Why are there no right-handed neutrinos? Moreover, there are glaring omissions

in the Standard Model, particularly dark matter and the gravitational interaction. There

are many ongoing efforts to extend the Standard Model to include these, but efforts have

thus far proved inconclusive due to a lack of sufficient empirical evidence and/or due to

the immense theoretical challenges involved.

Suffice to say, the asymmetry and blind spots of the Standard Model are superb exam-

ples of the ways in which the phenomenal world constantly spills over the bounds of our
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Figure 1.2: The interactions of the Standard Model of Physics. Interactions are visualized
as blue lines connecting the participating particles. From [2].

conceptual frameworks and presents us with novelty that forces us to think, to revise, and

to expand our picture of just what the world is.

1.2 Manuscript Organization

The focus of this thesis, though, are the quarks, gluons, and their interactions in relation

to a state of matter known as the Quark-Gluon Plasma (QGP). This state of matter existed

microseconds after the big bang and is created in the extreme conditions of the heavy-ion

collisions studied at colliders such as the Relativistic Heavy-Ion Collider (RHIC) or the

Large Hadron Collider (LHC).

When nuclear matter is subjected to high enough energy densities, the nucleons (pro-

tons and neutrons) melt away leaving a strongly-coupled liquid of deconfined quarks and

gluons. In other words, nuclear matter transitions to a locally thermally equilibrated state

of matter in which its color degrees of freedom – the constituent quarks and gluons of the
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nucleons – become manifest over nuclear rather than nucleonic volumes [25].

This thesis will discuss out the physics behind and elaborate on the details of a precise

measurement of the momentum spectra of a certain observable known as jets recoiling

from high energy neutral particles - neutral pions (π0) and direct photons (γdir) - in proton-

proton (pp) collisions, where no QGP-like medium is thought to be created. This mea-

surement will serve as the vacuum-fragmentation (i.e. without the presence of a QGP-like

medium) reference for a similar measurement in gold-gold (AuAu) collisions, wherein a

QGP-like medium is created. Thus this thesis is organized as follows.

Chapter 2 will give a brief summary of concepts and techniques from Quantum Field

Theory relevant to the content of this thesis, and then will proceed to give a brief

account of Quantum Chromodynamics (QCD), the mathematical description of the

strong interaction, and will then proceed to a description of the phase diagram of

nuclear matter suggested by QCD and detail the origin and nature of the QGP.

Chapter 3 will define the concept of a jet and its role as an observable of QCD.

Chapter 4 will proceed to discuss the interaction of a jet with the QGP and detail several

theoretical models describing the phenomenon of jet quenching.

Chapter 5 will define the concept of a direct photon, and discuss why they are a valuable

observable in relation to jets and jet quenching.

Chapter 6 will then transition to an account of experimental techniques. In particular,

this chapter will describe the RHIC complex, and give a detailed overview of the

Solenoidal Tracker At RHIC (STAR) detector, the machine used to collect the data

used in this thesis.

Chapter 7 will detail how direct photons and neutral pions are measured using the STAR

experiment.
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Chapter 8 will proceed to give the details of the measurement presented in this thesis

such as the steps involved in going from raw data to a refined measurement and the

various criteria applied to ensure a clean signal.

Chapter 9 will describe the two simulation frameworks used to estimate the response of

the STAR detector.

Chapter 10 will elaborate on how the data are corrected for biases and distortions through

a process known as regularized unfolding.

Chapter 11 will detail how the systematic uncertainties of this measurement are esti-

mated and applied to the data.

Chapter 12 will describe the simulation framework used to estimate the response of the

STAR detector to the photons and neutral pions used as triggers in this measurement.

Chapter 13 will discuss the response of the STAR detector to photons and neutral poins

is accounted for in this measurement before concluding the thesis with a comparison

between the fully corrected data and simulation.
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2. Quantum Chromodynamics and the Quark Gluon Plasma

The particles of the Standard Model and their interactions are described mathemat-

ically in the language of Quantum Field Theory (QFT)1. In a QFT, both fermions and

bosons are conceptualized as local excitations of an underlying field, a mathematical con-

struct which assigns a mathematical object – such as a number (scalar), vector, tensor, etc.

– to every point in space-time. This picture accommodates two facts that have been ob-

served about nature: (1) that fundamental particles are identical everywhere, an electron

observed at one point in the universe has the exact same properties as an electron observed

at another; and (2) that particle number is not conserved [26].

The quantum aspect of QFT indicates that these fields are inherently quantum mechan-

ical in nature, and thus the uncertainty principle holds:

∆E∆t ≥ ~
2

(2.1)

Energy conservation may be violated by amount ∆E for a period of time ∆t so long as

that time satisfies ∆t ∼ ~/2∆E. This is what enables the fundamental interactions of the

Standard Model: a particle emits a boson – violating the conservation of energy – which

travels a distance ∆t/c to be absorbed by another particle, restoring the conservation of

energy. These ephemeral particles that only exist due to the uncertainty principle are

referred to as virtual. Furthermore, the uncertainty principle also means that the vacuum

of space-time is not so much of a vacuum after all: it is filled with pairs of virtual particles

and antiparticles that flicker into existence for a brief period of time ∆t only to annihilate

back into the vacuum again [26].

Such processes are visualized with Feynman Diagrams [28]: diagrams which depict

1For an accessible introduction to the topic see [26] or [27].
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(a) e− scattering (b) e+e− annihilation

Figure 2.1: Two example Feynman diagrams: the scattering of two e− by the exchange
of a virtual γ (2.1a), and the annihilation of an e+e− pair (2.1b) with their 4-momenta
labeled.

physical processes and function as visual mnemonics for the calculations that describe the

probability of each process occurring. For instance, figure 2.1a shows the scattering of

two electrons by the exchange of a virtual γ, and figure 2.1b shows the annihilation of a

e−e+ pair into a virtual photon which splits into an outgoing e+e− pair. The x-axis of these

diagrams is frequently taken to be time and the y-axis to be space. Unless stated otherwise,

this is the convention which will be followed in this thesis. Lines pointing backwards in

time indicate antiparticles, and those pointing forwards indicate regular particles.

Lastly, it should be noted that the kinematics of 2 → 2 scattering events such as the

ones depicted in figure 2.1 are encoded in Mandelstam Variables [29]:

s = (p1 + p2)
2 = (p3 + p4)

2

t = (p1 − p3)
2 = (p2 − p4)

2

u = (p1 − p4)
2 = (p2 − p3)

2

(2.2)
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where pi are the 4-momenta2 of the two incoming and two outgoing particles as labeled in

figure 2.1. These variables are Lorentz Invariant, meaning that they are the same regardless

of the reference frame used. Of the three, s and t also correspond to the square of the

center-of-mass energy of the two incoming particles3 and the momentum transfer of the

process (i.e. the momentum of the virtual photon in figure 2.1).

(a) s-channel (b) t-channel (c) u-channel

Figure 2.2: Prototypical diagrams of s-channel (2.2a), t-channel (2.2b), and u-channel
(2.2c) scattering processes. Note that the u-channel is simply the t-channel with the roles
of the outgoing particles reversed.

These three variables are also used to label certain configurations of 2 → 2 scattering

processes. These processes are visualized in figure 2.2. These "channels" correspond to

processes where the 4-momentum squared carried by the intermediate, virtual particle is

given by s in the s-channel (s for space), t in the t-channel (t for time), and u in the u-

channel. With all of these concepts in hand, we are now ready to discuss quarks, gluons,

and QCD in more detail.
2pµ = (E, px, py, pz) where E is the energy of a particle and px,y,z are the x, y, and z components of

the 3-momentum, p⃗.
3The "center-of-mass frame" is the reference frame in which p⃗1 + p⃗2 = 0.

12



2.1 Quantum Chromodynamics

We have introduced quarks as fundamental particles. However, in sharp contrast to

electrons, we never interact with quarks directly. Rather, the matter we interact with day-

to-day is composed of atoms which are in turn composed of electrons, protons, and neu-

trons. The protons and neutrons are examples of baryons4, particles composed of three

quarks. Two u quarks and a d quark make up a proton (notated p = uud), and two d

quarks and a u make up a neutron (n = udd). This reproduces the observed properties of

the proton and neutron such as intrinsic spin or electric charge:

Qp =
∑
q

Qq =
2e

3
+

2e

3
− e

3
= +e

Qn =
∑
q

Qq =
2e

3
− e

3
− e

3
= 0

(2.3)

There are many more members of the baryon family such as the ∆++ or the Hyperons,

baryons which contain a strange quark such as the Λ0 = uds. Table 2.1 lists a few baryons

and some key properties.

In addition to baryons, the quarks can form mesons5, bosons composed of a quark

and an antiquark. These were originally proposed by Hideki Yukawa to be the carriers of

the force that holds together the nucleus [30], their name deriving from the fact that their

predicted mass lay in the middle of the electron and proton. The most common meson in

nature are the pions, the lightest of the mesons. These include the π+ = ud̄, π− = dū, and

the π0 = 2−1/2
(
uū+ dd̄

)
6. Another example of a meson are the kaons: mesons composed

4From the Greek word barýs meaning "heavy."
5From the Greek world mesos meaning "intermediate."
6Since there is no way to experimentally distinguish uū from dd̄ the π0 must be described as a superpo-

sition of the two states. This is what the + indicates here. Moreover, the prefactor is for normalization of
the wavefunction.
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Name Quark
Composition

Mass [MeV/c2] Electric
Charge

Intrinsic
Spin

Proton (p) uud 938.272081± 0.6×
10−5

+e 1/2

Neutron (n) udd 939.565413± 0.6×
10−5

0 1/2

∆++ uuu 1232± 2 +2e 3/2
Λ0 uds 1115.683± 0.006 0 1/2
Ω− sss 1672.45± 0.29 −e 3/2
Ξ++
cc ucc 3621.6± 0.4 +2e ?

Table 2.1: A few baryons and their quark composition, mass, electric charge, and intrinsic
spin. All values are from [6].

Name Quark
Composition

Mass [Mev/c2] Electric
Charge

Intrinsic
Spin

π± ud̄, dū 139.57039± 0.0001 ±e 0
π0 2−1/2

(
uū+ dd̄

)
134.9768± 0.0005 0 0

K± us̄, sū 493.677± 0.016 ±e 0
K0 ds̄ 497.611± 0.013 0 0
Φ ss̄ 1019.461± 0.019 0 1
J/ψ cc̄ 3096.900± 0.006 0 1
Υ (1S) bb̄ 9460.30± 0.26 0 1

Table 2.2: A few mesons and their quark composition, mass, electric charge, and intrinsic
spin. All values are from [6].

of u, d, and s quarks. There are also the quarkonia: mesons composed of the heavy quarks

such as the J/ψ = cc̄. Table 2.2 lists a few mesons and their properties.

Together, the baryons and mesons constitute the hadrons7, particles composed of var-

ious combinations of quarks and antiquarks. This is the quark model, independently pro-

posed by Murray Gell-Mann and George Zweig [31, 32, 33]. The quarks which compose

the hadrons and the gluons that hold them together are collectively referred to as partons,
7From the Greek word hadrós for "thick" or "stout."
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a term coined by Richard Feynman [34]. A question naturally arises here: is it possible

to have hadrons made of two quarks, qq? Or a hadron made up of four antiquarks, q̄q̄q̄q̄?

What combinations of quarks are possible?

Moreover, the ∆++ baryon presents a puzzle. It is composed of three u quarks, all with

their spins pointed in the same direction. Fermions obey so-called Fermi-Dirac Statistics,

meaning that no two fermions can occupy the same quantum state. For example, consider

a spin up ( + 1/2) proton: the quark composition would be a d quark with spin up, a u

quark with spin up, and a u quark with spin down ( − 1/2). All three quarks are in different

quantum states. However, in the ∆++, the magnitude of whose spin is 3/2, there are three

quarks of the same flavor with their spins pointing in the same direction. Thus all three

seem to be occupying the same state. How is this possible?

The answer to these questions lies in the fact that there is an additional quantum num-

ber at play: color, the charge associated with the strong interaction.

2.1.1 Color Charges

Color is the strong interaction analogue of the electric charge. Whereas the electric

charge can either be positive or negative – e.g. the electron carries one unit of negative

electric charge and the positron carries one unit of positive electric charge – color can

take on three values referred to as red (R), green (G), and blue (B) in analogy (and only in

analogy) with visible color. A quark carries one unit of color (R, G, or B), and an antiquark

carries one unit of anticolor: antired (R̄), antigreen (Ḡ), and antiblue (B̄).8

When dealing with electric charge, there is exactly one way to produce an electrically

neutral state: an equal mixture of positive and negative electric charge, such as in the

hydrogen atom. There are three ways, however, to obtain a color neutral (or "white") state:

(a) an equal mixture of all three colors, RGB = 0;

8The anticolors are also referred to as "cyan" (R̄), "magenta" (Ḡ), and "yellow" (B̄).
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(b) an equal mixture of all three anticolors, R̄ḠB̄ = 0;

(c) or an equal mixture of color and the corresponding anticolor, such as RR̄ = 0.

This explains the two species of hadrons. Baryons (and antibaryons) are composed of

three quarks (antiquarks) each carrying a different color (anticolor), and the mesons are

composed of a quark of one color and an antiquark of the corresponding anticolor. More-

over, this answers one of the questions posed in the last section. Particles like the ∆++ are

observed because the three u quarks which compose it are each in different color states,

and thus satisfy Fermi-Dirac Statistics.

No bare color charges have ever been observed, however, and thus we stipulate that

all observed particles must be color neutral. This is ensured in QCD by the mechanism

of confinement which confines color charges to color neutral combinations, and will be

discussed in section 2.1.2.

This answers the other question posed in the last section. As all observable particles

are color neutral, particles with quark compositions such as qq or q̄q̄q̄q̄ should never be ob-

served. Rather, all observed particles must either be a color neutral triplet of (anti-) quarks,

a color neutral pair of quarks and antiquarks, or more exotic color neutral combinations of

those two such as the tetraquark (qq̄qq̄) [35] or the pentaquark (qqqqq̄) [36].

As mentioned before, the strong interaction is mediated by the exchange of gluons.

An example of such a process is depicted in figure 2.3. QCD necessarily conserves color.

This means that the gluon in figure 2.3a must also carry color. Supposing that the upper

incoming quark is red and the lower incoming quark is blue, then to conserve color the

gluon must carry a unit of blue and a unit of antired: gluons are in fact bicolored. This is

represented by the two vertical lines in figure 2.3b which depicts how color flows from one

quark to another (the horizontal lines) in a gluon exchange. From the perspective of the

incoming red quark, it absorbs an antired-blue gluon, negating its red color and imbuing
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(a) qg exchange (b) color lines

Figure 2.3: The exchange of a gluon by two quarks (2.3a) and the corresponding color
lines (2.3b).

it with blue color. While from the perspective of the incoming blue quark, it emits an

antired-blue gluon carrying away its blue color while "taking away" a unit of antired color

to imbue it with red color.

Figure 2.4: A visualization of the SU(3) symmetry underlying QCD interactions.

We can conceptualize such processes in QCD by considering a three dimensional space
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in which the color states of the quarks are taken to be basis vectors [37, 38]:

R =


1

0

0

 , G =


0

1

0

 , B =


0

0

1

 . (2.4)

Rotations between these three states are described by 3 × 3 hermitian traceless matrices

with unit determinant, referred to as generators. It can be worked out there are eight such

matrices which are linearly independent [37, 38]. These are also known as the Gell-Mann

Matrices. Only two of these are diagonalizable, and may be written as:

G3 =


1 0 0

0 −1 0

0 0 0

 , G8 =


1 0 0

0 1 0

0 0 −2

 (2.5)

With these, we can visualize the symmetry underlying QCD interactions. Let g3 and g8

be the eigenvalues of R, G, and B corresponding to the G3 and G8 matrices respectively.

The quark color states may then be plotted according to their eigenvalues as in figure 2.4,

where the arrows correspond to the actions of the other six generators on the quark states

[37].

These eight generators constitute what is called the color octet and correspond to the

eight gluons of QCD. The quarks, then, correspond to the color triplet of the three vec-

tors above. The triplet and octet are both representations of the same symmetry group,

SU(3)9: the triplet being the fundamental representation and the octet being the adjoint

representation.

However, the fact that the gluons carry a unit of color and a unit of anticolor might lead

one to wonder why there is no ninth gluon. This additional gluon would be a color singlet

9"SU" for Special Unitary
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gluon. It would be color neutral, and so, in light of confinement, it should appear as a free

particle and be exchanged between other color singlets such as the proton. Since the gluon

is massless, this interaction should be long-range (like the electromagnetic interaction) and

have the coupling strength of the strong interaction. This would mean that there would be

an observable long range strong interaction between hadrons. This is emphatically not

observed, and thus the color singlet gluon is disallowed on observational grounds [39].

Lastly, QCD is a non-abelian theory meaning that the mediating bosons themselves

also carry the associated charge of the interaction. In contrast, Quantum Electrodynamics

(QED), the theory describing the electromagnetic interaction, is an abelian theory as the

photon is electrically neutral. The non-abelian nature of QCD means that since the gluons

carry color, they can interact with themselves. This is responsible for two of the most

striking characteristics of QCD: confinement and asymptotic freedom.

2.1.2 Confinement and Asymptotic Freedom

The strength of a fundamental interaction is quantified by what are coupling constants

in QFT, commonly denoted α. For instance, the coupling constant of the electromagnetic

interaction is denoted by αem (also known as the fine structure constant for historical rea-

sons). These coupling constants are directly related to the charges associated with each

fundamental interaction described in the introduction. The electric charge is related to αem

by

e =
√
4παem (2.6)

in natural units. A similar relation holds for the strong interaction: gs =
√
4παs where αs

is the strong coupling constant and gs is the QCD analogue of the unit electric charge [37].

These "constants" are also referred to as running coupling constants for reasons that will

become clear shortly.
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The charge associated with a fundamental interaction is related to its strength. Thus, if

one wished to measure the electric charge, one could go about it by gradually moving a test

charge (e.g. a single electron) closer and closer to some electrically charged target (e.g.

another single electron) and measuring the coulomb repulsion between the two charges.

As the test charge gets closer to the target charge, the electric field between the two will

grow in strength. The increasing strength of this field will cause an increasingly dense

cloud of virtual e+e− pairs to sublime out of the vacuum. The e+e− pairs closer to the

target charge will orient themselves such that the e+ is preferentially closer to the target

charge [37].

This means that as the test charge penetrates the cloud of virtual e+e−, the cloud be-

comes increasingly dense with more and more e+ on the target side and more and more e−

on the test side. Hence, the test charge feels an increasingly large negative electric charge.

This phenomenon is known as screening [37].

We can imagine a similar thought experiment for QCD wherein we gradually move a

test color charge towards a target color charge of the same color and measure the QCD

analogue of coulomb repulsion between the two. The experiments proceeds much like it

did in the QED case: as the test and target charges draw close, the color field between

the two will increase in strength. However, this will result in an increasingly dense cloud

of not just virtual qq̄ pairs, but also virtual gluons. The color charge carried by these

virtual gluons will effectively "smear" the color of the target charge. Rather than feeling

an increasingly strong charge like in QED, the test charge will feel an increasingly dilute

color charge. This phenomenon is (fittingly) referred to as anti-screening [37].

To summarize: the electromagnetic interaction increases in strength (the effective elec-

tric charge grows) with decreasing separation between electric charges due to screening.

In contrast, the strong interaction decreases in strength (the effective color charge shrinks)

with decreasing separation between color charges due to anti-screening. In both cases the
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coupling of the theory "runs," or varies with changing length scales [37].

For QCD, the running coupling constant αs is given by the equation

αs

(
Q2
)
=

12π

(33− 2nf ) log
(
Q2/Λ2

QCD

) (2.7)

where Q2 is the squared momentum transfer between two color charges, nf is the number

of "active" quark flavors being considered (a number between 2 and 6), and ΛQCD is the

QCD Scale, a constant with dimensions of mass [37]. When Q2 is large (i.e. Q2 ≫

Λ2
QCD, meaning large energy scales and small length scales), αs is small (αs ≪ 1). The

strong interaction grows weak with increasing Q2, meaning that the quarks asymptotically

approach acting as free, noninteracting particles. This is Asymptotic Freedom [40, 41].

At low energies, the coupling becomes strong again. Consider a qq̄ pair: the self

interactions of the gluons mean that rather than spreading out in space like photons, the

exchanged gluons between the qq̄ pair are compressed into a dense tube of gluons called

color flux tubes or QCD strings. If the qq̄ pair is roughly static (i.e. their relative motion

is much smaller than the frequencies of the gluons exchanged), then the potential between

may be well approximated by the phenomenological potential

Vqq̄ (r) =
−a
r

+ λr (2.8)

where a and λ are constants and r is the separation between the quarks [42]. The con-

stant a = 4αs/3 comes from the asymptotically-free regime, and the constant λ may be

interpreted as the tension of the color flux tube, which is roughly 0.9 fm−1 [42].

Note that as r increases, V increases. This is confinement, also known as Infrared

Slavery. As one tries to increase the separation of the qq̄ pair, the potential grows and

pulls them back into the color neutral qq̄ configuration10. In sharp contrast, the coulomb

10This pictures holds up to a certain threshold in separation which will be discussed in chapter 3
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potential in QED goes like Vcoulomb (r) ∼ 1/r, and so quickly falls off as r increases.

The QCD Scale ΛQCD is a constant of integration that is introduced in the deriva-

tion of equation 2.7. It is a free parameter and so must be provided by experiment. For

Q2 ≫ Λ2
QCD, color charges are asymptotically free, but for Q2 . Λ2

QCD, the strong inter-

action becomes strong again and the principle of confinement dominates. Hence, we can

understand ΛQCD as the scale at which the familiar world of color-neutral hadrons gives

way to a world of asymptotically free color. For this reason we should expect this constant

to be near the typical mass of a hadron. Indeed, for 5 active quark flavors, ΛQCD ≈ 210±14

MeV [6]. This is close to the length of 1 fm (10−15 meters or roughly 197.3 MeV in natural

units), roughly the diameter of a nucleon.

This scale also demarcates the perturbative and non-perturbative regions of QCD.

In perturbative QCD (pQCD)11, one performs calculations by expanding the QCD La-

grangian in a power series on αs. The Lagrangian is a mathematical object which encodes

the possible interactions and their strengths allowed by a QFT. Each term in this series

corresponds to a particular Feynman diagram and carries a weight αλ
s where λ is the order

of the diagram (given by the number of vertices). For large Q2 (much greater than Λ2
QCD),

αs is small and the series can be safely truncated, allowing the calculation to be carried

out.

For Q2 on the order of Λ2
QCD, however, αs is large. Even higher order terms will

carry a non-negligible weight, and so any calculation would require an infinite number of

diagrams to be computed. For energy scales relevant to describing every-day, confined

matter, pQCD fails and the equations of QCD remain unsolved. Despite this, many tech-

niques for approximating the non-perturbative regime of QCD have been developed. One

powerful approach to calculating non-perturbative processes in QCD is that of lattice QCD

11For brief introductions to pQCD, see [37, 43, 42]
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(lQCD)12 In this approach, one defines QCD on a lattice. The quarks occupy lattice sites,

and the gluons occupy the links between the sites. The finite spacing of the lattice imposes

a minimum length and time scale which renders calculations tractable.

2.2 The Quark-Gluon Plasma

By confinement, color charges only exist as part of the color neutral hadrons that con-

stitute our phenomenal day-to-day world. However, by asymptotic freedom, there should

exist a state of matter in which these color charges – the quarks and gluons – become

deconfined, free to roam as individual entities. This state of matter is known as the Quark-

Gluon Plasma [42, 43].

Above a critical temperature, the strong interaction is anti-screened and becomes weak,

causing the hadrons to melt away and leave only a viscous fluid of deconfined quarks and

gluons. To reiterate the definition from earlier: the QGP is a state of matter in which

its color degrees of freedom become manifest over nuclear rather than merely nucleonic

volumes [25].

Lattice calculations suggest that the transition from hadronic matter to the QGP occurs

for a critical temperature somewhere in the range of 150 to 200 MeV. An early lattice

prediction for the critical temperature was roughly Tc ∼ 170 MeV [44], or roughly 2

trillion K. For reference, the core of the sun is estimated to be a mere 15 million K. The

critical temperature corresponds to an energy density of roughly ϵc ∼ 0.7 GeV/fm3 [45].

The density of a proton13 is about ρp = 0.16 fm−3, which means its rest energy density

approximately ϵp = mpρp ≈ 0.15 GeV/fm3.

Consequently, there are two paths toward the creation of a QGP: compressing nuclear

matter to densities above the critical density ρc, or heating nuclear matter to temperatures

above Tc. Figure 2.5 shows the phase diagram of strongly interacting (i.e. quark) matter as

12See chapter 5 of [42] for a brief introduction to the subject.
13using the proton’s charge radius, ∼ 0.84 fm, and mass, ∼ 0.94 GeV [6]
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Figure 2.5: The phase diagram of strongly interacting matter. From [3].

a function of temperature and baryon chemical potential (a proxy for baryon density). The

diagram in figure 2.5 also indicates where physical systems reside, as well as the regions

past and future experiments have probed and will probe.

Along the high density path, we may imagine a scenario where a finite number of

baryons are compressed adiabatically until they reach ρc. At this point, the baryons will

overlap and form a degenerate, deconfined mass of quarks. There is a possibility that this

situation may exist at the cores of neutron stars where the densities may reach 5-10 times

that of normal nuclear matter [42, 46].

Along the high temperature path, we can imagine raising the temperature of a finite

region of space. At low temperatures, the vacuum excitations will necessarily be color

neutral hadrons (by confinement). However, as the temperature increases the frequency
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and number of excitations will increase. At Tc these excitations will overlap, leaving only

a sea of deconfined quarks and gluons [42, 43]. The early universe, microseconds after the

big bang, is predicted to have been at temperatures well in excess of ΛQCD and Tc. Thus

the early universe may well have existed in a QGP-like state [46].

Unfortunately, neutron stars and the early universe are not available on demand in

a laboratory. However, there is the possibility of creating a QGP in relativistic heavy-

ion collisions [46]. Early experimental results from the Relativistic Heavy-Ion Collider

at Brookhaven National Lab suggest that the almost head-on collisions of gold ions (de-

noted AuAu collisions) at its top center-of-mass energy of
√
sNN = 200 GeV per nucleon

achieves energy densities well in excess of the necessary ϵc, with the lower bound being

roughly 10 GeV/fm3 [47]. Thus, relativistic heavy-ion collisions provides us with the only

laboratory setting in which we may study the QGP.

Ample evidence that a hot, dense medium which satisfies the definition stated earlier

has been generated at both the Relativistic Heavy-Ion Collider at Brookhaven National

Laboratory (BNL) and the Large Hadron Collider at the Conseil Européen pour la Recherche

Nucléaire (CERN) in Geneva [25, 46]. The evidence includes (but is not limited to):

1. strong momentum anisotropy exhibited by low to mid transverse momentum parti-

cles produced in heavy-ion collisions;

2. the suppression of higher angular momentum Υ states (e.g. the 2S and 3S) alongside

the non-modification of the Υ ground state relative to pp-collisions; and

3. an opacity to energetic particles, i.e. a suppression of energetic particles relative to

pp-collisions.

The third piece of evidence, the opacity to energetic particles (a phenomenon known as

jet quenching), offers not only a clear signal of the formation of a hot, dense medium, but
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also a prime channel through which we may quantitatively explore the properties of the

produced medium. This will be the focus of this thesis, and so the next three chapters will

first elaborate the concept of a jet (chapter 3), then will discuss various theoretical models

of jet quenching (chapter 4), and finally will discuss how recoil jets correlated with direct

photons offer a well-calibrated probe with which to experimentally measure jet quenching

(chapter 5).
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3. Jets

Isolated partons have never been observed; they are always confined to color-neutral

systems such as the proton or pion. The property of confinement, however, has dramatic

consequences for any partons who are liberated from their hadronic prisons via process

like Deep Inelastic Scattering (DIS). In DIS, an electron-type lepton is scattered off of a

nucleon by the exchange of a virtual photon. For sufficiently high momentum exchange

between the lepton and nucleon, the nucleon is shattered and a constituent quark is kicked

out. This produces an collimated spray of hadrons roughly collinear with the momentum

of the freed quark: these are called jets.

(a) (b)

Figure 3.1: Feynman diagrams for e+e− annihilation (3.1a) and DIS (3.1b). Here l indi-
cates an electron-type lepton, N a nucleon, h a hadron, andDh/j a fragmentation function.

Jets were postulated as an experimental signature of the quark model that would be

observable in both DIS and e+e− → qq̄ processes (visualized in figure 3.1) [48, 49, 50, 51].

While free quarks can never be observed, we can infer their existence in the jets they

produce. In 1975, just such an observation was made in e+e− collisions studied at the

Stanford Positron Electron Asymmetric Ring (SPEAR) detector at the Stanford Linear
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Accelerator (SLAC) [52, 53].

We can understand the phenomenon of jets by recalling that the color field lines be-

tween two or more color charges are compressed into dense tubes of gluons with roughly

constant energy density per unit length due to the self-interactions of the gluons. This

gave rise to a potential that is directly proportional to the distance r between the charges,

V (r) ∝ r. As r increases, so too does the potential, thereby confining the color charges.

In the case of e+e− collisions, the e+ and e− annihilate into a virtual photon. The

photon can then decay into a qq̄ pair for sufficient energies, carrying the momentum of the

original e+e− pair. The color field lines are stretched to the point where they exceed the

threshold for creating a new qq̄ pair. The new pair pops into existence, and acting as new

end points for the color field lines snap the original tube of gluons in half, reducing the

overall energy of the system. The quarks and antiquarks continue along their trajectory,

stretching and splitting the gluon tubes in the same manner until the system finally has

zero net color charge and the produced hadrons have sufficiently low internal momentum

[37].

This picture gives a solid intuition for why jets occur, but it is simplified: baryons are

also produced in the fragmentation of jets. One possible mechanism for the creation of

baryons in jets would be that first three pairs of quarks are produced – a RR̄, a BB̄, and a

GḠ pair – which then recombine into a baryon and anti-baryon [54].

3.1 Fragmentation Functions

The process of a parton fragmenting into hadrons is known as hadronization, and is

intrinsically non-perturbative. It is phenomenologically described by the fragmentation

functions, Dh/j (z). These functions describe the probability of a parton (jet) j with mo-

mentum p̂ fragmenting into a hadron of type h with momentum fraction z = ph/p̂. Nec-

essarily they must satisfy both probability and momentum conservation:
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∑
h

∫ 1

0

zDh/j (z) dz = 1

∑
j

∫ 1

zmin

Dh/j (z) dz = nh

(3.1)

where zmin corresponds to the threshold energy for producing a hadron of mass mh, pmin =

2mh/Q
1, and nh is the average number of produced hadrons of type h. These functions

are obtained by global fits to data from a wide variety of sources such as e+e− collisions,

DIS, and pp collisions. For two recent reviews see [55] and [56].

The differential cross-section for the production of hadrons from the collision of two

nucleiA andB is then described as a convolution of the partonic hard scatter cross-section

σab→cX (which is calculable in pQCD), the nuclear Parton Distribution Function (nPDF)

which describes the partonic composition of a given nucleus, and the fragmentation func-

tion which describes the process of hadronization. As a function of the hadron transverse

momentum and rapidity, this is written as:

d3σh

d2pTdy
=

1

π

∫
dxa

∫
dxbf

A
a (xa) f

B
b (xb)

dσab→cX

dt̂c

Dh/c (z)

z
(3.2)

where xa,b = p̂a,b/pA,B are the momentum fractions of partons a and b which are found

in nuclei A and B respectively. The momenta of the nuclei are pA and pB. Then t̂c =

(p̂c − xa⟨pA⟩)2 = Q2 is the momentum transfer squared between an outgoing parton c

with momentum p̂c and an incoming parton a with momentum xa⟨pA⟩, and ⟨pA⟩ is the

average momentum of a nucleon in nucleus A. The terms xa,bf
A,B
a,b (xa,b) are the nPDFS,

which can be interpreted as the probability of finding a parton of type a with xa in nucleus

A and vice versa. Much like the fragmentation functions, they are intrinsically connected

1Q being the Q-value of the hadron.
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to non-perturbative processes in QCD and must be obtained from global fits to data. For a

recent review of parton distribution functions in nucleons and nuclei see [57].

3.2 Jet Finding Algorithms

Given that jets are nothing more than collimated sprays of hadrons, an ambiguity

arises: how do we decide which hadron should be associated with which jet? At the

level of observation, we have no access to the partons themselves and thus no way of asso-

ciating each hadron with its parent parton. Even at the level of the partons this ambiguity

persists. Suppose a quark radiates a gluon. If the gluon is roughly collinear with the quark,

then it makes sense to include it in the jet of the initial quark. If the gluon is emitted at a

substantially wide angle relative to the quark, however, should it still be counted as part of

the initial quark’s jet?

Thus, we can only define jets operationally: a jet is the output of an algorithm which

clusters together objects according to some criteria (be those objects tracks in a time pro-

jection chamber, towers in a calorimeter, or particles in a simulation). This is in line with

the Snowmass Accord, a standard regarding jet definitions that was settled upon at the 1990

Snowmass Meeting [58]: whatever definition of a jet is used, both theory and experiment

must use the same definition and this definition must be theoretically well-motivated.

Broadly speaking, there are two classes of clustering algorithms: cone algorithms (e.g.

[59] or [60]) and "sequential recombination" algorithms (e.g. [4]). The following sections

will present a detailed discussion of each class in turn.

3.2.1 Cone Algorithms

Historically, the cone algorithms were the first algorithms to be developed. They at-

tempt to define a jet as a core around some dominant flow of energy, reflecting the fact

that jets should be collimated in momentum-space. Let C = {ci} indicate the input to a

Cone Algorithm, the set of objects to be clustered, each of which have 4-momentum pµi .
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Let J = {ji} indicate the output of the algorithm, a set of stable cone jets. Lastly, let

R (aµ) = {ri|r < Rjet} indicate the set of objects lying within a distance Rjet away from

the point aµ in the (y, φ) plane. A Cone Algorithm would proceed in manner like so:

Algorithm 1 A schematic outline of cone algorithms. This algorithm is defined by

two parameters: the cone radius Rjet, and the max number of iterations, Npass.

1: do

2: Select a "seed object" to define the axis of a trial cone from the set C.

Denote its 4-momentum pµseed.

3: Sum the 4-momenta of all objects lying in R (pµseed), p
µ
sum =

∑
j∈R p

µ
j

4: if pµseed ̸= pµsum, then

5: Select a new seed object.

6: else

7: The cone is stable. Add the cone to the list of stable cones, J .

9: Remove all objects contained in R (pµseed) from C.

8: while C is not empty and the number of iterations is ≤ Npass.

Typically the seed object is the most energetic object in the set C. While compu-

tationally easy to implement, such algorithms quickly produce ambiguities in complex

situations. For instance, it might be that two jets overlap. In such a case, there is an am-

biguity as to which jet the objects in the overlap belong to. This is typically resolved by

introducing an "overlap parameter," fmerge. If poverlap
T < fmergep

hard
T – phard

T being the pT of

the harder of the two jets – then each object shared between them is assigned to the jet

whose axis is closer. Otherwise, the two jets are merged into a single jet.
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However, a more serious ambiguity arises when we consider the algorithm in the in-

frared limit2. Suppose a seed of infinitesimal pT is introduced between two stable cones,

the algorithm may group the two original cones into a single cone centered on the new

seed upon re-running. Similarly, if simulated partons are used as input for the algorithm,

the hardest parton can easily be changed by a quasi-collinear, infrared splitting3 leading

to divergences in the output of the algorithm. As such, these algorithms are said to be

Infrared Unsafe [60, 61].

3.2.2 Sequential Recombination Algorithms

While the Cone Algorithms present a very tidy picture of parton radiation, they can be

quite unwieldy in high multiplicity, high background environments such as those present at

a hadron collider. Sequential recombination algorithms may be more suitable for such en-

vironments. These algorithms proceed by attempting to play the parton shower in reverse:

they sequentially combine hadrons or their proxies (TPC tracks, calorimeter towers, etc.)

into jets according to a best guess as to how the parton shower proceeded. This gives se-

quential recombination algorithms the necessary flexibility in defining jets to more cleanly

parse the desired hard radiation from background radiation in such noisy environments like

hadron collisions [61].

3.2.2.1 The kT Algorithm

One example of a sequential recombination is the kT algorithm [62]. This algorithm

is descended from algorithms developed by the JADE4 Collaboration for e+e− → h+h−

collisions. It utilizes the fact that QCD showers are "momentum ordered," meaning that

hard partons fragment into progressively softer partons.

The algorithm begins by defining two distance metrics in phase space:

2i.e. when pT ≈ 0
3The ∆r between the original 4-momenta and the split is approximately 0.
4JApan, Deutschland, and England
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dij = min{k2T,i, k2T,j}
(
∆ij

Rjet

)2

diB = k2T,i

(3.3)

where ∆2
ij = (ηi− ηj)

2+(φi−φj)
2 and kT,i is the transverse momentum of the ith object.

Here Rjet is an angular length scale, and thus carries units of angular length, which func-

tions as a parameter which controls the relative size of the jets produced. By convention,

values of Rjet will be quoted from hereon without any reference to units. Finally, the met-

ric dij encodes the distance in phase-space between pairs of objects; while diB encodes the

distance in phase-space between the ith object and the beam.

Once again, let C = {ci} indicate the set of objects to be clustered with 4-momentum

kµi , and J = {ji} indicate the output of the algorithm. In the context of sequential re-

combination algorithms, whatever objects are being clustered are frequently referred to as

"proto-jets." The kT algorithm then proceeds like so:

Algorithm 2 A schematic outline of the kT algorithm. This algorithm is defined by

one parameter, Rjet, which functions as an angular cut-off: objects with ∆ij > Rjet

will never be merged.

1: Set the list of proto-jets P = {pi} equal to the set of inputs, C.

2: do

3: for each pair of objects pi, pj ∈ P do

4: Compute dij and diB .

5: if dij < diB , then

6: Merge the two proto-jets into a new proto-jet, p′, with

4-momentum kµ′ = kµi + kµj .
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7: Add p′ to P .

8: Remove the old proto-jets pi, pj from P .

9: else

10: pi is a stable jet. Add it to the list of stable jets J .

11: Remove pi from P .

12: end if

13: end for

14: while P is not empty.

While this algorithm can easily handle high-multiplicity, high-background environ-

ments and it eliminates the ambiguities inherent in the cone algorithm, it has its own

issues. As the lowest kT objects are merged first, arbitrarily small kT objects can become

jets. Moreover, since it begins by merging soft objects first working up towards harder ob-

jects, it tends to construct irregularly-shaped jets which depend on the detailed distribution

of soft radiation in an event. Thus kT jets tend to be harder to calibrate due to their irregular

shape, and are quite sensitive to any unrelated radiation that may be present [4, 61].

3.2.2.2 The C/A Algorithm

A related algorithm is the Cambridge/Aachen (C/A) Algorithm [63]. The algorithm is

identical to the kT algorithm in every respect except the phase-space distance metrics are

modified to be:

dij =

(
∆ij

Rjet

)2

diB = 1

(3.4)
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Thus, the only information factored into whether or not two proto-jets are merged is

the distance between them. The C/A algorithm centers the "angular ordering" of QCD

showers, i.e. the last emissions are the ones farthest from the initial parton. It was de-

veloped to strike a balance between approximating the structure of a QCD shower and

maintaining some degree of insensitivity to soft radiation.

3.2.2.3 The Anti-kT Algorithm

A third example of a sequential recombination algorithm is the "anti-kT " algorithm

[4]. This algorithm proceeds in a manner identical to the kT and C/A algorithms, but –

once again – the distance metrics are adjusted:

dij = min{ 1

k2T,i
,

1

k2T,j
}
(
∆ij

Rjet

)2

diB =
1

k2T,i

(3.5)

This results in the algorithm running in the "opposite direction" of the kT algorithm:

it clusters the hardest objects first, identifying the hard cores of jets, and it clusters the

softest objects last. The anti-kT algorithm abandons any attempt to replicate the structure

of QCD showers, but nonetheless, it does present a very intuitive picture of a jet: a hard

core surrounded by a soft, roughly conical corona.

This algorithm has very desirable properties. The anti-kT algorithm is manifestly

Infrared and Collinear (IRC) safe: an additional infinitesimally soft particle or quasi-

collinear split will have a negligible impact on the clustered jets. Additionally, since the

soft objects have minimal impact on the hard core of the jet, this algorithm tends to clus-

ter objects out to distances Rjet away from the jet core. Thus, the algorithm is relatively

insensitive to soft background radiation, and yields very regularly-shaped (and thus very
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easy to calibrate) jets [4].

Figure 3.2: A comparison of the jets produced by the different jet algorithms discussed in
this chapter. In each case, the same event is clustered but with a different algorithm. The
areas of each jet are visualized with random ghosts as discussed in section 3.3. Used with
permission from [4].

Recall that the cone algorithm produced ambiguities when two cones overlapped. The

anti-kT algorithm sidesteps these ambiguities by definition. Consider two hard particles

with Rjet < ∆12 < 2Rjet: the anti-kT algorithm will produce two jets, but they won’t

be conical. If the two transverse momenta are roughly equal, kT,1 ≈ kT,2, then the pro-

duced jets will be clipped by a boundary defined by ∆1b/kT,1 = ∆2b/kT,2 where ∆1,2b are the

distances between the boundary and the hard particles.

Similarly, if the two hard particles have ∆12 < Rjet, the behavior of the algorithm can

be worked out. If kT,1 ≫ kT,2, then the algorithm will simply produce a single, conical
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jet centered on kT,1. However, if kT,1 ≈ kT,2, then two jets will be produced (both with a

radius less than Rjet) with a more complex shape. Such behavior can be seen in the green

vs. magenta and blue vs. yellow jets in the upper right-hand corner of the lower right panel

of figure 3.2.

However, if there are no additional hard particles (or no hard particles at all) withinRjet,

then the algorithm produces a perfectly conical jet of radius Rjet. All of these scenarios

can be seen in figure 3.2 which compares the results of all four jet algorithms discussed in

this chapter.

The key feature in all of this is that soft particles do not modify the shape of the

produced jet, only hard particles do [4]. This property has made the anti-kT algorithm

ideal for the complex, high background environments of hadron collisions, and it has since

become the default algorithm of analyses at RHIC and the LHC [61].

3.3 Jet Area

In practice, particles produced by hard partonic interactions are inevitably accompa-

nied by multiple sources of background, especially so in relativistic nuclear collisions.

There are two primary sources of background in such collisions: the so-called Underlying

Event (UE) and Pile-Up (PU). The UE consists of radiation from non-perturbative effects

between the nucleon beams (e.g. color recombination), and PU consists of diffuse radia-

tion from additional Minimum Bias (MB) collisions occurring at the same bunch crossing

simultaneously with the primary hard interaction.

Of the two, the UE is substantially more difficult to understand as it cannot be disen-

tangled from the products of the hard interaction. Pile-up, on the other hand, is diffuse,

and is completely uncorrelated with the hard interaction of interest. These two sources

of background can affect jet measurements in two ways: by adding energy to the jet by

being clustered with the hard interaction products, or by modifying which particles are
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clustered into which jets. The impact of the former can easily be assessed by introducing

the concept of a jet catchment area, or simply jet area [64].

Defining the area of a jet is not a straightforward matter. Since jets are composed of

point particles, strictly speaking, their area will always be zero. Using a geometric con-

struction such as the convex hull of the jet constituents leads to ambiguities. For instance,

two adjacent jets with uneven borders will lead to overlapping convex hulls. It is possible,

however, to define a meaningful jet area that avoids these pitfalls by exploiting the infrared

safety of modern jet algorithms. Two such definitions will be discussed here, passive area

and active area, both of which are based on the idea introducing "ghost particles" with

infinitesimal energy into the clustering process.

3.3.1 Passive Jet Area

The passive area of a jet measures its susceptibility to a point-like UE [64]. It’s calcu-

lated by scanning a ghost particle over (y, φ) space and determining the region in which

the ghost particle is clustered into the jet, i.e.

a (Ji) =

∫
dydφΘ [g (y, φ) , Ji]

aµ (Ji) =

∫
dydφ

gµ

gT
Θ [g (y, φ) , Ji]

(3.6)

Here a (Ji) and aµ (Ji) denote the scalar and 4-vector passive areas of the ith jet Ji, and g

denotes a ghost particle with a 4-momentum of gµ. The function Θ [g, J ] is 1 when g ∈ J ,

and 0 otherwise. The 4-vector passive area is defined such that its transverse component

coincides with the scalar passive area.
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3.3.2 Active Jet Area

The active area of a jet measures its susceptibility to a diffuse UE [64]. Here, a ran-

domly generated distribution of ghost particles is overlaid on (y, φ) space. The active area

is then simply the number of ghost particles clustered into each jet. In regions with no

hard particles, ghost particles will cluster into jets themselves. Thus they play an active

role in the jet clustering process, giving this definition of jet area its name.

Like the passive area, the active area comes in scalar and 4-vector areas:

A (Ji| {gj}) =
Ng (Ji)

νg

Aµ (Ji| {gj}) =
1

νg (gT)

∑
gj∈Ji

gµj

(3.7)

Here νg indicates the number density of ghost particles in the distribution {gj}, andNg (Ji)

is the number of ghost particles in the ith jet Ji. The randomness inherent in distributing

the ghost particles will propagate to the calculated jet area. Hence, in order to ensure a

unique answer for each jet that is independent of the particular ghost distribution used, the

active area is more properly given by

A (Ji) = lim
νg→inf

⟨A (Ji| {gj})⟩g

Aµ (Ji) = lim
νg→inf

⟨Aµ (Ji| {gj})⟩g
(3.8)

where ⟨⋆⟩g indicates an average over different ghost distributions. In practice, however,

it is usually sufficient to use one appropriately dense ghost distribution and forego the

limiting process [64].
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3.3.3 Jet Area-Based Background Correction

Using either of these definitions of jet area, it can be shown that the impact on a jet’s

transverse momentum due to a diffuse background from the UE, PU, or other sources of

background is given by

∆pjet
T = Ajetρ± σ

√
L− L (3.9)

where ρ measures the level of diffuse noise, σ measures the size of fluctuations in ρ, and

L is the gain or loss of energy due to jet consituents being gained or lost as a result of the

clustering process being affected by the presence of the diffuse background [65].

Assuming that σ and L are small, the corrected jet pT can easily be calculated:

pjet
T = pmeas

T −
(
ρ · Ajet)

pjet
µ = pmeas

µ −
(
ρ · Ajet

µ

) (3.10)

In the limit where the background is sufficiently uniform and dense, ρ would simply be

pjet
T /A

jet. However, local fluctuations in PU will cause values of pjet
T /A

jet to be distributed

about ρ, and so a reasonable measurement of ρ would be the median of this distribution:

ρ = median

{
pjet
T,j

Ajet
j

}
(3.11)

Similarly, σ can determined by requiring that (1− x) /2 jets satisfy

pjet
T

Ajet < ρ− σ√
Ajet

(3.12)

where x = Erf
(
1/
√
2
)
. For simplicity,

√
A is frequently replaced with

√
⟨A⟩.

This correction scheme is valid if three conditions are met: (1) that PU noise is in-

40



dependent of y and φ; (2) that Rjet is greater than the minimum distance between PU

particles; and (3) that the number of PU jets is substantially larger than the number of hard

jets [65].

Throughout this thesis, only the active area will be used in calculations. Hence "jet

area" will unambiguously refer to the active definition. Moreover, as the observable of

interest here – jet momentum spectra – does not depend on the jet direction, only the

scalar area will be utilized.

It should be noted here that the ρ · Ajet subtraction used in this thesis is not the only

method to correct for the UE in pp collisions. A notable alternative is the Perpendicular

Cones or Off-Axis Cones method which has been used by both the ALICE5 collaboration

at the LHC [66] and the STAR Collaboration [67, 68].

In contrast to the ρ · Ajet method, which measures the UE on an event-by-event basis,

the Off-Axis Cone method measures the UE on a jet-by-jet basis. Following [67], two

cones of radius of Rjet are drawn centered at the same pseudorapidity as the axis of a given

jet but displaced by ±π/2 in relative azimuth. Then the energy density contained within

the +π/2 and −π/2 cones respectively is:

σ± =
Σiϖ

i
T

πR2
jet

(3.13)

where ϖi
T is the transverse momentum of the ith object (particle, TPC track, etc.) falling

in the + or −π/2 cone. The densities of the two cones are then averaged together, and the

corrected jet transverse momentum is given by:

pjet
T = pmeas

T −
(
σ̄ · Ajet) = pmeas

T − Ajet

2

(
σ+ + σ−) . (3.14)

A comparison of the ρ ·Ajet and Off-Axis Cone methods as applied to the data analyzed in

5A Ion Collider Experiment
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this thesis can be seen in figure 8.5.

3.4 Jet Observables

Before proceeding, it will be useful to define a few terms and observables commonly

associated with jet measurements in heavy-ion collisions (for a recent review see [69]).

Such measurements can make use of the reconstructed jets themselves, or use single parti-

cles that stand in as proxies for the reconstructed jets. For jet proxies, two common objects

of study are inclusive single hadron spectra and dihadron correlations.

A common observable in heavy-ion collisions that makes use of inclusive single hadron

spectra is the ratio RAA, or more generally, RAB . This quantifies the extent to which par-

ticle production is modified by the environment of a collision between two nuclei A and

B relative to pp collisions. It is defined to be the ratio of the inclusive cross-section of

a given observable as measured in AB collisions (σAB) over the inclusive cross-section

in pp collisions (σpp) scaled to account for the number of independent nucleon-nucleon

collisions in AB:

RAB =
d3σAB/dpTdy

⟨TAB⟩d3σpp/dpTdy
(3.15)

where pT and y are the transverse momentum and rapidity of the produced particle, ⟨TAB⟩ =

⟨Ncoll⟩/σinel
pp is the "nuclear overlap function," ⟨Ncoll⟩ is the average number of inelastic bi-

nary nucleon-nucleon collisions that happens in an AB collision, and σinel
pp is the total

cross-section of inelastic pp collisions. The notation RAA, then, designates RAB for a

symmetric collision system such as AuAu or PbPb.

If an AA collision were simply the superposition of multiple binary pp collisions, then

RAA ≈ 1 for hard (large momentum transfer) processes such as jet production. Then

RAA > 1 indicates an enhancement of particles relative to what would be expected from

pp (appropriately scaled), andRAA < 1 indicates a suppression. While such measurements
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are conceptually easy, interpreting them can be challenging due to the possible interplay

of nuclear mechanics besides those of the QGP (so called "cold matter effects").

A common alternative isRCP , the ratio of an inclusive spectra in central AA collisions

over the same inclusive spectra in peripheral AA collisions:

RCP =
⟨NP

coll⟩
⟨NC

coll⟩
d3NC

AA/dpTdy

d3NP
AA/dpTdy

(3.16)

where P and C indicate quantities associated with peripheral and central collisions re-

spectively. The terms peripheral and central refer to the centrality of a collison, the extent

of overlap between the two colliding ions. A central collision is one in which there is

substantial overlap between the two, and a peripheral collision is one in which there is

minimal overlap. The quantities ⟨N⋆
coll⟩ in equation 3.16 are the average number of binary

nucleon-nucleon collisions in central and peripheral collisions respectively. This ratio is

frequently used in situations where no pp reference is available or the uncertainties on the

pp reference are large relative to the AA sample.

In dihadron correlations, events are identified which contain a high pT hadron (or elec-

troweak boson, as will be discussed in chapter 5) which is used to define the coordinate

system of a collision. The high pT hadron is referred to as a trigger, and is a good proxy

for the axis of the jet from which it originated due to its high energy. The hadrons which

are produced in the same jet or contained in a recoil jet are referred to as correlated or

associated hadrons. The trigger then defines a Near Side (NS) of the collision – the re-

gion near the trigger with a relative azimuth of ∆φ ∼ 06 – and an Away Side (AS) of the

collision – the region opposite the trigger with a relative azimuth of ∆φ ∼ π.

A common observable in heavy-ion collisions which makes use of dihadron correla-

tions is IAA, the ratio of per-trigger (conditional) yield of correlated hadrons in a heavy-ion

6∆φ = φtrg − φassoc
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collision (DAA) over the corresponding per-trigger yield of correlated hadrons in pp (Dpp):

IAA ≡ DAA (⋆)

Dpp (⋆)
(3.17)

where ⋆ indicates some independent variable such as zT or pT of the correlated jet or jet

proxy. LikeRAA, IAA quantifies the extent to which a heavy-ion collision modifies the per-

trigger yield relative to pp. However, IAA has the benefit that the per-trigger yields that

form the ratio are self-normalizing: the normalization is the number of measured triggers.

In contrast, RAA requires that the inclusive spectra be absolutely normalized, and thus one

needs to know the integrated luminosity corresponding to the measured sample. Recent

STAR and PHENIX measurements of IAA will be discussed in chapter 5.
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4. In-Medium Partonic Energy Loss

Figure 4.1: Azimuthal dihadron correlations as measured by STAR in 2003 in pp, dAu,
and AuAu collisions. Used with permission from [5].

One of the most strking observations made by RHIC in its first years of running was

that of Jet Quenching: the suppression of energetic hadrons in AA collisions relative to

small collision systems such as pp. Figure 4.1 shows azimuthal dihadron correlations

measured by the STAR collaboration in 2003 [5]. In both pp and dAu collisions, a clear

NS and AS peak are observed. However, in AuAu – in which a hot, dense QGP-like

medium was anticipated to be produced – the AS peak is absent.

Jet quenching has long been postulated as a one of the consequences of the formation
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of a QGP in AA collisions [70]. The phenomenon is believed to be the result of partons

traversing the medium and through interactions with the medium, losing energy. The

details of this in-medium partonic energy loss depend intimately on the characteristics of

the medium. Thus a quantitative understanding of the energy lost by a parton as it moves

through the medium would yield valuable information about the properties of the QGP.

4.1 Radiative Energy Loss

The total energy lost by a parton in medium can be described as the sum of the en-

ergy lost via collisional interactions and that lost via radiative interactions. In collisional

interactions, the traversing parton experiences 2-to-2 elastic scatterings with medium con-

stituents. While in radiative interactions, the traversing parton experiences inelastic scat-

terings.

To elaborate further: in QED, an electrically charged particle (such as an electron)

moving past another charged particle nearby (such as a nucleus) may be deflected, causing

the moving particle to decelerate and lose kinetic energy. In this case, the lost kinetic

energy is carried off by a photon radiated by the deflected particle. This radiation is called

bremsstrahlung1. An analogous process occurs for a parton moving through the QGP

wherein it is deflected by a nearby color charge (a medium constituent) and emits a gluon

as bremsstrahlung. This is what is meant by radiative energy loss in the QGP.

For muons moving through copper, the dominate mode of energy loss for low momen-

tum (between 10 MeV/c and 100 GeV/c or so) is collisional: this is the region indicated

by "Bethe" in figure 4.2. For high energies, though, the dominate mode becomes radiative

(the region indicated by "Radiative"). However, muons in copper and partons in a QGP

are not directly comparable, and it has been shown that radiative losses become dominant

at far lower energies in the QGP case [71, 72].

1"Braking radiation" (German).
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Figure 4.2: The energy lost per unit length −dE/dl ("stopping power") for µ− in Copper
as a function of momentum (lower axis). The vertical bars indicate shifts in the dominate
mode of energy loss. From [6].

For instance, an important phenomenon to consider in the case of splitting partons

and medium-induced gluon radiation is the "Landau-Pomeranchuk-Migdal (LPM) Effect"

[73, 74]. It will take a finite amount of time to complete the process of a hard parton

emitting a collinear (small angle) gluon, the formation time of which is τf ∼ 2ω/k2T where

ω and kT are the energy and transverse momentum of the radiated gluon. If τf is larger

than the mean free path λ of the hard parton, then the multiple scatterings the parton will

undergo in the medium cannot be considered independent and so will experience quantum

interference. This results in an induced radiation spectrum which is more suppressed than

if these scatterings were incoherent (as in the case of the muon moving through copper).

However, the non-abelian nature of QCD means that the radiated gluons will rescatter

with soft gluons in the medium, which results in an overall enhancement in the induced

radiation spectrum than in the QED case.
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4.2 Jet Quenching Formalisms

As radiative energy losses dominate for hard partons moving through a QGP, under-

standing radiative energy loss is crucial for understanding the phenomenon of jet quench-

ing. There are four major pQCD-based formalisms though which radiative energy loss of

light quarks and gluons is modeled:

1. the Baier-Dokshitzer-Mueller-Peigné-Schiff and Zhakarov (BDMPS-Z) formalism;

2. the Gyulassey-Levai-Vitev (GLV) formalism;

3. the Higher Twist (HT) formalism; and

4. the Arnold-Moore-Yaffe (AMY) formalism.

These formalisms fall into two categories: the BDMPS-Z and GLV formalisms calculate

the in-medium radiated gluon spectrum, and the HT and AMY formalisms calculate the

impact on the final distribution of hard particles due to medium interactions. For recent

reviews and comparisons of these formalisms see [75, 76, 77]. Each formalism will be

described in detail below.

Each of these formalisms approaches the task of characterizing in-medium radiative

energy loss by considering a parton produced in a hard process (referred to as the "hard"

or "traversing" parton below) which traverses the medium with a path-length L. Each

formalism will take a different approach in characterizing the medium, but a few key vari-

ables which describe the properties of the medium that will be mentioned are the medium

temperature T ; its Debye mass mD (T ) ∼ gT , where g is the parton-medium coupling,

which is inversely proportional to the color screening length and related to the scale of typ-

ical momentum exchanges with the medium; and the jet transport coefficient or quenching

parameter q̂:
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q̂ =
⟨∆p2T⟩
L

=
m2

D

λ
(4.1)

which characterizes the color scattering power of the medium with the average momentum

squared ⟨p2T⟩ exchanged with the medium per unit length [78, 79, 80]. Here λ is the mean

free path of a parton in the medium.

4.2.1 The BDMPS-Z/ASW-MS Formalism

The BDMPS-Z framework was developed by Baier, Dokshitzer, Mueller, and Schiff

[81, 82], and independently by Zhakarov under the name the "Light Cone Path Integral"

(LCPI) approach [83]. Numerical implementations of this framework were developed by

Armesto, Salgado, and Wiedemann [84] in its multiple soft scattering limit. Hence this

formalism is frequently labeled as ASW-MS as well.

This framework approaches the task of describing radiative energy loss by considering

a hard parton moving though a medium which consists of a set of static colored scattering

centers with some density ρ and undergoing a series of soft scatters with these centers,

emitting gluons in the process. The effect of an expanding medium is simulated by de-

creasing ρ with increasing path-length of the traversing hard parton.

The propagation of the hard parton through the medium is described by a path inte-

gral over the fields of the parton and scattering centers. This leads to a resumming of

the multiple soft scatters experienced by the hard parton. In the ASW-MS implementa-

tion, this reults in a set of "quenching weights" PE (ϵ|q̂) which are applied to the vacuum

fragmentation function Dvac
h/i to obtain the in-medium fragmentation function Dmed

h/i :

Dmed
h/i (z

′) = PE (ϵ|q̂)⊗Dvac
h/i (z) (4.2)

where ϵ = ∆E/E is the fraction of energy lost by a parton of energyE, z is the momentum
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fraction of a produced hadron with respect to the undegraded parton energy, and z′ is the

momentum fraction of a produced hadron with respect to the degraded parton energy.

The spectrum of radiated gluons in medium in the BDMPS-Z framework is propor-

tional to the term (q̂L)−1 exp [−Q2
T/q̂L] where Q2

T is the momentum transfer squared of

the hard interaction which produced the traversing hard parton. Thus, the properties of the

medium here are fully defined by q̂.

There are two major assumptions in this approach: (1) that the hard parton only un-

dergoes soft scatters, and (2) that any sort of gluon emission by the scattering centers (i.e.

any sort of recoil motion of the centers) is negligible.

4.2.2 The GLV/ASW-SH Formalism

The GLV framework was developed by Gyulassey, Levai, and Vitev [85, 86, 87], and

independently by Wiedemann [88, 89]. It was shown that this framework is a limiting case

of the BDMPS-Z framework wherein the hard parton only undergoes a single hard scatter

[88, 84, 90]. For this reason the formalism is frequently labeled ASW-SH (for single hard

scatter) as well.

The GLV framework shares its description of the medium with the BDMPS-Z frame-

work, but differs in how it approaches gluon emission. Here the single hard gluon spectrum

is expanded in a power series in orders of opacity, the number of scatters experienced in

a medium. In a single scattering, the traversing hard parton gains transverse momentum

from the medium and then radiates a gluon before or after the scattering. Multiple scatter-

ings experienced by the traversing parton are accounted for by a recursive diagrammatic

procedure.

For a given opacity, each emission is assumed to be independent and distributed ac-

cording to a Poisson distribution. Then quenching weights Pn (ϵ, E) similar to the ASW-

MS approach may be calculated which describe the probability of a parton of energy E
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losing an energy fraction ϵ due to n emissions. Summing over n gives the total prob-

ability P of a parton losing ϵ, and thus the medium-modified fragmentation function is

given by Dmed
h/i (z

′) = P (ϵ, E) ⊗ Dvac
h/i (z) just like in ASW-MS. Most phenomenological

calculations only use the 1st order in opacity.

Here the medium is characterized by two parameters: the Debye mass mD which

regulates the infrared behavior of the single scattering cross-section, and the initial density

ρ of the scattering centers, which must be extracted from data. The primary assumptions

made in this approach are that (1) multiple gluon emissions are independent, and (2) that

the scattering centers are static. However, the framework was later extended to include

dynamic scattering centers in the DGLV implementation of the framework by Djordevic

and Heinz [91].

4.2.3 The HT Formalism

The HT formalism was developed by Guo and Wang [92, 93]. In its initial formulation,

it only included single scatterings per gluon emission, but the approach was later extended

to include multiple scatterings per emission by Majumder [94].

In this framework, the medium is encoded in "higher twist" matrix elements – meaning

matrix elements involving higher-order moments of QCD operators – which modify the

LO, vacuum jet production cross section with a power series ordered according to the

number of scatterings per gluon emission. The jet production cross section is factorized

into a nPDF piece (re. section 3.1) and the HT piece which describes interactions between

the traversing parton and the medium. This factorization is valid to LO in parton path-

length.

The HT matrix elements result in an additive correction to the vacuum fragmentation

function:
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Dmed
h/i = Dvac

h/i +∆Dh/i (4.3)

where ∆Dh/i is the correction and is proportional to ∆Pmed
ij , the medium modified Altarelli-

Parisi (AP) QCD splitting function which is proportional to P vac
ij CAαsT

A
qg. Here P vac

ij is

the vacuum AP QCD splitting function, which describes how energy is distributed across

1 → 2 partonic splittings, and TA
qg is the nuclear quark-gluon correlation term. This term

encodes all of the medium effects in the HT approach. In contrast to the GLV formalism,

HT makes use of only the LO moment of the exchanged pT distribution in computing TA
qg.

This means that TA
qg is characterized exclusively by q̂.

The nuclear quark-gluon correlation term needs to be normalized. This can be done by

fitting the computed cross-section to a data point wherein one can calculate Dmed
h/i directly

and then calculate the final hadron spectrum. The normalization factor is related to the

average energy loss suffered by a traversing parton.

The primary assumption made in this formalism is the factorization of the cross-

section. Both the GLV and HT formalisms make use of an expansion in terms of opacity,

and, much like in the GLV formalism, phenomenological calculations frequently use only

the single scattering per emission term.

4.2.4 The AMY Formalism

The AMY formalism was originated by Arnold, Moore, and Yaffe [95, 96, 97]. In it,

the medium is assumed to be a thermally equilibrated, weakly coupled state in the sense of

Hard Thermal Loop theory (for a brief discussion of HTLs and finite temperature QFTs,

see chapter 4 of [42]). This means that the relation T ≫ gT ≫ g2T holds with g being

the parton-medium coupling constant and T being the medium temperature. Thus, the

properties of the medium are determined solely by its temperature.

In this framework, the traversing parton scatters off the medium with momentum trans-
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fers on the order of O (gT ). These scatterings are encoded in a 1 → 2 scattering rate Γa
bg

wherein a parton a splits into an outgoing parton b and a radiated gluon g. The original

parton distribution Pa is then evolved along with the medium over a time τ according to a

Fokker-Planck type equation:

dPa

dτ
=

∫
dk

[
Pb (p+ k)

dΓb
ac (p+ k, p)

dkdτ
− Pa (p)

dΓa
bc (p, k)

dkdτ

]
(4.4)

where k is the momentum transferred in the scatter.

The medium-modified fragmentation function is then described as a convolution of the

final (medium-modified) hard parton distribution Pf and Dvac
h/i:

Dmed
h/i (z) =

∫
dpf

z′

z

∑
a

Pa (pf |pi)Dvac
h/a (z

′) (4.5)

where pi, pf are the initial and final momenta of the traversing parton, and z′ = ph/pf ,

z = ph/pi are the momenta fractions of a produced hadron with momentum ph with respect

to the final and initial momenta of the traversing parton respectively.

The major assumption made by this framework is that of thermal equilibrium. It is still

very much an open question as to the extent to which this assumption holds in heavy ion

collisions (see for instance [98]). Furthermore, AMY was initially developed assuming

an infinitely large medium. Caron-Huot and Gale later extended the formalism to include

finite size effects [99]. Lastly, the assumption that the medium is weakly coupled made

by the framework necessarily means that it is only applicable to a very high temperature

QGP.

4.3 Comparisons of the Quenching Formalisms

Each of the four formalisms discussed above has advantages and disadvantages, and

each captures different aspects of in-medium energy loss. There are nonetheless several
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points of similarity and contrast between the four. For instance, both the BDMPS-Z and

GLV formalisms share the formulation of the medium as a set of static scattering centers

and both implement multi-gluon emission by repeatedly invoking a 1-gluon emission ker-

nel. In contrast, both the HT and AMY formalisms deploy an approach which makes use

of a coupled evolution between the hard parton and the medium. This enables HT and

AMY to keep track of the relative quark and gluon distributions within a jet as well as its

gradual degradation in energy [76, 77].

However, the BDMPS-Z and GLV approaches work well for both thick (large L) and

thin (small L) media. Though HT shares the opacity expansion with GLV, the HT for-

malism is more applicable to thin media. On the other hand, the HT formalism enables

studies of multiparticle correlations and the direct calculation of the medium-modified

fragmentation function [75].

One advantage shared by the three formalisms other than AMY is that they all can ac-

commodate vacuum radiation and the interference between vacuum and medium radiation

[76]. However, AMY has the advantage that it is the only formalism which allows for

situations in which the hard parton absorbs energy from the medium. Furthermore, both

AMY and HT are the only two which account for energy flow into the medium [75].

Lastly, while the four formalisms each make specific assumptions in their construction,

there are several assumptions which they share in common. For instance, all four make

use of the eikonal approximation: the energy E of the hard parton and the energy ω of

the radiated gluon are stipulated to be such that they are much larger than the transverse

momentum exchanged between them qT, i.e. qT ≪ E, ω. Furthermore, the gluon energy

is frequently stipulated to be soft (ω ≪ E) in phenomenological calculations using these

formalisms (aside from AMY) [77].

All four also stipulate that the radiated gluons be collinear (small-angle) with respect

to the hard parton, and all assume that the momentum transfers between the hard parton
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and the radiated gluon are localized. This means that the mean free path λ of the radiated

gluon is much smaller than the screening length LD, i.e. λ ≪ LD = 1/mD. A closely

related assumption that all four make is that the remaining path-length of the traversing

hard parton does not degrade with lost energy. However, this is an immensely challeng-

ing problem to address as one would have to keep track of local information, finite size

effects, and interference between radiation across the medium. All of this would result in

a description of medium-induced gluon radiation that is decidedly non-local [77].

4.4 Other Approaches to Jet Quenching and Modeling the QGP

In addition to the four formalisms discussed above there are several alternative ap-

proaches to modeling in-medium partonic energy loss. For instance, another popular ap-

proach to in-medium energy loss is the use of Transport Models. The Fokker-Planck rate

equation (equation 4.4) used in the AMY formalism is an example of just such a transport

model. By solving equation 4.4, one obtains the time evolution of both a hard parton as it

propagates through the medium and the medium itself. As noted, such an approach enables

one to keep track of both the hard and thermal quark and gluon populations over time. A

similar transport approach was recently implemented in a Linear Boltzmann Transport

(LBT) model wherein both the hard partons of the jet shower and the medium response

partons are simulated using a linearized Boltzmann Equation [100, 101, 102].

However, the most popular approach to modeling the QGP itself in energy-loss mod-

els is that of Viscous Relativistic Hydrodynamics. For two recent reviews of hydrodynamic

techniques in heavy-ion collisions see [103, 104]. Observables related to collective flow

in relativistic heavy-ion collisions have been found to be well described by hydrodynam-

ics [105]. Thus, many jet quenching models use hydrodynamic simulations to model the

medium through which a parton propagates. For example, a recent iteration on the LBT ap-

proach – the Coupled LBT and hydrodynamics (CoLBT-hydro) model [106] – developed
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by Chen et al. describes the process of jet quenching by coupling a (3+1)d hydrodynamic

model of the QGP to a linearized Boltzmann Equation. The hydrodynamic model pro-

vides the local temperature and viscosity of the medium while the Boltzmann Equation

simulates the propagation of the parton through the fluid medium.

Moreover, the collective flow observed in heavy-ion collisions suggests that the medium

formed is very strongly coupled [107, 108, 109] meaning that non-perturbative dynamics

may play a significant role in heavy-ion phenomenology. A common approach to de-

scribing these non-perturbative aspects of such a system is to make use of the Anti-de

Sitter/Conformal Field Theory (AdS/CFT) correspondence [110, 111]. For a recent re-

view of AdS/CFT techniques see [112]. The Ads/CFT correspondence states that a 4-

dimensional strongly coupled conformal field theory is equivalent to a weakly coupled

gravity described by a string theory in a 5-dimensional Anti-de Sitter space (meaning that

it has constant negative curvature). Thus analytic calculations can be carried out perturba-

tively with the string theory in the 5d AdS space and then mapped "holographically" onto

the non-perturbative dynamics of the 4d CFT. Jet quenching can be described using the

AdS/CFT by replacing the AdS space with an AdS black hole, where the Hawking Tem-

perature of the black hole corresponds to the temperature of the medium [113, 114, 115].

Then the propagation of a parton through the medium is described by the stretching of a

string in the presence of the AdS black hole. Solving the equations of motion for the string

enables the extraction of medium properties such as q̂.
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5. Neutral Triggers and Energy Loss

The phenomenon of in-medium energy loss is experimentally well established (e.g.

[5]). However obtaining a quantitative understanding of the phenomenon is extremely

challenging due to the complex interplay of various physical mechanisms, geometric bi-

ases, experimental limitations, and backgrounds involved in observables associated with

energy loss. The study of recoil jets opposite direct photons, though, offers a "golden chan-

nel:" a penetrating, well-calibrated probe through which we can study in-medium energy

loss.

5.1 Prompt and Direct Photons

Photons are produced at every stage of a heavy-ion collision (for a recent review of

the theory and experimental techniques behind photons in heavy ion collisions, see [116]).

However, these photons can be classed into two broad categories based on their production

source: direct photons (γdir) and decay photons. Decay photons are those produced in the

decay of hadrons such as π0 or η. Direct photons then encompass photons from various

sources that can be further divided into two sub-categories.

Prompt Photons: these are photons produced by the hard-scattering of partons [117] and

potentially "pre-equilibrium" sources, conjectured states of matter that precede the

onset of local thermalization in the QGP (e.g. [118, 119]).

Thermal Photons: radiated photons from the locally-thermalized, expanding QGP or a

hadron gas [120] analogous to blackbody radiation.

Of particular interest are the prompt photons (γprompt). There are two sources of prompt

photons at leading order (LO): quark-gluon Compton Scattering (qg → qγ) and quark-
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(a) (b) (c) (d)

Figure 5.1: LO diagrams of γprompt production: the s- (5.1a) and u-channels (5.1b) of qg
Compton Scattering, and the t- (5.1c) and u-channels (5.1d) of qq̄ annihilation.

antiquark annihilation (qq̄ → gγ). The relevant Feynman diagrams can be seen in figure

5.1.

For these processes, the Mandelstam variables for qg Compton Scattering are sc =

(pg + pq)
2, tc = (pg − pγ)

2; and uc = (pq − pγ)
2, and those for qq̄ annihilation are sa =

(pq + pq̄)
2, ta = (pq − pγ)

2, ua = (pq̄ − pγ)
2.1 For massless partons, the cross-sections

for each process are [121]:

dσ

dt
(qg → qγ) =

−παemαse
2
q

3s2c

(
uc
sc

+
sc
uc

)
dσ

dt
(qq̄ → gγ) =

8αemαse
2
q

9s2a

(
ua
ta

+
ta
ua

) (5.1)

where αem and αs are the electromagnetic and strong coupling constants, and eq is the

electric charge of the quark. Note that the qq̄ annihilation process is suppressed compared

with the qg Compton Scattering due to a lack of valence q̄ present in the nucleons, however.

The biggest contributions to these are when uc → 0 (pq ≈ pγ) in the case of Compton

Scattering, and when ta → 0 (pq ≈ pγ) or ua → 0 (pq̄ ≈ 0) in the case of qq̄ annihilation.

Or in other words, the biggest contributions to each are when the γprompt is collinear with

1Here p⋆ indicates the 4-momentum of each particle.
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the original q (q̄). Thus, a measurement of the energy of a γprompt gives a direct measure-

ment of the initial energy of the recoiling parton. That is if the γprompt are unmodified by

the environment of a heavy-ion collision.

Indeed, we should expect that the γprompt escape the collision unmodified as they are

both color and electrically neutral. They will not interact strongly with the produced

medium, and the mean free path for electromagnetic interactions of a γprompt with energy

Eγ in medium can be estimated from its equilibration time τγ [121]:

τγ =
9

10παemαs

Eγ

T 2

eEγ/T+1

eEγ/T−1

1

ln (3.7388Eγ/4παsT )
(5.2)

where T is the temperature of the medium. For αs = 0.4 and T = 200 MeV, then for even

a relatively low energy of Eγ the equilibration time is τγ ≈ 481 fm/c. This is substantially

larger than the roughly 10 fm/c lifetime of the medium [122], and will only increase with

increasing Eγ .

It should be clarified that there is no experimental method to distinguish γprompt from

the other sources of γdir such as fragmentation photons, and thus only an admixture of

all sources of γdir is measured. At high energies, though, the contribution from thermal

photons to the γdir signal is vanishingly small and γprompt overwhelmingly dominate. While

decay photons cannot be completely excluded, their contamination in the γdir signal due to

fragmentation or decay photons can be mitigated via a statistical subtraction (see chapter

7).

Moreover, "high energy" can be a somewhat arbitrary designation. Throughout this

thesis it will be taken to mean photon energies in excess of 5 GeV. In this regime, the

γdir cross-section is almost exclusively due to the hard scattering of partons – primarily qg

Compton Scattering – and so high energy γdir and γprompt will be taken to be interchange-

able from here on unless a distinction between the two is needed.
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Figure 5.2: RAA for γdir across three different centralities in
√
sNN = 200 GeV AuAu

collisions. Used with permission from [7].

That γprompt are unmodified by the medium has been confirmed experimentally through

measurements of the RAA of high energy γdir. PHENIX measured the RAA of energetic

γdir in
√
sNN = 200 GeV AuAu collisions in 2012 for several different centralities [7].

All three RAA were consistent with unity (meaning no modification in AuAu) across γdir

pT, and are shown in figure 5.2. Similar results were reported by the LHC [123, 124, 125].

This demonstrates that the γdir really are unmodified by the environment of a heavy ion

collision, and further corroborates that the suppression of energetic hadrons observed in

[5] or in [126] is indeed due to jet-quenching.

5.2 Direct Photons and the QGP

As seen in the last section, high energy γdir do not interact strongly with the produced

medium of heavy-ion collisions and so are unmodified by it. Thus (to leading order)

the measurement of the γdir transverse energy (Eγ
T) is a good approximation of the initial

transverse energy of the parton (E0
T) they scattered from. This sets the energy scale of the

recoiling jets in events tagged by these γdir, and so makes the measurement of energetic
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γdir and the recoiling jets opposite them an extremely well-calibrated probe of in-medium

energy loss.

In 1996 Wang, Huang, and Sarcevic proposed to use hadrons correlated with energetic

γdir to measure the energy lost per unit length by partons as they traverse the medium [8].

They constructed a model of energy loss wherein partons lose energy by radiating gluons

with an average energy of ϵ some number of times n over a path-length ∆L through the

medium, after which they escape from the medium and fragment according to the usual

vacuum fragmentation pattern. Here n is drawn from a Poisson distribution:

P (n) =
(∆L/λ)−n

n!
e−∆L/λ (5.3)

where λ is the inelastic scattering mean-free path of a parton in the medium, and P (n) is

the probability of radiating a gluon n times. The total number of radiations N was limited

to N = E0
T/ϵ to conserve energy, and for large N the average number of scatterings in ∆L

is approximately ⟨n⟩ ≈ ∆L/λ.

They then define the inclusive fragmentation function to be:

Dγ =
∑
jh

rj (E
γ
T)Dh/j (z) (5.4)

where rj (E
γ
T) is the fractional cross-section of producing a jet of species j correlated with

a γdir with energy Eγ
T , Dh/j are the fragmentation functions discussed in section 3.1 and

whose vacuum fragmentation parameterizations are taken from [127], and the indices h

and j respectively run over the hadron and jet species considered. The dependence of

Dh/j on the scale Q2 here is suppressed as it is set to be Eγ
T .

Using their energy loss model, they then calculated the inclusive fragmentation func-

tions without energy loss (notated Dγ
pp) and with energy loss (notated Dγ

AA), which corre-

sponds to the situation in a central nucleus-nucleus collision. Thus Dγ
AA is given by:
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Dγ
AA =

∫
d2rt2A (r)

TAA (0)

∑
jh

rj (E
γ
T)Dh/j (z,∆L) (5.5)

where TAA (0) =
∫
d2rt2A (r) is the nuclear overlap function at an impact parameter of 0;

tA (r) is the nuclear thickness function,2 and ∆L is the path-length of a parton through

the medium. Both Dγ
pp and Dγ

AA were calculated for all produced hadrons at mid-rapidity3

satisfying |φh −φγ| ≤ 1. The experimental analogues of Dγ
AA,pp would be the conditional

yields of hadrons in the same kinematic region correlated with γdir triggers in nucleus-

nucleus and pp collisions respectively.

Figure 5.3: The ratio of inclusive fragmentation functions for γdir-tagged jets with and
without energy loss. The energy loss per unit length is fixed to 1 GeV/fm here. Used with
premission from [8].

2This is normalized such that
∫
d2rtA (r) = A, where A is the mass number of a nucleus.

3|y| ≤ 0.5
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The authors then formed the "Suppression Factor" by taking the ratio of the inclusive

fragmentation functions with energy loss over that without. This is shown in figure 5.3 for

different values of Eγ
T as a function of the produced hadrons’ z (= phT/E

0
T). This suppres-

sion factor corresponds to the experimental observable of IAA. If the suppression factor

is unity, the fragmentation function is un-modified by energy loss. As Eγ
T increases, the

suppression factor approaches unity across z. However, for lower Eγ
T there is a substantial

suppression, especially at moderate z. Thus the authors propose that there will be a sweet

spot for measuring this suppression for Eγ
T between 10 and 20 GeV, in which backgrounds

will be relatively low for
√
sNN = 200 GeV nucleus-nucleus collisions.

Within the framework of their model, the suppression factor at high z is given by

⟨exp (−∆L/λ)⟩, which is independent of the total jet energy E0
T = Eγ

T and the energy

loss per unit length dE/dx. At intermediate values of z (≈ 0.2− 0.5), the energy loss per

scattering will be much smaller than the total jet energy, ϵ ≪ E0
T = Eγ

T . Since the total

energy lost by the leading4 parton is ⟨∆ET⟩ = ⟨n⟩ = ⟨∆L⟩dE/dx, the suppression factor

will depend very weakly on the mean free path.

In principle, a measurement of the suppression factor at high z would then enable the

extraction of λ, and an additional measurement at mid z would enable the extraction of

dE/dx. As noted in [128], the energy loss per unit length, dE/dx, experienced by a parton

is approximately:

dE

dx
≈ −αs⟨Q2 (∆L)⟩ = αsµ

2∆L

λ
= αsq̂∆L (5.6)

in the BDMPS-Z formalism. Here Q2 is the squared momentum-transfer in the original

hard scattering, µ is the mean momentum transfer per hard scatter, and q̂ is the jet trans-

port coefficient. Hence such a measurement described by the authors would enable the

4i.e. hardest
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calculation of the jet transport coefficient.

Since the authors’ proposal, precise measurements of IAA of recoiling hadrons corre-

lated with γdir have been furnished by multiple collaboration, particularly PHENIX [10]

and STAR [9]. These measurements will be discussed in detail in section 5.4. Using the

data from these measurements, theorists have been able to extract q̂ (e.g. [128, 129]).

For instance, in [128] q̂ was found to be 1.2 ± 0.38 GeV2/fm for lower values of phT and

0.24 ± 0.096 GeV2/fm for higher values of phT (for a weighted average of 0.30 ± 0.09

GeV2/fm) assuming a path-length of ∆L ≈ 7 fm in central AuAu collisions. These val-

ues are close to or less than the value of q̂ ≈ 1.2 ± 0.3 GeV2/fm calculated by the JET

collaboration using measurements of RAA [130].

5.3 Neutral Pions vs. Direct Photons

In contrast to γdir, hadron triggers – such as neutral pions (π0) – are not good approxi-

mations of the initial energy of the recoiling parton. This is because hadrons are produced

in the fragmentation of a parton and thus can only carry a fraction of the initial energy of

the scattered parton. The PYTHIA Monte Carlo simulator [131], for instance, suggests

that energetic π0 triggers with ptrg
T > 12 GeV/c can carry 80% (± 5%) on average of the

scattered parton’s initial pT [9].

Nevertheless, it is still interesting to compare the energy loss experienced by jets re-

coiling from γdir triggers (γdir+jet) against those recoiling from π0 (π0+jet) triggers as

the difference in production mechanisms between π0+jet and γdir+jet could lead to ob-

servable difference between their measured suppression. This could give insight into the

path-length and color factor (quark vs. gluon) dependence of in-medium energy loss.

Firstly, there is a difference in the geometric biases between π0 and γdir triggers at

RHIC energies [132]. Energetic π0 are likely to have been produced close to the surface of

the medium, while γdir have no such bias as their mean free path is significantly larger than
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the produced medium. This would suggest that, on average, the partons recoiling from π0

have a longer path-length than those recoiling from γdir which would lead to a difference

in suppression between the two. However, the interplay between the kinematics of the

observed jets or jet proxies (such as charged hadrons, h±) and their geometrical biases

must be considered.

Next-to-Leading Order (NLO) pQCD calculations suggest that geometric biases can

affect the production of hadrons at different momentum fraction zT = phad
T /ptrg

T , the ratio

of the hadronic pT to the trigger pT [133]. The calculations suggest that high zT hadrons

correlated with γdir triggers tend to originate from hard scatterings that occurred close to

the AS of the medium. This is because scatterings occurring deeper in the medium will

result in the recoiling parton traversing more of the medium and so losing more energy,

resulting in a suppression of energetic hadrons.

In contrast, high zT hadrons correlated with a π0 trigger tend to originate from scat-

terings wherein the AS parton recoils tangential to the medium (such as was suggested by

the observations from the 2013 study of multihadron correlations by STAR [134]). These

two biases would lead to any differences in the observed suppression of charged hadrons

at high zT being washed out. Thus it is at low zT where one would expect to observe differ-

ences in the observed suppression of π0+jet and γdir+jet due to differences in path-length.

Secondly, quark-gluon compton scattering dominates the production cross-section of

γdir. This means that the AS of γdir triggers are dominated by quark jets. In contrast, at

leading order dijet production (and so the jet recoiling from a π0) comes from both quarks

and gluons. However, recent calculations suggests that π0 with a high energy relative to

the total jet energy are somewhat more likely to come from quark jets [135, 136], and so

the AS correlated with such π0 will more likely be gluons [137].

Thus the AS of γdir triggers is dominated by quark jets, and the AS of energetic π0 may

be dominated by gluon jets. This would lead one to expect the recoil jets of energetic π0
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will experience more suppression than those γdir due to the larger color factor associated

with the gluon. The strengths of the processes of a quark emitting a gluon and a gluon

emitting a gluon are proportional to the so-called color factors CF = 4/3 (quarks) and

CA = 3 (gluons) respectively5. Hence it is more likely for a gluon to emit another gluon

than it is for a quark to emit a gluon (2.25× in fact). This leads to gluon jets being more

diffuse and soft than quark jets, and so more susceptible to energy-loss.

These two facts – that on average the recoiling partons of π0 have a longer path-length

than their γdir counterpart, and that the recoiling partons of γdir tend to be quark jets –

would lead one to expect the suppression observed in the recoil jets correlated with π0 and

γdir to differ, i.e. that π0+jet would be more suppressed than γdir+jet. This would manifest

experimentally as a difference in the measured IAA between the two systems [10].

5.4 Previous Measurements of IAA

Figure 5.4: IAA for γdir +h
± (red boxes) and π0+h± (blue boxes) measured by the STAR

collaboration in 2016. The solid curves are theoretical predictions. From [9].

5The subscripts refer to the fundamental (quark) and adjoint (gluon) representations of the SU(3) sym-
metry group
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In 2016 the STAR collaboration measured IAA for AS charged hadrons (h±) correlated

with γdir and energetic π0 [9]. In this context, "away side" specifically designates a relative

azimuth of ∆φhad ∈ (π − 1.2, π + 1.2) with respect to the trigger. Thus the h± here

function as proxies for the recoiling jets opposite the γdir and π0 triggers. Figure 5.4 shows

the measured IAA for h± correlated with γdir (γdir + h±) and π0 (π0 + h±) as a function

of the hadron’s zT compared against three theoretical models: Qin [138], ZOWW (Zhang,

Owens, Wang, and Wang) [133, 139], and Renk [140].

As discussed, the difference in production mechanisms between π0+jet and γdir+jet

systems might lead one to anticipate a difference in the suppression – and so in the mea-

sured IAA as well – experienced by the recoiling jets. Yet STAR observed no difference in

the reported IAA of γdir + h± and π0 + h± within uncertainties for the sampled kinematic

range. However, the low zT hadrons are noticeably less suppressed than those at high zT;

IAA ≤ 1 across the kinematic range of the measurement.

Nonetheless, the comparison between the included theoretical predictions and the data

in figure 5.4 is quite compelling. All three incorporate in-medium partonic energy loss in

some capacity for γdir+jet (red lines) and π0+jet in the case of ZOWW (blue line). The Qin

model utilizes the AMY framework [95, 96, 97] with a medium provided by (3+1)d ideal

relativistic hydrodynamics; ZOWW utilizes HT techniques for initial jet production [141]

with the Boltzmann Approach to Multiparticle Scattering (BAMPS) [142, 143] model for

the non-equilibrium evolution of a (3+1)d ideal relativistic hydrodynamic medium; and

Renk utilizes both the ASW-MS framework [84] and YaJEM (Yet another Jet Energy-

loss Model) [144, 145, 146] in a 3d hydrodynamical model.

The Qin and ZOWW models reasonably reproduce the data across zT. However, only

the Renk model incorporates redistribution of lost partonic energy into the medium, lead-

ing to a large rise in IAA at low zT that is not observed in the data.

In fact, the PHENIX Collaboration also measured IAA for AS h± correlated with γdir
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Figure 5.5: IAA for γdir+h± and π0+h± measured by the PHENIX collaboration in 2013
for different AS ∆φhad integration windows. Used with permission from [10].

triggers in 2013 [10] and reported a distinct enhancement for low zT h
±. This can be seen

in figure 5.5 which shows the measured IAA for γdir + h± and π0 + h± in different AS

∆φhad integration windows as a function of ξ = ln (1/zT)
6.

We can resolve the tension between the STAR measurement and the PHENIX mea-

surement by considering the kinematic windows of the of the two measurements. For

fixed range of zT ∈ (0.1, 0.4), STAR measured h± with phad
T in the range of 1.2− 8 GeV/c

correlated with γdir triggers with E trg
T ∈ (12, 20) GeV. Whereas PHENIX measured h±

with phad
T in the range of 0.5 − 3.6 GeV/c correlated with γdir triggers with E trg

T ∈ (5, 9)

GeV.

If the energy lost by a parton as it traverses the medium is redistributed into the medium

6Thus high ξ corresponds to low zT and vice versa.
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Figure 5.6: IAA of γdir + h± as a function of phad
T measured by STAR in 2016. From [9].

as soft radiation below a fixed pT around 2 GeV/c rather than below a fixed zT, then

both measurements are consistent [9]. This is what one would expect from models such

as YaJEM which include energy redistribution into the medium, as can be seen in the

prediction for the STAR data provided by Renk. Indeed, STAR also measured the IAA for

γdir+h
± as a function of phad

T , as shown in figure 5.6, and the low pT h
± are less suppressed

than the high pT.

This picture of in-medium energy loss is further corroborated by other measurements.

For instance, PHENIX measured the IAA of γdir + h± using enhanced statistics in 2020

[11]. The enhanced statistics enabled a measurement of IAA differential in the E trg
T of the

γdir trigger. The IAA for γdir + h± across the three ranges of E trg
T is shown in figure 5.7. If

the energy is redistributed into the medium occurred at fixed zT – that is if the redistribution

scaled with the total energy of the jet – then the transition between IAA < 1 and IAA > 1

should occur at a single zT for all E trg
T [8]. This is not observed in the data: this transition

occurs at increasing ξ (i.e. decreasing zT) as E trg
T increases. The measured data agree well

with predictions from a CoLBT calculation [106] and a BW-MLLA (Borghini-Wiedemann
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Figure 5.7: IAA for AS h± with phad
T = 0.5 − 7 GeV/c measured by PHENIX in 2020

correlated with γdir for three different ranges of E trg
T . The data are plotted as a function of

the hadrons’ ξ. From [11].

Modified Leading Logarithmic Approximation) calculation [147], both of which assume

that the lost jet energy is redistributed into thermal (soft) excitations in the medium.

Additionally, STAR measured DAA for charged AS h± correlated with reconstructed

jets in 2014 [12]. The observable DAA measures the difference in transverse momentum

of jets or jet proxies associated with a high pT trigger between AuAu and pp collisions:

DAA (passoc
T ) ≡ YAuAu (p

assoc
T ) · ⟨passoc

T ⟩AuAu − Ypp (p
assoc
T ) · ⟨passoc

T ⟩pp (5.7)

where YAuAu,pp indicate the integrated yield of AS h± and ⟨passoc
T ⟩AuAu,pp indicate the per-

trigger yields mean passoc
T of a given bin of passoc

T in AuAu and pp respectively. Any de-

viation from DAA = 0 indicates a modification of the jet. Figure 5.8 shows the reported

DAA for AS h± correlated with reconstructed NS jets compared against calculations from
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Figure 5.8: The momentum difference DAA of AS h± correlated with reconstructed jets
for two ranges of pjet

T measured by STAR in 2014. Used with permission from [12].

the YaJEM-DE7 model [148]. The data show an enhancement of AS h± (DAA > 0) for

passoc
T < 2 GeV/c and a suppression (DAA < 0) for passoc

T > 2 GeV/c. which is reproduced

by the model calculation.

By summing DAA over passoc
T , we can check whether or not the enhancement at low

passoc
T balances the suppression at high passoc

T : ΣDAA = Σpassoc
T
DAA. STAR reported values

of ΣDAA between −0.6± 0.2 and −1.0± 0.8, suggesting that the high passoc
T suppression

is largely balanced by the low passoc
T enhancement [12]. All of this further corroborates the

picture of in-medium energy loss wherein lost energy is redistributed into soft radiation

beneath a fixed pT of roughly 2 GeV/c.

These measurements demonstrate that jet proxies such as correlated hadrons can yield

important insights into the mechanisms of in-medium energy loss. However, they are no

substitutes for the jets themselves which can track the complete energy flow, both the hard

7The "DE" here indicates that the model incorporates both path-length dependence of radiative energy-
loss and elastic energy loss.
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radiation of the jet and the soft radiation of medium excitations. The true test of the various

energy-loss models is whether or not they can reproduce both single particle observables

and complex multiparticle observables such as jets.

Thus, the aim of this thesis is to contribute to extending the techniques utilized in [9]

to observables which incorporate reconstructed jets, enabling a more precise account of

the energy flow down to lower and lower transverse momenta (pT ∼ 0.2 GeV/c). This is

accomplished by furnishing a precise measurement of the pT spectra of charged recoil jets

correlated with γdir and π0 triggers in pp collisions. These spectra will serve as the vacuum

fragmentation reference for a measurement of IAA for γdir+jet and π0+jet.
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6. Experimental Apparatus

6.1 The RHIC Accelerator Complex

The RHIC accelerator complex was the first machine in the world capable of colliding

ions as heavy as gold at relativistic energies, and the first and only machine in the world

capable of colliding spin-polarized protons. Its physics goal is twofold: (1) to create and

study the Quark-Gluon Plasma by colliding heavy-ions, and (2) to elucidate the source of

the proton’s spin by colliding spin-polarized protons.

Figure 6.1: An aerial view of the RHIC complex at BNL. From [13].

The RHIC complex became operational in 2000 after ten years of development. Figure

6.1 shows an aerial view of the complex with its constituent systems highlights. It is

located at BNL on Long Island, New York. The main ring – shown in blue and yellow in

figure 6.1 – has a circumference of 3.8 km (2.4 mi.) and consists of two quasi-circular,
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counter-rotating rings which intersect at six independent points. The facility is capable of

colliding heavy-ions up to a center-of-mass energy of
√
sNN = 200 GeV/ per nucleon –

well above the anticipated onset of the Quark-Gluon Plasma – and capable of colliding

polarized and un-polarized protons up to a little above a center-of-mass energy of
√
s =

200 GeV. Thus the machine has ample capability to produce jets across a wide kinematic

range in a variety of collision systems.

There are three major stages from beam production to collisions: (1) beam production

and injection into the Alternating Gradient Synchotron (AGS), (2) preparation for injec-

tion into RHIC by the AGS, and finally (3) injection into RHIC for final acceleration and

collisions. Beams are produced in one of two facilities: a Tandem Van de Graaf (TVdG)

for heavy-ions, and a Linear Accelerator (LINAC) for protons. For example, a heavy-ion

collision system such as AuAu begins by producing Au ions with a charge state of +1

from a pulsed sputter ion-source at the TVdG. The ions are partially stripped of their elec-

trons by a stripping foil, and then accelerated by the TVdG up to an energy of 1 MeV per

nucleon.

As the Au ions exit the TVdG, they are further stripped to a charge state of +32.

Bending magnets select and guide the +32 Au ions to the Booster Synchotron. The booster

accelerates the ions to an energy of 95 MeV per nucleon, about 37% the speed of light.

The Au ions are stripped again by stripping foil to a charge state of +77 as they exit the

booster and are injected into the AGS. The AGS prepares the Au ions for injection into

RHIC proper by accelerating them to 10.8 GeV per nucleon, around 99.7% the speed of

light. The Au ions exit the AGS and undergo one last stripping, achieving a charge state

of +79. The AGS-to-RHIC (AtR) Beam Transfer Line injects the fully-stripped beams

into RHIC. There they are accelerated to their desired collision energy (e.g. 200 GeV

per nucleon, 99.995% the speed of light) and steered towards collisions by the machine’s

helium-cooled superconducting 3.5 T magnets.
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Producing pp-collision systems is far more straight-forward. Protons are produced

and accelerated to 200 MeV in the LINAC. The 200 MeV proton beam is injected into the

AGS booster, further accelerated into the AGS proper, and finally injected into RHIC via

the AtR line for final ramping before collisions.

The RHIC complex is an extremely versatile facility. It is able to produce a wide

variety of collision systems at a wide range of collision energies. For instance, the first

phase of the Beam Energy Scan program explored the QCD phase diagram – probing

the onset of deconfinement and investigating a possible critical point – by utilizing the

RHIC facility’s wide range of collision energies, running AuAu-collisions at center-of-

mass energies of 7.7, 11.5, 14.5, 19.6, 27, 39, and 62 GeV. As of writing, RHIC has

run collisions of pp, pAl, pAu, dAu, hAu, OO, CuCu, CuAu, ZrZr, RuRu, AuAu, and

UU with center-of-mass energies ranging between 8 and 510 GeV [149]. This versatility

makes a RHIC a unique and ideal machine to explore QCD and the Quark-Gluon Plasma

in a quantitative and systematic manner.

6.2 Experiments at RHIC

When RHIC came online, four major experiments were commissioned – two smaller

experiments, PHOBOS and BRAHMS, and two large experiments, PHENIX and STAR

– to create a comprehensive, varied program of heavy-ion research. Of the four, only

STAR is still actively taking data as of 2021. Both PHOBOS and BRAHMS completed

their scientific programs in 2006, and PHENIX completed its data-taking operations in

2016. While STAR will be described in detail in section 6.3, this section shall give a brief

overview of the other experiments that have made their homes on the RHIC ring.

The PHOBOS experiment [150], which occupied the 10 ’o clock position on RHIC,

was designed around the fact that at the time very little was known a priori about the

properties of the fireball produced in heavy-ion-collisions beyond that such collisions were

75



going to be rare. Thus the experiment was designed to have a very large acceptance, reach

to very low momentum particles, and a high trigger rate such that PHOBOS could analyze

large numbers of unselected collisions and give global information about collisions where

a fireball was produced, such as the temperature, size, and density of the fireball. Some of

its major measurements were of the pseudorapidity and centrality dependence of charged

particles [151, 152]. These measurements showed that the energy and particle densities

produced in a head-on AuAu collisions were far higher than what would be anticipated for

a mere superposition of pp collisions.

Similarly, the Broad Range Hadron Magnetic Spectrometer (BRAHMS) which occu-

pied the 2 o’ clock position on RHIC was designed to measure charged particles over a

wide range of rapidity and momentum in order to understand the reaction mechanisms of

heavy-ion-collisions [153]. Thus it was designed to provide strong momentum resolution

and particle identification over a very large range of rapidity. One of its most striking

measurements was of the centrality and pseudorapidity dependence of the nuclear modifi-

cation factor in dAu collisions (RdA) [154]. This, when compared to similar measurements

in AuAu collisions, provides evidence for and constraints on a possible precursor to the

QGP, the so-called Color Glass Condensate (CGC) [155].

The largest of the four RHIC experiments, the Pioneering High Energy Nuclear Interaction

experiment (PHENIX) located at the 8 o’ clock position on RHIC, was designed with

an emphasis on detecting rare probes of the Quark-Gluon Plasma such as high momen-

tum particles, heavy quarkonia, and electromagnetic particles such as muons and photons

[156]. The PHENIX collaboration has produced many important results over the years.

Of particular relevance to this thesis are its measurements of the direct-photon production

cross-section [7], neutral pion suppression in heavy-ion collisions [157], and its measure-

ment of the suppression of charged hadrons opposite direct-photons and neutral pions in

heavy-ion collisions discussed in sections 5.3 and 5.4. While PHENIX has ceased its
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data-taking operations, the collaboration continues to remain very active. Construction is

already underway on the successor of PHENIX, Super PHENIX (sPHENIX) [158]. The

sPHENIX detector will emphasize jet measurements, especially jets at high transverse

momentum, and heavy quarkonia, such as Υ particles.

Two additional small scale experiments have occupied the BRAHMS position on the

RHIC ring at various times: pp2pp and ANDY. These were aimed exclusively at under-

standing polarized pp-collisions. The ANDY experiment was a feasibility study which

operated during the running years of 2012 and 2013, and was commissioned to study the

feasibility of measuring large xF (momentum fraction), low mass e± pairs from Dell-

Yann1 processes in pp-collisions at
√
s = 200 GeV at RHIC. For instance, in 2015 the

ANDY collaboration measured the production cross-sections and single-spin asymmetry

AN of forward jets in polarized pp-collisions at
√
s = 500 GeV [159]. Elements of this

study were later incorporated into upgrades in the forward region of STAR.

The pp2pp experiment was designed to study elastic and inelastic pp-collisions at

extremely small scattering angles and in the region of extremely small squared four-

momentum transfer region (|t| ∈ (4 × 10−4, 1.3] (GeV/c)2) [160]. The design of pp2pp

consists of four roman pots – cylindrical vessels in which detectors can be mounted and

moved close to the beam while remaining protected from the beam vacuum – each contain-

ing four silicon strip detectors and a scintillator. The four detectors are stationed approxi-

mately 50 or 60 m downstream in each pipe from the interaction region. This is necessary

to catch the scattered protons after they have passed through the bending magnets. After

being operated as a standalone experiment during 2002, it was incorporated into the STAR

experiment. A recent result produced by the STAR collaboration using this detector array

was a precision measurement of AN in polarized pp-collisions [161].

1qq̄ → e+e−
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6.3 The STAR Detector

The STAR experiment [162] resides at the 6 o’ clock position of the RHIC ring, and

is the second largest of the four commissioning experiments at RHIC weighing in at 1200

tons. It is also the focus of this thesis. The experiment covers the largest solid angle of the

RHIC experiments, covers a large phase space, and consists of a wide variety of detectors

with a large range of capabilities, all of which make it a highly versatile experiment. Thus

it is well-suited for a highly diverse set of measurements such as particle identification,

di-electron and heavy flavor measurements, forward measurements, and – importantly for

this thesis – jets.

(a) The STAR experiment. (b) Layout of STAR detectors.

Figure 6.2: A front-end view of the STAR experiment (6.2a), and an isometric view of
STAR with certain sub-systems labeled (6.2b). From [14] and [15] respectively.

Figure 6.2 gives a bird’s-eye view of the experiment as well as cross-section showcas-

ing some of its major subsystems. Four major categories of STAR hardware will be de-

tailed here: the solenoidal magnet, event characterization detectors, the Time Projection

Chamber (TPC), and the Electromagnetic Calorimeter (EMC).
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6.3.1 Detector Coordinates

Figure 6.3: An illustration of the coordinate system used at STAR. Used with permission
from [16].

Before proceeding, it will be useful to clarify the coordinate system used at STAR. The

major points of reference used to define these coordinates are the center of STAR, referred

to as the Interaction Point (IP), and the collision, labeled the Primary Interaction Vertex

(PIV) or just Primary Vertex2. The IP is used in establishing the absolute coordinates of

STAR. The z-axis is oriented along the beamline with the positive z direction pointing

westward and z = 0 set at the IP. The x- and y-axes define the plane transverse to the

beamline.
2Interaction Vertex (IV) is another common term.
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Despite the two incoming beams having equal and opposite momentum and thus hav-

ing a primary vertex corresponding to the center of momentum in pp- and AuAu-collisions,

Cartesian coordinates are not suitable for describing the physics of hadron colliders: the

z-component of the 3-momentum is not boost invariant. Physical phenomena may be con-

flated with irrelevant boosts along the beamline that would be averaged out if the system

is treated relativistically.

Thus, a particle with 4-momentum pµ = (E,−→p ) is expressed in the coordinates

pµ
.
= (E, pT , φ, y). Here pT and φ encode the magnitude and orientation of the transverse

component of the 3-momentum, and the rapidity y encodes the magnitude and direction

of the longitudinal component. Rapidity is additive under boosts along the beamline, and

so variations will be averaged out over a large enough sample size. It is given by:

y = −1

2
ln
(
E + pz
E − pz

)
And the other two coordinates are given by:

pT =
√
p2x + p2y

φ = tan−1 (px/py)

(6.1)

Relativistic hadron collisions typically produce particles with rest masses substantially

smaller than their total momentum. Moreover, the identity of measured particles must be

deduced offline and the rest masses of particles are frequently unknown at the time of

measurement. Thus it is usually convenient to express the polar coordinate in terms of

pseudorapidity η:

η =
1

2
ln
(
p+ pz
p− pz

)
= −ln

[
tan
(
θ

2

)]

80



For |p| ≫ m0, the pseudorapidity is approximately equal to the rapidity. The STAR

coordinate system is illustrated in figure 6.3. Note that the momenta of particles are cal-

culated with respect to the PV.

6.3.2 The Solenoidal Magnet

The "Solenoidal" in STAR comes from the large solenoidal magnet which houses the

TPC and other detectors [163]. The magnet is cylindrical, with a length of 6.85 m and

inner and outer diameters of 5.27 m and 7.32 m respectively. It establishes a strong axial3

magnetic field of up to |Bz| = 0.5 T which bends the trajectories of charged particles

within the TPC which enables the precise measurement of their momenta.

The absolute field varies within 0.5 Gauss of its nominal value at a rate of less than 0.1

Gauss every 12 hours. The radial and azimuthal deviations of the field are less than 50 and

3 Gauss respectively. This stability enables the tracking of energetic electrons to within

200 µm. The magnet can also operate in two different field configurations: Bz = ±0.5 T,

referred to as "Full Field" (FF, +) and "Reverse Full Field" (RFF, −).

6.3.3 Event Characterization Detectors

Multiple detectors are used by STAR to trigger on and characterize potentially interest-

ing events [164, 165]. Note that the term "trigger" is used very generally here. A "trigger"

could be simply a signal that a collision may have occurred, or it could a signal that indi-

cates that the collision may have a unique feature such as a high energy photon. During

data taking, STAR employs several triggers running simultaneously to select events and

sort them into data streams. The primary detectors used for triggering and event charac-

terization are the BBC, ZDC, VPD, FPD/FMS, CTB/TOF, and the EMC.

The Beam-Beam Counter (BBC) [166] is a fast detector used for min-bias triggering4,

3i.e. along the length of
4i.e. the bare minimum to indicate that a collision has occured
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monitoring luminosity, and vertex positioning in pp-collisions. There are two BBC detec-

tors each placed 3.7 m away from the IP on either side of STAR. They consist of two layers

of packed, hexagonal scintillators arranged into two rings each: one with small tiles, and

one with larger tiles. These small tiles cover a pseudorapidity range of |η| ∈ (3.4, 5.0) and

2π in azimuth.

To measure the position of the IV, the BBC utilizes the difference in timing between

coincident signals in the east and west BBCs: vBBC
z = c · (∆tBBC/2) where ∆tBBC is the

difference in timing between the two and c is the speed of light. Additionally, the BBC

can be used as a local polarimeter when RHIC is running polarized proton beams.

The Zero-Degree Calorimeter (ZDC) [167] fulfills a similar role to the BBC in heavy-

ion collisions. The two ZDCs are placed at the first bending magnets on either side of

STAR, about 18 m away from the IP, and cover extremely small angles (θ < 4 mrad) close

to the beamline. Each ZDC consist of alternating tungsten absorbers and scintillating fibers

which feed into photomultiplier tubes.

At the ZDCs, charged collision fragments are mostly swept away by magnetic fields,

and the neutral fragments and secondaries are negligible. This leaves only spectator neu-

trons, which the ZDCs use the coincidence of to determine if a collision has occurred.

Like the BBC, the ZDCs measure the IV via the timing difference between signals in the

east and west ZDCs. Thus the ZDCs are used as a min-bias trigger, a luminosity monitor,

and vertex positioning.

The Vertex Position Detectors (VPDs) [168] are similar in function to the BBCs and

ZDCs. They provide MB triggering, vertex positioning, and luminosity monitoring. Each

VPD unit is composed of 19 individual detectors which consist of an aluminum cylinder

filled with a 6.4 mm thick lead absorber next to a 10 mm thick scintillator. Each scintillator

is then connected to a PMT by way of an optically transparent silicon adhesive. This

design aimed to provide high timing resolution between signals in each VPD. Each VPD
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is placed about 5.6 mm away from the IP on both sides covering a pseudorapidity range of

|η| ∈ (4.24, 5.10) and 2π in azimuth.

The Forward Pion Detectors (FPDs) [169] are fast electromagnetic calorimeters posi-

tioned on either side of the IP with a pseudorapidity range of |η| ∈ (2.5, 4) but a limited

azithumal coverage. These were developed for π0 detection in highly forward regions, but

they also provide triggering capabilities as well as local polarimetry. Each FPD consists

of 4 lead glass calorimeters placed above, below, and to the sides of the beam pipe. The

FPDs on the sides of the beam pipes are a 7-by-7 array of calorimeter towers, while the

FPDs above and below are 5-by-5 arrays.

In 2004, the FPD in the positive pseudorapidity region was replaced with the Forward

Meson Spectrometer (FMS) [169]. The FMS is very similar in design and in physics goals

to the FPD, and covers the same pseudorapidity range as the FPD. However, it does expand

the azimuthal coverage to a full 2π.

The Central Barrel Trigger (CBT) (described in [164]) was a fast detector array con-

sisting of 240 scintillator slats covering a pseudorapidity range of |η| < 1. It was used to

identify central AuAu-collisions with a high multiplicity of high pT particles. The CBT

was eventually succeeded by the Time of Flight (TOF) detector [170] which was installed

over a period starting in 2002 and ending in 2010.

In addition to the above, the EMC, which will be described in detail below, can be used

to identify events in which a large amount of energy is deposited in a small area, e.g. dijet

events or direct photons.

6.3.4 The TPC

The primary tracking detector – and namesake of – STAR is the Time Projection

Chamber [17]. The TPC is a long cylindrical chamber filled with P10 gas5 held at 2

510% Methane and 90% Argon.
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Figure 6.4: A schematic of the STAR TPC, with scientist for scale. Used with permission
from [17].

mbar above atmospheric pressure measuring 11.2 m in length and 4 m and 1 m in outer

and inner diameter respectively. It is bounded by an outer and inner field cage and two

anode endcaps, and divided into an east and west chamber by a central cathode membrane

held at a high voltage. Figure 6.4 provides a schematic diagram of the TPC.

A strong electric field is established parallel (and anti-parallel) to the axial magnetic

field induced by the solenoidal magnet by holding the central membrane at +25 kV and

the endcaps at ground. A key design criterion of the TPC was to ensure high stability

and uniformity of its electric field such that electron paths longer than 2 meters can still

be reconstructed with sub-millimeter precision. In order to help achieve this, the inner

and outer field cages are segmented into rings whose individual voltages may be varied to

maintain a uniform electric field.

Charged particles are ejected from a nuclear collision; as they move through the bulk

of the TPC, their trajectories are bent into helices by the magnetic field. These particles

interact with the P10 gas and leave behind a trail of ionized P10 molecules. The associated
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electrons are swept to the endcaps by the electric field at a well-defined drift velocity6.

Figure 6.5: An example sector of an endcap with inner (on the right) and outer (on the
left) pad rows labeled. The inner pad rows consist of small pads spaced widely, while the
outer pad rows consist of large pads spaced tightly. Used with permission from [17].

Each TPC endcap consists of 12 highly pixelated sectors arranged like a clock. These

sectors are further divided into an inner and outer sub-sector which each consist of a grid

of read-out pads. In total, there are 1,750 small pads across 13 "rows" in the inner sector,

and 3,942 large pads across 32 rows in the outer sector. The design of the anode sectors can

be seen in figure 6.5. The pads are based on multi-wire proportional chambers (MWPCs):

drift electrons registered by the endcap read-out pads by avalanching in a strong electric

field. The design goals of the endcaps were two-fold: (1) good resolution of tracks in

the inner sector for vertex finding, and (2) fine resolution of tracks in the outer sector for

optimizing dE/dx measurements (see below).

6In fact, the P10 gas was selected for the TPC due to its stable and high drift velocity of 5.45 cm/µs.
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Thus, the "track" of a charged particle moving through the TPC gets recorded as a

series of discrete points – referred to as "hits" – in the (x, y) plane. Additionally, the arrival

time of an electron at its read-out pad is recorded in discrete "time buckets" measured

relative to the time of collision. Using the data (x, y positions and arrival time), the

trajectories of charged particles are reconstructed post-hoc enabling measurement of the

x, y, and z components of the particles’ momentum.

In order to identify particles, an additional datum is needed from the TPC: energy loss

per unit length, dE/dx. The dE/dx a particle experiences as it moves through the TPC

depends on its species and its momentum. Below 1 GeV/c, pions, kaons, and protons

can be cleanly separated into different bands of dE/dx; above that, their bands begin to

overlap. However, pions can be reliably separated from non-pions statistically thanks to

the relativistic rise in dE/dx. The integrated dE/dx over the length of the TPC of a

particle is small compared to its total energy: for a 1 GeV particle, the integrated dE/dx

will be on the order of 100 MeV.

The primary functions of the TPC are to measure the 3-momentum and identify par-

ticles over a pT range of 0.1 to 30 GeV/c with a phase coverage spanning the full 2π in

azimuth and |η| < 1.3 in pseudorapidity. Though, since the reconstruction efficiency of

tracks drops rapidly above |η| = 1 due to high pseudorapidity tracks crossing fewer num-

bers of pad rows, its effective range is |η| < 1. Using the reconstructed tracks, the TPC

complements the VPD in identifying the IV. It can also be used to identify the secondary

vertices of cascading decay chains.

In addition to the TPC, there have been additional tracking elements incorporated into

STAR at various points in time. Notably, the Silicon Vertex Tracker (SVT) [171] and

Silicon Strip Detector [172] have been used to facilitate tracking close to the beamline,

and the Forward TPC (FTPC) [173] was used to facilitate tracking at highly forward pseu-

dorapidities.
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6.3.5 The BEMC

Figure 6.6: A cross-section of the STAR BEMC. Used with permission from [18].

Situated between the TPC and the yokes of the solenoid magnet sits the Barrel EMC

(BEMC) [18]. The BEMC covers 2π in azimuth and a pseudorapidity range of |η| <

1, matching the coverage of the TPC. Its inner face runs parallel to the beamline and

has a radius of 223.5 cm. It provides a variety of capabilities: it can identify (where

tracking is available) and distinguish between photons, electrons, and neutral mesons such

as π0, η, etc.; it can measure the energy deposited by particles and is thus suitable for jet

measurements; and it can be used to trigger on events in which a large amount of energy

is deposited in a small area such as events associated with dijets, isolated photons, W/Z

decays, and heavy quark production. A cross-section of the BEMC can be seen in figure

6.6.

The calorimeter is segmented into 120 modules, 60 in azimuth and 2 in pseudorapidity,

subtending 6◦ (∼ 0.1 rad) of φ and 1 unit of η each. Each module is then further segmented
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into 40 towers, 2 in φ and 20 in η, for a total of 4800 towers subtending 0.05 by 0.05 in

(φ, η). The modules are each 20 cm wide and 293 cm long; the towers each are about 30

cm deep, 23.5 cm of which is "active" (i.e. where interactions occur), and the remaining

6.5 cm or so consists of structural plating (1.9 cm of that structural planting is located at

the front, inner surface of the module).

Figure 6.7: A cross-section of an individual BEMC tower, including its structural plating
and mounting apparatus. Used with permission from [18].

The individual towers consist of alternating lead and plastic scintillator tiles: 20 layers

of 5 mm thick lead plates, 19 layers of 5 mm thick plastic scintillator tiles7, and 2 layers

7The scintillators are Kuraray SCSN81 specifically, which is machined into sheets of "mega tiles" con-
sisting of 40 (1 each tower) tiles of optically isolated scintillator per sheet.
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of 6 mm thick scintillator tiles. A diagram of an individual tower can be seen in figure 6.7.

In total, the active depth of the towers at η = 0 spans about 20 radiation lengths (denoted

X0).

The thicker tiles, located at the front (i.e inner face) of each tower, constitute the

Preshower (PRS) Detector. The PRS was designed to distinguish electrons from hadrons

based on the speed at which their electromagnetic (hereafter E/M) showers develop. The

E/M showers associated with electrons develop faster in the calorimeter, with electrons

having an 84% probability of interaction within the 1st two layers, while those associated

with hadrons develop slower, with hadrons having a 6% probability of interaction within

the 1st two layers. And situated between the 5th and 6th layers of each tower is the Shower

Maximum Detector. As it is vital to the offline trigger selection used in this thesis, it will

be described in detail below.

Each tower is equipped with independent readout capabilities: the PRS, SMD, and

all 21 layers of scintillator are independent. The signal from each scintillator tile is

transported via wave-length shifting fibers to decoder boxes located outside the STAR

magnet. These boxes then merge the signals from the 21 scintillator tiles into a single

Photomultiplier Tube (PMT), also located outside the magnet, whose signal is then digi-

tized using 12-bit flash Analog-to-Digital Conversion (ADC).

In addition to the BEMC, two other major detectors at STAR provide electromagnetic

calorimetry: the Endcap EMC (EEMC) [174] and the FMS. The EEMC is identical to

the BEMC in its general design (aside from its shape), and is equipped with its own PRS

and SMD detectors. It consists of 720 calorimeter towers in each of STAR’s endcaps, and

covers the pseudorapidity range of |η| ∈ (1, 2) and 2π in azimuth.
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Figure 6.8: A cross-section of the SMD showcasing the two layers of read-out wires and
the aluminum extrusion. Used with permission from [18].

6.3.6 The BSMD

Each calorimeter module is also equipped with a Shower Maxiumum Detector (SMD),

which is situated after the 5th layer of lead (as stated above). At η = 0, this is about 5.6X0

into the BEMC tower. The SMD is a MWPC consisting of two cathode boards with strips

etched into them, housing an aluminum "extrusion" with channels guiding gold-plated

tungsten read-out wires that run the length of each calorimeter module. On one cathode

plate, the etched strips are parallel to the read-out wires, and on the other the etched strips

are perpendicular to the read-out wires. Each of these strips are 1.33 cm wide and are

either 0.1 radians in φ (about 23 cm) or 0.0064 radians in η (about 1.5 cm at small η) long,

covering a total of 30 wire channels. Figure 6.8 shows the internal construction of the

SMD.

In total, there are 36,000 strips throughout the barrel calorimeter which are split up into

1200 distinct areas (0.1× 0.1 in η − φ) with 15 η strips and 15 φ strips in each. This grid

of strips enables the measurement of the spatial profile of the electromagnetic shower as it
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develops in the calorimeter with a granularity of approximately 0.007× 0.007 in η − φ.

The primary use of the SMD is to distinguish hadrons from electrons and isolated

photons based on the longitudinal (η) and transverse (φ) profiles of their E/M showers. In

this thesis, it is specifically used in the offline trigger selection to identify neutral pions

and potential direct photons as described in detail in chapter 7.

For reference, the energy resolution of the SMD is nominally

σE
E

= 0.12⊕ 0.86 GeV−1/2

√
E

at the front (inner) plate, and the energy resolution is about 3 - 4% worse on the back plate.

Thus the front and back plates of the SMD respectively have spatial resolutions of

σfront
r

rshower
= 2.4⊕ 5.6 GeV−1/2

√
E

σback
r

rshower
= 3.2⊕ 5.8 GeV−1/2

√
E

(6.2)

in natural units.

The EEMC is also equipped with an analogous SMD, the Endcap SMD (ESMD).

However, the EEMC and the ESMD are not utilized in this thesis. Thus, "SMD" will un-

ambiguously refer to the SMD installed in the BEMC, the Barrel SMD (BSMD), through-

out.
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7. Identifying Neutral Pions and Photons With STAR

As mentioned in the previous chapter, the STAR SMD plays a key role in identifying

energetic π0 and photons. Utilizing its ultra-fine granularity, one can measure the spatial

distribution of an electromagnetic shower as it develops within the towers of the BEMC.

The "shape" of these showers is quantified in what is called the Transverse Shower Profile

(TSP), and this quantity is used to select identified π0’s and γdir candidates. This chapter

will describe the calculation of the TSP and the procedure by which the background due

to hadronic decays is removed from the sample of γdir candidates.

7.1 Calculation of the TSP

First, clusters consisting of one to two BEMC towers and fifteen BSMD strips in both

the η and φ directions satisfying certain conditions are formed according to the algorithm

described below. Then, the TSP corresponding to a cluster is given by [175]:

TSP =
Eclust∑
i e

strip
i r1.5i

(7.1)

Here Eclust is the total energy of the cluster – i.e. either the energy of the sole constituent

tower for a 1-tower cluster or the sum of the energies of the two constituent towers for a

2-tower cluster –, estrip
i is the energy of the ith BSMD strip, and ri is the distance from the

ith BSMD strip to the centroid of the cluster. The exponent of 1.5 on ri was tuned to give

maximal separation between π0’s (which produce broader electromagnetic showers) and

isolated γ’s (which produce more narrow electromagnetic showers) [176].

Let astrip = 0.007 and atwr = 0.05 indicate the grid-spacing of the BSMD strips and the

side-length of a BEMC tower respectively in units of pseudorapidity. Then let H = {ηi}

indicate the set of all η BSMD strips in the BEMC, each of which has an energy eη, an
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angular coordinate (ηη, φη), and a cartesian coordinate r = (xη, yη, zη) in the coordinates

of STAR. Similarly, let F = {φi} indicate the set of all φ BSMD strips in the BEMC, each

of which has an energy eφ, an angular coordinate (ηφ, φη), and a cartesian coordinate r =

(xφ, yφ, zφ). Furthermore, let T = {ti} indicate the set of all BEMC towers, each of which

has an energy E twr and an angular coordinate (ηtwr, φtwr). Lastly, let N (t) = {ni} indicate

the set of up to 8 neighboring towers adjacent to a tower t, each of which has an energy

Eadj, an angular coordinate
(
ηadj, φadj

)
, and a cartesian coordinate radj =

(
xadj, yadj, zadj

)
.

These four sets define the input into algorithm 3 which constructs trigger clusters that serve

as candidate π0’s and γ’s.

Algorithm 3 The procedure for constructing candidate π0 and γdir BEMC clusters

[175]. Quantities associated with the central BSMD strips and leading and sub-

leading BEMC towers will be marked with an asterisk, and the indices A,B number

the 7 neighboring strips on either side of a central η, φ strip respectively.

1: for each η BSMD strip ηi ∈ H registering a hit, do

2: if eηi < 0.05 GeV, continue

3: else designate ηi as the central η strip of the cluster, η∗i .

4: if ∃A, eη∗i < eηAi , continue

5: if any one of the ±1 and ±2 neighboring strips are the 1st or last η strip in a

BEMC module, continue

6: for φ BSMD strip φj ∈ F registering a hit, do

7: if |ηη∗i − ηφj | ≥ atwr, continue

8: if eφj < 0.05 GeV, continue

9: else

10: Designate φj as the central φ strip of the cluster, φ∗
j . The position of
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the intersection of η∗i and φ∗
j is given by rstrip∗

ij =
(
xφ∗j , y

φ∗
j , zη∗i

)
.

11: if ∃B, eφ∗j < eφBj , continue

12: if any one of the ±1 and ±2 neighboring strips are the 1st or last strip φ

strip in a BEMC module, continue

13: for each BEMC tower tk ∈ T registering a hit, do

14: if tk is not in the same BEMC module as η∗i and φ∗
j , continue

15: if etwr
k < 6 GeV, continue

16: if
(
ηη∗i − astrip

2
≥ ηtwr

k − atwr
2

)
∨
(
ηη∗i +

astrip

2
≥ ηtwr

k + atwr
2

)
, continue

17: if
(
φφ∗
j − astrip

2
≥ φtwr

k − atwr
2

)
∨
(
φφ∗
j +

astrip

2
≥ φtwr

k + atwr
2

)
, continue

18: Designate this tower as the lead tower, t∗k.

19: Calculate the difference in η and φ between t∗k and η∗i , φ∗
j :

∆ηtwr∗
ik = |ηtwr∗

k | − |ηη∗i |

∆φtwr∗
jk = |φtwr∗

k | − |φφ∗
j |

20: if (|∆ηtwr∗
ik | ≤ 0.018) ∧

(
|∆φtwr∗

jk | ≤ 0.018
)
, then

21: No additional tower will be added to the cluster.

22: else

23: for each adjacent BEMC tower nl ∈ N (t∗k) registering a hit, do

24: Calculate the displacement between the primary interaction vertex

and nl and the intersection of η∗ an φ∗:

r̃adj
l = radj

l −PV

r̃strip∗
ij = rstrip∗

ij −PV

where PV is the coordinates of the primary interaction vertex.

25: Then calculate the angle θadj
ijl between r̃adj

l and r̃strip∗
ij :

θadj
ijl =

r̃
adj
l ·r̃strip∗

|r̃adj
l ||r̃strip∗

ij |

26: end for
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27: Designate the adjacent tower with the smallest θadj
ijl to be the sub-

leading tower of the cluster, n∗
l . The total energy of the cluster

is then Eclust = E twr∗ + Eadj∗.

28: end else

29: The TSP of the cluster is then given by:

TSP = Eclust∑
A eηA(r

η
A)

1.5
+
∑

B eφB(r
φ
B)

1.5

30: Add cluster to the list of candidate π0 and γrich.

31: end for

32: end for

33: end for

With the TSP calculated, the trigger candidates may be sorted into identified π0’s and

a sample with an enhanced fraction of γdir based on their TSP values as listed in table 7.2.

Triggers that fall into this latter category are referred to as γrich.

Trigger Species TSP Range

π0 TSP ∈ (0, 0.08)
γrich TSP ∈ (0.2, 0.6)

Table 7.2: The range of TSP values identifying π0 and γrich triggers.

These values were determined via Monte Carlo simulation [176]. Figure 7.1 shows the

distribution of measured TSP values from the Run9 pp data. The tight TSP cuts applied

to select the π0 sample ensure that the sample contains very little contamination from

background sources, such as decay products or γdir with a low TSP value. The purity (the
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percentage of correctly identified π0) is roughly 90% for pp-collisions. However, there is

a significant background present in the γrich sample which must be corrected for.

Figure 7.1: Measured trigger yields of TSP (black, light red, and light blue markers).
Shaded regions indicate TSP cuts applied to select π0 and γrich triggers.

7.2 Photon Background Correction

The γrich sample will contain contributions from multiple sources dominated by asym-

metric π0 and η decays. This contribution is removed at the level of event-averaged dis-

tributions via a statistical subtraction utilizing a data-driven estimation of the background

present as a function of the trigger’s transverse energy [176].

The estimation relies on comparing the NS per-trigger yields of TPC tracks between

π0 and γrich triggers. The following calculation makes two major assumptions:

Assumption 1, that γdir produce zero NS yield of charged hadrons; and
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Figure 7.2: ztrk
T of primary tracks with pT > 1.2 GeV/c correlated with γrich and π0 triggers

with E trg
T > 9 GeV.

Assumption 2, that the spectral shape of the π0 NS yield of charged hadrons is the same

as that of the asymmetric π0/η decays.

First events are selected which satisfy all the event selection criteria listed in tables 8.1

and 8.2 excluding the TSP criterion. From these events, primary tracks are selected which

satisfy ptrk
T ∈ (1.2, 20) GeV/c as well as all of the track selection criteria listed in 8.4.

Figure 7.2 shows the ztrk
T = ptrk

T /E
trg
T distribution of all selected tracks, and figure 7.3

shows the per-trigger yield of selected primary tracks as a function of ∆φtrk relative to the

trigger azimuth for selected tracks with a ztrk
T ∈ (0.2, 0.3). The cut on ztrk

T was to select

a clean sample of NS primary tracks: the region (0.2, 0.3) strikes a nice balance between

providing sufficient statistics without being dominated by too much background. This

was determined by considering the signal to background levels in the correlation plots by

inspection.

The ∆φtrk per-trigger yields were fit with two gaussians, one each for the NS and AS
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Figure 7.3: ∆φtrk of primary tracks selected for the calculation of the γrich purity integrated
over E trg

T . The solid lines indicate fits consisting of two gaussians and a constant, and the
fill areas indicate the NS and AS regions.

peaks, and a constant to capture the average background, referred to as the "pedestal," i.e.

f
(
∆φtrk) = a0e

−(∆φtrk)
2
/2σ2

0 + a1e
−(∆φtrk−π)

2
/2σ2

1 + a2 (7.2)

where ai and σi are fit parameters. Once fitted, the per-trigger NS yields were extracted

by subtracting the pedestal from the per-trigger yield (determined by counting the bin

contents) in each bin of ∆φtrk and then integrating over the NS region, defined to be

∆φtrk ∈ (−0.63, 0.63) ≈
(
−π

5
, π
5

)
(the shaded regions in figure 7.3):

Dpp
NS

(
E trg

T |⋆
)
=

∫ 0.63

−0.63

[
1

N trg
(
E trg

T |⋆
) dN trk

(
E trg

T |⋆
)

d∆φtrk − a2

]
d∆φtrk (7.3)

where Dpp
NS

(
E trg

T |⋆
)

indicates the NS per-trigger yield as a function of E trg
T for a given

species of trigger (π0 or γrich). Taking the ratio between the NS per-trigger yields of the

two species gives
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B
(
E trg

T

)
=
Dpp

NS

(
E trg

T |γrich
)

Dpp
NS

(
E trg

T |π0
) (7.4)

where B is the background level of the γrich sample, the fraction of γrich triggers which are

not γdir. The purity (the fraction of γrich triggers which are γdir) is then

R = 1− B. (7.5)

7.3 Measurement of B and Systematic Uncertainties

Before measuring the value of B, the second assumption in this calculation, needs to

be remarked on here. The pT of a decay photon’s parent might be different than the pT

of the measured photon itself, and this may impact the shape of the Dpp
NS for background

contaminants in the γrich sample. To test this, a quick Monte-Carlo was used wherein the

maximum impact was estimated by assuming that the background in the γrich sample is

due to decay photons exclusively.

First, values of decay photon pT (pdecay
T ) were sampled according to the measured γrich

ET distribution. For each pdecay
T , the pT of the parent π0/η (pparent

T ) was calculated. For each

simulated trigger, a pseudo-event was formed by sampling a certain number of near-side

tracks according to the measured ptrk
T and ∆φtrk distributions.

Then the NS per-trigger yields were computed as a function of ztrk
T twice: once where

ztrk
T was calculated with respect to the decay photon (ptrk

T /p
decay
T ), this will be labeled

Dpp
NS

(
ztrk

T |γdecay
)
; and once with respect to the parent meson (ptrk

T /p
parent
T ), which will be

labeled Dpp
NS

(
ztrk

T |π0
)
. The ratio was found to agree with unity within 5% agreement for

ztrk
T ∈ (0.2, 0.3) and within at most 20% otherwise. This indidcates that the impact on B

due to differences in the shape of Dpp
NS

(
E trg

T |γdecay
)

is negligible.

With this confirmed, B was calculated as a function of ztrk
T for the three ranges of E trg

T
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(a) Etrg
T = 9− 11 GeV (b) Etrg

T = 11− 15 GeV (c) Etrg
T = 15− 20 GeV

Figure 7.4: B as a function of ztrk
T for three ranges of E trg

T . Solid line indicates the average
over ztrk

T , and the solid band indicates 1σ.

used in this analysis. The background level was then averaged over all ztrk
T ∈ (0.1, 1). The

calculated B and their average for each of the three ranges of E trg
T are shown in figure 7.4.

The bin ztrk
T < 0.1 was excluded as backgrounds were too high to reliably extract a NS

per-trigger yield. These averages were taken to be the background levels of each range of

E trg
T . Table 7.3 lists the average values of B and their uncertainties in pp-collisions for each

of the three bins of E trg
T . The bin ztrk

T ∈ (0, 0.1) was not used due to high backgrounds.

Etrg
T [GeV] B ±δB

9 - 11 0.570 0.054
11 - 15 0.520 0.036
15 - 20 0.470 0.068

Table 7.3: Measurements of B and their uncertainties as a function of E trg
T .

The systematic uncertainty is approximately 10% across E trg
T . This uncertainty is pri-

marily due to the choice of ztrg
T . The choice of integration window in extracting Dpp

NS

produces a negligible uncertainty.
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8. Analysis Details

The data analyzed in this thesis were recorded by the STAR experiment between April

19th and May 9th, 2009 (Run9). The collisions selected for analysis are pp-collisions

which are part of the "high luminosity" dataset recorded during Run9 with a center-of-mass

energy of
√
s = 200 GeV. Note that "event" and "collision" will be used interchangeably

throughout. Both will refer to collisions which have been successfully registered, pro-

cessed, and recorded by STAR.

Events are selected using an online trigger system at STAR which consists of three

layers of decision making. The first layer of trigger electronics, Level-0 (L0), determines

which events to accept at the hardware level based on data from the fast detectors (EMC,

BBC, ZDC, CTB, and FPD). The second layer, Level-1 (L1), is an intermediate stage

which passes the data from accepted events to be processed by the final layer of trigger

processing, Level-2 (L2). The L2 tier sorts the accepted events into data streams and pass

it on to the data acquisition units (DAQ) to be saved to tape.

The events discussed herein satisfy the "L2gamma" online trigger. This trigger is

designed to identify events which are more likely to contain energetic photons. At the

L0 level, L2gamma events must satisfy the VPD Min-Bias (VPDMB) and Barrel High

Tower 2 (BHT2) triggers. These are defined as so:

(a) VPDMB Trigger: in the event there must be coincident activity in the east and west

VPD detectors; and

(b) BHT2 Trigger: there must be an EMC tower in the event which contains at least

4.3 GeV.

And at the L2 level, L2gamma events must contain a 3×3 cluster of EMC towers whose
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two most energetic towers contain a sum total transverse energy of 7.44 GeV. In total, ap-

proximately 11,327 million events were recorded that satisfy the L2gamma trigger during

Run9 for an integrated luminosity of roughly 23 pb−1.

Schematically, the process of going from these raw L2gamma events to fully corrected

π0- and γdir-triggered charged recoil jet spectra looks like so:

1. Apply Clusterizer: L2gamma events are processed by an algorithm (referred to as

the clustering algorithm or clusterizer from hereon) to identify candidate π0 and

γrich triggers as described in chapter 7. Events with identified candidates are passed

on to the next stage.

2. Reconstruct Jets: From the selected events, those with real π0 and γrich triggers are

selected via the event and trigger selection criteria described in section 8.1. Charged

jets are then reconstructed event-by-event from primary tracks which satisfy the

track selection criteria described in section 8.2. And from these charged jets, only

recoil jets satisfying the jet selection criteria described in section 8.3 are accumu-

lated into raw per-trigger yields (spectra).

3. Correct Detector Effects: the raw data are then corrected for various distortions

induced by the experimental apparatus described in chapter 9 via a "regularized

unfolding" scheme described in chapter 10.

4. Evaluate Systematic Uncertainties: After correction, the various sources of uncer-

tainty in the measurement process are assessed and assigned to the corrected data as

described in chapter 11.

5. Determine Trigger Energy Scale and Resolution: Before comparing the corrected

data to theory, it is necessary to determine the distribution of actually sampled π0

and γdir energies. This calculation is detailed in chapter 12.
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6. Compare to Theory: Finally, once the actual distributions of π0 and γdir energy

have been determined, the fully corrected data can be compared against the relevant

calculated and simulated charged recoil jet distributions. This is discussed in chapter

13.

8.1 Event and Trigger Selection

Criterion Description

|vz| < 55 cm z-component of PV must be within 55 cm of
the IP.

|vr| < 2 cm radial component of PV must be within 2 cm
of the IP.

Table 8.1: Criteria applied to the primary vertex of events retained for analysis.

L2gamma events are processed by the tower clustering algorithm described in chapter

7 to identify those events which contain candidate π0 and γrich triggers, clusters of 1 – 2

BEMC towers and up to 15 η and 15 φ BSMD strips. In order to select real π0 and γrich

triggers and ensure a clean signal, the events retained for further analysis need to satisfy

certain section criteria on their primary vertex and their associated trigger. These are listed

in tables 8.1 and 8.2.

Note that the criteria on e∗η and e∗φ are built into the clusterizer algorithm, and thus

guaranteed to be satisfied by all accepted triggers. Furthermore, events from data-taking

runs determined to be bad and whose associated trigger cluster contains a "hot" tower

are not retained for further analysis. The list of bad runs and hot towers can be found in

appendix A alongside more information about the L2gamma stream.
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Figure 8.1: The number of events left after each successive event and trigger selection
criteria is applied.

Figure 8.1 shows the number of events remaining after each successive cut is ap-

plied: only 42,508 events remain after all event and trigger selection criteria have been

applied. Table 8.3 breaks down these remaining events according to the transverse energy

and species (π0 vs. γrich) of their associated trigger. The various distributions to which

these criteria are applied are shown in appendix B.

8.2 Track Selection

From the events selected for analysis, primary tracks are selected for jet reconstruction

according to the criteria listed in table 8.4. The Nfit/Nposs criterion is required in order to

ensure that split tracks are not double-counted, and the Nfit criterion is required in order to

ensure precision in the fitting of the track and thus in the calculation of its 3-momentum.
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Criterion Description

Σpmatch ≤ 3 GeV/c Total 3-momentum of tracks matched to cen-
tral tower of trigger must be less than 3
GeV/c.

e∗η ≥ 0.5 GeV Energy of central η strip must be greater than
0.5 GeV.

e∗φ ≥ 0.5 GeV Energy of central φ strip must be greater than
0.5 GeV.

|ηtrg| < 0.9 The cluster’s pseudorapidity, as defined by
the position of the towers in the BEMC, must
be within (−0.9, 0.9).

E trg
T ∈ (9, 20) GeV Cluster transverse energy must be within

(9, 20) GeV.
TSP ∈ (0, 0.08) ∪ (0.2, 0.6) TSP must be within (0, 0.08) or (0.2, 0.6).

Table 8.2: Criteria applied to the trigger of events retained for analysis.

Etrg
T [GeV] π0 γrich

9 - 11 12,869 15,232
11 - 15 4,918 7,328
15 - 20 699 1,522
Total 18,426 24,082

Table 8.3: Number of events containing a trigger passing all event and trigger selection
criteria versus the trigger transverse energy, E trg

T .

Furthermore, the global Distance of Closest Approach (DCA) – i.e. the distance of clos-

est approach of a global (in the frame of the IP) track to the nominal PIV – criterion is

required to exclude background due predominantly to pile-up; though this cut will also re-

duce the number of secondary decay products included. These three criteria help improve

the precision with which the 3-momentum – p .
= (pT, η, φ) – is calculated. The various

distributions to which the track selection criteria are applied are shown in appendix B.
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Criterion Description

Nfit ≥ 15 The number of fit points comprising the se-
lected track must be ≥ 15.

Nfit/Nposs ≥ 0.52 Selected track must use ≥ 52% of the possi-
ble fit points.

DCA < 1 cm Selected track must have a DCA of < 1 cm
from the PV when the track is fit as a global
track (c.f. section 6.3.4).

|ηtrk| < 1 Selected track’s pseudorapidity as defined
relative to the IV must fall within (−1, 1).

ptrk
T ∈ (0.2, 30) GeV/c Selected track must have a pT in the range of

(0.2, 30) GeV/c.

Table 8.4: Criteria applied to primary tracks selected for jet reconstruction.

8.3 Jet Selection

Once the relevant primary tracks have been selected in an event, they are clustered into

"charged" jets1. Here, jets are clustered according to the anti-kT algorithm via the FastJet

3.0.6 software [177]. Two jet resolution parameters are used in this analysis, Rjet = 0.2

and 0.5. These were chosen to match the resolution parameters used in the parallel analysis

of AuAu-collisions (publication forthcoming) since the fully-corrected pp data presented

here will be the denominator in the forthcoming measurement of IAA. The rationale behind

these two values is to select a relatively small and a relatively large Rjet in order to study

how IAA changes with increasing jet radius. If IAA → 1 as Rjet increases, this would

indicate that the energy lost by a jet due to medium interactions is redistributed into soft

radiation at large angles relative to the jet axis.

Jet areas are measured using the "active area" definition discussed in section 3.3.2. This

choice is, once again, to match the analysis of AuAu-collisions. However, the contribution

due to pile-up here is small: for Rjet = 0.2, ⟨ρ · Ajet⟩ ∼ 0 across E trg
T ; and for Rjet = 0.5,

1Meaning that only the charged component of the jet is reconstructed.
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(a) Rjet = 0.2 jets (b) Rjet = 0.5 jets

Figure 8.2: Jet areas integrated over pjet
T (upper panels) and as a function of pjet

T for Rjet =
0.2 (8.2a) and 0.5 (8.2b). The dotted lines and shading in the upper panel indicates regions
excluded by the jet section criteria, and the solid lines indicate the value of πR2

jet. The
shaded boxes in the lower panels indicate the jets passing the jet area and pjet

T selection
criteria.

(ρ · Ajet) rarely surpasses 1 GeV/c acrossE trg
T . Figure 8.2 showsAjet for both values ofRjet,

and figure 8.3 illustrates how ρ · Ajet varies with pjet
T , the raw (uncorrected) jet transverse

momentum.

Once reconstructed, jets are selected according to the criteria listed in table 8.5. The

cut on ηjet ensures that the reconstructed jets are fully contained within STAR’s acceptance.

The Ajet criteria are chosen to match the criteria applied in [178]. Only "recoil jets" are

recorded. These are jets whose axis falls in the quadrant opposite the trigger in relative

azimuth, ∆φjet = φjet −φtrg. In other words, a recoil jet is one who satisfies |∆φjet − π| <

π/4.
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Figure 8.3: The correction term ρ ·Ajet integrated over pjet
T (upper panel) and as a function

of pjet
T (lower panel) for Rjet = 0.5 jets. For Rjet = 0.2, the correction term is zero.

Criterion Description

|ηjet| < 1−Rjet The pseudorapidity of the selected jet’s axis
has to fall within (Rjet − 1, 1−Rjet).

pjet
T ∈ (0.2, 30) GeV/c The raw pT of the selected jet must be within

(0.2, 30) GeV/c.
Ajet > 0.05, 0.65 The selected jet’s area has to be greater than

0.05 (for Rjet = 0.2) or 0.65 (for Rjet = 0.5).
|∆φjet − π| < π/4 Only recoil jets are selected for analysis.

Table 8.5: Criteria applied to reconstructed jets selected for analysis.

The pT of the selected recoil jets are corrected event-by-event to account for the average

background energy density according to equation 3.10. Let the corrected jet pT be denoted

preco
T . However, as discussed in section 3.3.3, ρ · Ajet is not the only method by which

one can correct for the UE; there is also the Off-Axis Cone method. Figure 8.5 shows
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the Rjet = 0.5 π0- and γrich-triggered uncorrected recoil jet spectra compared against the

spectra of recoil jets corrected with the ρ · Ajet method, those corrected with the Off-Axis

Cone method, and the magnitude of the Off-Axis corrections. At most 10% differences in

the corrected Rjet = 0.5 jet spectra were observed for preco
T < 3 GeV/c. Above this, they

were found to be consistent. The two methods were found to be consistent across preco
T for

Rjet = 0.2.

The choice to use the ρ · Ajet method over any other was made in order to match the

analysis of the AuAu-collisions. Ultimately, however, so long as the same UE subtraction

method is used both on the raw data and in deriving the corrections to be applied to the raw

data, the fully corrected jet spectra should be largely independent of the particular method

used.

The ∆φjet distributions of all selected jets with the recoil jet region demarcated can

be seen in figure 8.4. These recoil jets are accumulated into semi-inclusive distributions

normalized by the number of triggers per range of E trg
T and trigger species which are vi-

sualized in figure 8.6. The preco
T bin sizes of the distributions were defined such that the

statistical uncertainty on each datum is at most 30% relative to its central value.

In total, there are 146,752 Rjet = 0.2 recoil jets and 39,509 Rjet = 0.5 recoil jets

passing all jet selection criteria within the 42,508 analyzed events. Table 8.6 lists the

number of recoil jets broken down according to the E trg
T and species of their correlated

trigger.
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Etrg
T [GeV] π0 γrich

0.2 0.5 0.2 0.5

9 - 11 44,994 11,997 51,208 13,917
11 - 15 17,348 4,646 25,673 6,901
15 - 20 2,216 650 5,313 1,398
Total 64,558 17,293 82,194 22,216

Table 8.6: Number of selected recoil jets versus the species and E trg
T of the correlated

trigger, and the jet resolution parameter.
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(a) Rjet = 0.2

(b) Rjet = 0.5

Figure 8.4: ∆φ distributions of all accepted Rjet = 0.2 (8.4a) and 0.5 (8.4b) jets. The
recoil jet acceptance window is indicated with colored markers in the upper panels and the
shaded region in the lower panels.
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(a) π0 trigger (b) γrich trigger

Figure 8.5: Raw pT spectra (solid black circles) of Rjet = 0.5 π0- (8.5a)and γrich-triggered
(8.5b) recoil jets compared against jet spectra corrected via the ρ ·Ajet and Off-Axis meth-
ods (open triangles) and the spectra of the magnitude of the Off-Axis corrections (open
squares). The lower panels show the ratio of the corrected spectra to the uncorrected spec-
tra.
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(a) Rjet = 0.2, π0 vs. γrich (b) Rjet = 0.5, π0 vs. γrich

(c) Rjet = 0.2, π0 vs. γdir (d) Rjet = 0.5, π0 vs. γdir

Figure 8.6: Raw semi-inclusive distributions of charged Rjet = 0.2 (8.6a, 8.6c) and 0.5
(8.6b, 8.6d) recoil jets as a function of E trg

T for π0 vs. γrich (8.6a, 8.6b) and γdir (8.6c, 8.6d)
triggers.
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9. Simulation Framework and Detector Response Estimation

The STAR detector, being a physical measurement apparatus, has fundamental limits

with which it can measure physical quantities such as the momentum of a particle. These

limitations manifest as effects such as a finite momentum resolution or the reconstruction

efficiency of single particles in the TPC. To gauge the size of these effects, this analysis

makes use of two separate simulation samples.

The first simulation will be described in detail in section 9.1. It consists of dijet events1

embedded into real Zero-Bias (ZB) pp-data2 recorded by STAR during the running year

2009. This simulation is used to estimate the tracking efficiency, the probability of re-

constructing a charged particle of a given momentum, and the tracking resolution, the

precision with which the transverse momentum of a charged particle may be measured, of

the STAR TPC. The tracking efficiency and resolution are then parameterized and applied

on a particle-by-particle basis to the second simulation, described in section 9.2, which

consists of both dijet and γ-jet events.

Throughout this thesis, "particle-level" will be used to refer to simulated events and

their corresponding sets of triggers, particles, or jets contained therein before any sort of

detector response – via a Geant simulation of STAR or a parameterized function – has been

applied. The term "detector-level" will then be used to refer to simulated events, triggers,

particles, or jets after a detector response has been applied.

9.1 The Run9 Dijet Embedding Sample

The simulation used to estimate the tracking efficiency and resolution consists of

roughly 21 million simulated dijet events at
√
s = 200 GeV using PYTHIA 6.426 [179]

1pp-collisions containing two roughly back-to-back jets
2pp-collisions recorded without requiring an online trigger
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Hard QCD Processes Electroweak Processes

gg → gg qg → qγ
gg → qq̄ qq̄ → gγ
gq → qg gg → gγ
qq → qq qq̄ → γγ
qq̄ → gg gg → γγ
qq̄ → qq̄

Table 9.1: 2 → 2 hard scatter QCD and electroweak processes used in the Py6⊕Geant
(left column only) and Py8⊕Param (left and right columns) simulations.

with the "Perugia 0" tune [180]. These dijet events are simulated using the 2 → 2 hard

scatter QCD processes listed in table 9.1 which are then processed by the GSTAR frame-

work, a simulation package based on GEANT-3 [181] that models the response of STAR’s

detectors. For this reason, this simulation will be frequently referred to as Py6⊕Geant

throught this thesis. Once the simulated dijet events have been processed by GSTAR,

the simulated detector responses are mixed with real detector responses from ZB pp-data

recorded during 2009 to simulate the effect of pile-up. Due to operator error during run-

ning, the number of recorded pp-collisions with TPC hits was a factor of 10 lower than

what was needed for this simulation. Thus, the available ZB collisions had to be reused

several times.

The simulated EMC response is used to select simulated events which would have

satisfied several key online triggers: the Jet-Patch 1 (JP1), Adjacent Jet Patch (AJP), and

Barrel High Tower 3 (BHT3) triggers. These are defined as so:

(a) JP1 Trigger: a nominal transverse energy of ET ≥ 5.4 GeV was deposited into a

0.4×0.2, 0.4×0.4, or 0.6×0.4 patch – referred to as "jet patches" – of (η, φ) space

of the calorimeter;

(b) AJP Trigger: a nominal transverse energy of ET ≥ 3.5 GeV was deposited into
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two adjacent jet patches; and

(c) BHT3 Trigger: a nominal energy of E ≥ 7.5 GeV was deposited in a 2× 2 cluster

of BEMC towers.

This is called "trigger filtering." Without it, the computational time and space requirements

necessary to simulate sufficient statistics would far outstrip what was available at the time

of simulation. Of the total 21 million events, only 2 million events (roughly 8.5%) passed

the trigger filtering and were reconstructed. All 21 million of the initial, simulated events

are available, however, to allow for corrections back to the initial, unbiased sample.

In order to obtain necessary statistics at high jet pjet
T , the simulation was generated in

10 different bins of partonic pT, p̂T . Each bin of p̂T is weighted such that an unbiased

p̂T distribution is recovered when summed over all 10 bins. The necessary statistics in

each bin of p̂T was generated so as to ensure that the statistical uncertainty of each bin of

simulated pjet
T was well below a quarter of the statistical uncertainty of the corresponding

bin of measured pjet
T . This is to avoid large statistical fluctuations in the derived corrections.

However, the statistics of the Py6⊕Geant sample were tuned with inclusive jet mea-

surements in mind, not coincidence measurements such as the one presented in this thesis.

The available statistics for deriving corrections after applying the event, trigger, and jet

selection criteria discussed in sections 9.1.1 and 9.1.3 are comparable to the data.

Lastly, it should be noted that the full Py6⊕Geant sample is divided into two sub-

samples: an FF configuration, and a RFF configuration.

9.1.1 Estimation of the Tracking Efficiency

To calculate the tracking efficiency, events from the Py6⊕Geant framework were se-

lected which satisfy the event selection criteria applied to data (those listed in table 8.1)

and which contain a simulated π0 that has a transverse energy in the range of 9 - 11, 11

- 15, or 15 - 20 GeV and has a pseudorapidity between -0.9 and 0.9. In total, there are
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31,627 such events from the Py6⊕Geant framework. Table 9.2 breaks the number of ac-

cepted events versus the partonic pT of the event’s hard scatter, p̂T, E trg
T of the trigger π0,

and FF/RFF sub-sample.

p̂T [GeV/c] 9 – 11 GeV 11 – 15 GeV 15 – 20 GeV

FF RFF FF RFF FF RFF

4 - 5 0 1 0 0 0 0
5 - 7 11 2 1 0 0 0
7 - 9 70 92 16 7 0 0
9 - 11 259 360 56 53 3 4
11 - 15 568 686 206 226 9 9
15 - 25 1,569 1,753 1,136 1,210 232 230
15 - 35 3,488 2,721 3,633 2,878 1,759 1,440
>35 1,268 1,066 1,437 1,262 960 855

Total 7,234 6,681 6,485 5,636 2,963 2,538
FF + RFF 14,005 12,121 5,501

Table 9.2: Number of Py6⊕Geant events containing a trigger passing all event and trigger
QA criteria versus the event’s p̂T, the E trg

T of its associated trigger, and the event’s sub-
sample.

From these events, both primary TPC tracks were selected which satisfy the same

conditions applied to data (those listed in table 8.4) and final-state simulated particles

which satisfy the conditions listed in table 9.3. When the simulation was created, the

reconstructed tracks were matched to simulated particles by comparing the fit points used

in constructing the TPC tracks to the trajectories of the simulated particles. This allows for

the comparison of various track quantities such as its transverse momentum (preco
T ) to the

transverse momentum of the particle that created it (pMC
T ). Here, for a track to be declared

as matching a simulated particle, at least 50% of the fit points comprising the track must

match the trajectory of the particle.
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Criterion Description

Qmc ̸= Selected final-state particle must be charged.
∆φmc = φmc − φtrg ∈ (π

2
, 3π

2
) Selected final-state particle must lie in the

away-side hemisphere.
|ηmc| < 1 Selected final-state particle must have a pseu-

dorapidity must fall within (−1, 1).
pmc
T > 0.2 GeV/c Selected final-state particle must have a pT

greater than 0.2 GeV/c.

Table 9.3: Criteria applied to Py6⊕Geant final-state MC particles selected for particle-
level jet reconstruction.

The selected simulated particles were then accumulated into a histogram pi which

records the weighted (by p̂T) number of particles falling in a bin i of pMC
T . Next, the se-

lected tracks were then accumulated into two distinct histograms. Those selected tracks

which were successfully matched to a simulated particle were accumulated into a his-

togram di which records the p̂T weighted number of matched tracks who fall in a bin i of

their progenitor’s pMC
T ; and all selected tracks were accumulated into a histogram d̃i which

records the weighted number of tracks falling in a bin i of preco
T .

After normalizing pi, di, and d̃i by the weighted number of triggers, two ratios were

calculated: the proper tracking efficiency ϵtrk and a pseudo-efficiency (ϵ̃trk).

ϵtrk,i =
di
pi

ϵ̃trk,i =
d̃i
pi

(9.1)

Since the tracking efficiency’s denominator only includes tracks from the original simu-

lated sample, it gives the absolute probability of reconstructing such a particle of transverse

momentum pMC
T . The pseudo-efficiency, however, also includes tracks produced by parti-
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cles associated with sources other than the original simulated sample, namely pile-up and

the decays of short-lived particles (so-called secondary decays). Thus ϵ̃trk gives the rela-

tive surplus or loss of objects with a particular transverse momentum at the detector-level

versus the particle-level.

Figure 9.1: The calculated ϵtrk and ϵ̃trk from the Py6⊕Geant framework, and the fit func-
tions E and Ẽ applied to ϵtrk and ϵ̃trk respectively. The magenta curve Ẽ∗ is the interpola-
tion of E and Ẽ.

The calculated ϵtrk and ϵ̃trk are shown in figure 9.1. Due to the statistical limitations

of the Py6⊕Geant sample, there are noticeable statistical fluctuations in the ratios. To

mitigate these fluctuations, both ratios are fit with functions that capture their shape:
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E [ϵtrk] = ϵ0

(
1 + e−σ1pMC

T

)
Ẽ [ϵ̃trk] = ϵ0 + ϵ1e

−σ1pT + ϵ2e
−σ2p2T

(9.2)

where ϵi and σi are fit parameters. Since pile-up and secondary decays produce soft radia-

tion, ϵ̃trk should converge to ϵtrk at high pT. Thus, a third function, Ẽ∗, which has the same

functional form as Ẽ is introduced which interpolates Ẽ and E by requiring the parameter

ϵ0 to be that of E. These three functions are shown in figure 9.1. The bands on these

functions indicate an absolute uncertainty of ±4%, the precision with which STAR is able

to measure its tracking efficiency [182]. The extracted fit parameters are listed in table 9.4

Fit Parameter E Ẽ Ẽ∗

(ϵi) 0.82 (0.86,−1.81, 0.12) (0.82,−2.18, 0.18)
(σi) 7.59 (13.00, 0.67) (13.00, 0.67)

Table 9.4: Parameters extracted from the fits to ϵtrk and ϵ̃trk.

The functions E and Ẽ∗ constitute the parameterized tracking efficiency and pseudo-

efficiency which can be utilized in the fast simulation described in section 9.2. The use

of both were explored in constructing the fast simulation. However, as no simulation of

pile-up was included in the fast simulation and secondary decays were handled differently

at the particle-level between it and the Py6⊕Geant framework, Ẽ∗ was selected as the

parameterization to be used in the fast simulation in order to emulate these effects.
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(a) rdiff
ij (b) rdist

ij

Figure 9.2: Projections of matched track ∆pT (9.2a) and preco
T (9.2b) for select values of

simulated particle pMC
T . The solid curves are Gaussian fits to the projections.

9.1.2 Estimation of the Tracking Resolution

The parameterization of the tracking resolution ∆ptrk
T is calculated in a manner anal-

ogous to the parameterization of ϵtrk. The same pairs of matched tracks and simulated

particles used to calculate ϵtrk were accumulated into two histograms: rdiff
ij (for difference),

which records the p̂T weighted number of matched tracks falling in a bin i of progeni-

tor pMC
T and in a bin j of difference in progenitor and reconstructed track preco

T , ∆pT =

preco
T − pMC

T ; and rdist
ij (for distribution), which records the p̂T weighted number of matched

tracks falling in a bin i of progenitor pMC
T and in a bin j of reconstructed track preco

T . Each

histogram was normalized such that the integral over a slice of pMC
T is unity. Then each

normalized slice was fit with a gaussian function. These two histograms are visualized as

projections of ∆pT and preco
T in figure 9.2, and the fits are shown as solid lines.

Let σ denote the width of each of the fits with σ
(
∆pT|pMC

T

)
corresponding to the fits to

rdiff
ij and σ

(
preco

T |pMC
T

)
corresponding to the fits to rdist

ij . These are estimates of the tracking
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Figure 9.3: Extracted σ
(
∆pT|pMC

T

)
and σ

(
preco

T |pMC
T

)
as a function of pMC. Solid lines

indicate polynomial fits, and the green curve indicates the fit to σ
(
preco

T |pMC
T

)
used in the

measurement of the dijet imbalance AJ made by STAR in 2017 [19].

resolution, ∆ptrk
T . To parameterize the tracking resolution, each σ was fit with a second

order polynomial R:

Rdiff [σ (∆pT|pMC
T

)]
= ς0 + ς1p

MC
T + ς2

(
pMC

T

)2
Rdist [σ (preco

T |pMC
T

)]
= ς0 + ς1p

MC
T + ς2

(
pMC

T

)2 (9.3)

where ςi are fit parameters. The extracted fit parameters are listed in table 9.5. An addi-

tional parameterization is included in figure 9.3 and table 9.5 as another point of compar-

ison. This parameterization was extracted from a fit to σ
(
preco

T |pMC
T

)
calculated utilizing
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an embedding sample using ZB data recorded by STAR during the 2012 running year, and

was used in the measurement of the dijet imbalanceAJ =
(
plead

T − psublead
T

)
/
(
plead

T + psublead
T

)
made by the STAR Collaboration in 2017 [19].

Fit Parameter Rdiff Rdist Run12

ς0 0.0045 0.0142 −0.026
ς1 0.0070 0.0107 0.020
ς2 0.0013 0.00132 0.0030

Table 9.5: Extracted parameters from the fits to ∆ptrk
T , and the fit parameters used in the

measurement of the dijet imbalance AJ made by STAR in 2017 [19].

The parameterization Rdiff was arbitrarily taken to be the default tracking resolution

used in the fast simulation. The Rdist and Run12 were then reserved to be used as checks

when evaluating the systematic uncertainty associated with the tracking resolution.

9.1.3 Jet Reconstruction in the Run9 Dijet Embedding Sample

From the set of selected MC particles and reconstructed TPC tracks, particle- and

detector-level jets were reconstructed with the anti-kT algorithm via FastJet 3.0.6 using

resolution parameters of Rjet = 0.2 and 0.5 in the same manner as jets were reconstructed

in the measured data. The same prescription to account for the average background energy

density was applied event-by-event to jets in the Py6⊕Geant framework as in data.

After reconstruction, particle- and detector-level recoil jets were selected according to

the criteria listed in table 8.5. These selected jets were retained to be used to calculate

the response matrix described in Section 10.1. In total, there were 229,744 Rjet = 0.2

and 89,516 Rjet = 0.5 particle-level recoil jets in the Py6⊕Geant sample, and 95,196

Rjet = 0.2 and 23,421 Rjet = 0.5 detector-level recoil jets. Table 9.6 lists the number of
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particle-level recoil jets broken down according to the E trg
T of their correlated trigger, and

table 9.7 lists the corresponding number of detector-level recoil jets.

Etrg
T [GeV] Rjet = 0.2 Rjet = 0.5

FF RFF FF + RFF FF RFF FF + RFF

9 - 11 27,220 24,667 51,817 10,101 9,317 19,367
11 - 15 24,729 21,640 46,328 9,072 8,032 17,076
15 - 20 11,636 10,108 21,707 4,404 3,890 8,257

Total 63,585 46,307 119,852 23,577 21,239 44,700

Table 9.6: Number of selected Py6⊕Geant particle-level recoil jets versus sub-sample and
E trg

T of the correlated trigger.

Etrg
T [GeV] Rjet = 0.2 Rjet = 0.5

FF RFF FF + RFF FF RFF FF + RFF

9 - 11 21,548 19,682 41,158 5,251 4,958 10,164
11 - 15 19,484 17,326 36,769 4,670 4,143 8,786
15 - 20 9,237 8,059 17,259 2,406 2,102 4,471

Total 50,269 45,067 95,196 12,327 11,203 23,421

Table 9.7: Number of selected Py6⊕Geant detector-level recoil jets versus sub-sample and
E trg

T of the correlated trigger.

9.2 The Fast Simulation

The parameterized functions Ẽ∗ and Rdiff were applied on a particle-by-particle ba-

sis to events generated by PYTHIA 8.185 [131]. This standalone simulation, labeled
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Py8⊕Param, has two advantages over the Py6⊕Geant simulation: (1) that it enables con-

trol over the simulated detector response; and (2) that it can simulate additional collisions

with minimal computing requirements. In light of the latter advantage, the Py8⊕Param

will also be referred to as a "Fast Simulation" interchangeably.

The Py8⊕Param sample consists of simulated events which contain π0 or γdir triggers

with ptrg
T > 8 GeV/c and |ηtrg| < 1. The π0-triggered events were generated using the same

2 → 2 hard scatter QCD processes listed in table 9.1, and the γdir-triggered events were

generated using the following 2 → 2 electroweak listed in the same table. In both cases,

the p̂T was required to be greater than 4 GeV/c. These events were generated using the

default tune (the "Monash Tune") of PYTHIA 8.185.

Generated events with π0- or γdir-triggers satisfying ptrg
T ∈ (9, 20) GeV/c and |ηtrg| <

0.9 were selected to be analyzed. In these events, the parameterized detector response

was applied particle-by-particle via Algorithm 4 below. Let P = {pi} indicate the set

of charged particles with 4-momentum pMC,µ
i for a given event which pass the pT and η

requirements applied to MC particles in section 9.1.1.

Algorithm 4 Procedure for applying parameterized detector response in the Fast

Simulation.

1: for each particle pi ∈ P , do

2: Let ∆ be a value randomly sampled from a Gaussian distribution with mean

µ = 0 and standard deviation σ = Rdiff
(
pMC

T,i

)
.

3: The smeared transverse momentum is then preco
T,i = pMC

T,i +∆.

4: Randomly sample a value ϵtest between 0 and 1 from a uniform distribution.

4: if ϵtest > Ẽ∗ (preco
T,i

)
, then

5: The particle is discarded as an inefficiency.
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6: else

7: Recalculate the components of the particle’s 4-momentum in terms of

its preco
T , η, and φ.

8: Add it to the set D.

9: end if

10: end for

The set D = {di} then represents the particles with smeared 4-momentum preco,µ
i which

are not lost due to tracking inefficiencies. The sets P and D are then passed along to the

jet-finder to create sets of particle-level and detector-level jets.

Parameters such as the geometry of the simulated STAR detector and its simulated ϵtrk

and ∆ptrk
T , what type of events (dijets, γ-triggered, etc.), the momentum transfers sam-

pled, the number of events, and so on were all fixed when the Py6⊕Geant sample was

initially generated. This presents challenges when assessing the systematic uncertainties

associated with the ϵtrk and ∆ptrk
T as they cannot be varied with ease. The fast simulation

allows for these to be easily varied, though. However, the parameterization of the detector

response used in the fast simulation may not fully capture the effects present in the data.

In contrast, the Py6⊕Geant framework – with its full simulation of STAR and the process

of reconstructing data – is certain to. Thus the Py6⊕Geant framework alone is used to cor-

rect the measured jet yields, while the fast simulation is reserved to assess the systematic

uncertainties associated with the uncertainties on ϵtrk and ∆ptrk
T .
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10. Correction of Detector Effects

Any detector used in the study of physics is a physical one, and thus will always

have a finite resolution and efficiency. These "detector effects" can cause highly nonlinear

distortions in the distribution of physical quantities we aim to measure. This is especially

so for the steeply-falling spectra that are frequently studied in high energy nuclear physics

such as the recoil jet spectra of this thesis.

To correct for the finite momentum resolution and particle reconstruction efficiency,

a strategy known as regularized unfolding (or simply unfolding) is deployed. Generally

speaking, in an unfolding one encodes the relevant effects into a response matrixRij which

maps a true, undistorted spectrum (ti) onto the measured, distorted spectrum (mi):

mi = Rijtj (10.1)

The matrix is then "inverted" (in a certain sense) and applied to the measured data, yielding

the "true" spectrum with distortions removed. Section 1 of this chapter will explain how

the response matrix is calculated in the context of this measurement, Section 2 will de-

scribe how Bayes’ Theorem can be used to regularize the inversion of this matrix, Section

3 will describe its application, and Section 4 will discuss the outcomes of this correction

scheme.

10.1 Calculation of the Response Matrix and Jet Matching Efficiency

As discussed in Chapter 9, the Py6⊕Geant and Py8⊕Param simulations consist of a set

of events E = {ei} each with a π0 or h± trigger with 3-momentum
(
E trg

T , η
trg, φtrg

)
, a set of

particle-level jets Pi = {pij} with 3-momentum (ppar
T , ηpar, φpar), and a set of detector-level

jets Di = {dij} with 3-momentum
(
pdet

T , ηdet, φdet
)
. The response matrix Rij is calculated
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by matching simulated particle-level jets to their reconstructed detector-level counterparts.

Let ∆ηpar, det = ηpar, det − ηtrg and ∆φpar, det = φpar, det − φtrg. Then the algorithm by which

this is accomplished is described in algorithm 5.

Algorithm 5 The algorithm for matching simulated particle-level jets to recon-

structed detector-level jets to calculate a response matrix Rij and jet matching ef-

ficiency ϵjet.

1: for each event ei ∈ E , do

2: if the π0/h± trigger does not satisfy the criteria listed in table 8.2, continue

3: for each particle-level recoil jet pij ∈ Pi, do

4: if pij does not satisfy the criteria listed in table 8.5, then

5: continue

7: else

8: Add pij to the histogram Peff.

9: end if

10: for each detector-level recoil jet dik ∈ Di, do

11: if dik does not satisfy the criteria listed in table 8.5, continue

12: Calculate the displacement ∆rjet between pij and dik and their pT

fraction qjet
T :

∆ηjet = ∆ηpar
ij −∆ηdet

ik ,

∆φjet = ∆φpar
ij −∆φdet

ik ,

∆rjet =
√
(∆ηjet)2 + (∆φjet)2,

qtrg
T =

pdet
T,ik

p
par
T,ij

.

13: if
(
∆rjet < ∆Rmatch

)
∧
(
qjet

T ∈ Qmatch
T

)
, then

14: dik is a candidate match for pij , so add it to the list of match
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candidates Cij .

15: end if

16: From Cij , the match will be the candidate which "matches best," i.e. the

candidate which has a qjet
T closest to 1 and the smallest ∆rjet. Label this

candidate mij .

17: Add mij to the histogram Deff and the pair (pij,mij) to the the response

matrix R.

18: end for

19: end for

20: end for

21: Compute the jet matching efficiency ϵjet,i = Deff,i/Peff,i.

Thus the response matrix is given by Rij = R
(
pdet

T , ppar
T

)
. The response matrix is

normalized such that

∫
R
(
pdet

T , ppar
T

)
dpdet

T = 1. (10.2)

This enables the response matrix to be interpreted as encoding the conditional probability

of obtaining a reconstructed jet with transverse momentum pdet
T given a simulated jet with

transverse momentum ppar
T . The histograms Peff,i and Deff,i record the number of particle-

level jets to match and the number of matched reconstructed jets falling in a bin i of ppar
T .

This algorithm requires two parameters to be specified: ∆Rmatch, which sets the max-

imum distance a reconstructed jet can be from a simulated jet in (η,∆φ) space to be

considered a match candidate, andQmatch
T =

(
qmin

T , qmax
T

)
, which sets the allowable range of

momentum fraction which a reconstructed jet can have to be considered a match candidate.
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(a) ∆rjet (b) qjet
T

Figure 10.1: ∆rjet (10.1a) and qjet
T (10.1b) for Rjet = 0.2 charged recoil jets from the

Py6⊕Geant framework. Shaded regions indicate the jets selected to be match candidates.

The rationale behind these two parameters is that the only information to characterize

jets available at both the particle- and detector-level of the Py6⊕Geant framework are

the jet 3-momentum and its area. Since the Py6⊕Geant framework translates simulated

particles into simulated detector responses (which have a finite resolution), the mapping

between the set of simulated particles and the set of simulated detector responses is not

1-to-1. Thus the only way to assess how well a reconstructed jet matches a simulated jet is

how close the two are in (η,∆φ) space and in pjet
T . If a reconstructed jet deviates too much

from its simulated counterpart, then it is hard to call the reconstructed jet the "same" jet as

the simulated one and thus should be counted as an inefficiency.

In this analysis the parameter ∆Rmatch is set to be Rjet, and the parameter Qmatch
T is set

to be Qmatch
T = (0.5, 1.3). The tuning of the Qmatch

T parameter will be discussed below. The

quantities which these parameters constrain, ∆rjet and qjet
T , are visualized in figure 10.1.
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Figure 10.2: Fit functions used to smooth the Rjet = 0.5 Py6⊕Geant unfolding priors.
Solid lines indicate the fits.

10.2 Smoothing the Rjet = 0.5 Response Matrices

In the case of the Rjet = 0.5 response matrices, the relatively low statistics of π0-

triggered Rjet = 0.5 jets in the Py6⊕Geant framework will result in appreciable bin-to-bin

fluctuations in the matrices which will translate into kinks in the unfolded solution. There

is no physical reason why these fluctuations should be in Rij , however: they are purely

due to the finite statistics of the simulation sample used to train the response matrix. Thus,

before unfolding the Rjet = 0.5 data, the response matrices will need to be smoothed.

The smoothing proceeds in two steps: the first being to smooth the prior used to train

the matrix, and the second being to smooth the matrix itself. To smooth the prior, the

particle-level 9 - 11, 11 - 15, and 15 - 20 GeV π0-triggered Rjet = 0.5 recoil jet spectra are
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(a) 9 - 11 GeV (b) 11 - 15 GeV (c) 15 - 20 GeV

Figure 10.3: Fit functions used to smooth theRjet = 0.5 response matrices’ qjet
T projections

for 9 - 11 (10.3a), 11 - 15 (10.3b), and 15 - 20 GeV (10.3c) π0 triggers. Solid lines indicate
the fits.

fit with functions P
(
ppar

T |E trg
T

)
which approximate the shape of the spectrum that consist

of a combination of exponentials and hyperbolic tangents:

P
(
ppar

T |E trg
T

)
=

(
nexp∑
i=0

eci+bip
par
T

)
×

[
ntan∑
j=0

tanh
(
ppar

T − p0T,j
aj

)]
(10.3)

where ai, bi, cj and p0T,j are parameters, and nexp and ntan set the number of exponentials

and hyperbolic tangents to use for a given range of E trg
T . The values of nexp and ntan

were arrived at by considering the shape of the prior and trial-and-error. The fit functions

are shown in figure 10.2, and the extracted parameters are listed in appendix C. Then

S
(
ppar

T |E trg
T

)
= ϵjet × P

(
ppar

T |E trg
T

)
indicates the distribution of unsmeared (particle-level)

recoil jet pT after applying the jet matching efficiency.

Next the response matrix itself needs to be smoothed. First, projections of qjet
T for select

ranges of ppar
T were fit using a double Gaussian function, Q

(
qjet

T |ppar
T , E trg

T

)
. The choice of

functional form for these fits may seem odd. However, they do reproduce the general

shape of the discrete values of qjet
T as can be seen in figure 10.3. Moreover, in pp collisions,

the number of particles in even Rjet = 0.5 jets should be relatively low, especially those at
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very low pjet
T . These very soft jets will be dominated by jets with one or two constituents

with roughly equal energy. In these cases, one would expect the matching detector-level

jet to have either roughly the same pjet
T (qjet

T ∼ 1) as both constituents survived the tracking

efficiency, roughly half of the original pjet
T (qjet

T ∼ 0.5) as only one of the constituents

survived, or to be completely lost as neither constituent survived. These peaks in qjet
T at 1

and 0.5 will then be smeared out due to the tracking resolution and the inclusion of jets

with more than two constituents.

(a) Raw (b) Smoothed

Figure 10.4: Projections of pdet
T for a raw matrix (10.4a) versus its smooth counterpart

(10.4b) for 9 - 11 GeV π0 triggers..

Indeed, this can be seen in the qjet
T projections at low ppar

T in figure 10.3. As the jet pT

increases, these two peaks should become increasingly smeared out as they will become

increasingly dominated by jets with substantially more than two constituents, approaching

a single peak centered at qjet
T = 1 with a slowly falling tail on the qjet

T < 1 side and a sharply

falling tail on the qjet
T > 1 side. This asymmetry is due to the fact that it is substantially
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more likely for a jet to lose energy in being reconstructed than it is for it to gain energy.

This behavior is also seen in figure 10.3.

The parameters of the functions Q
(
qjet

T |ppar
T , E trg

T

)
are listed in appendix C. The al-

gorithm by which the Rjet = 0.5 response matrices are smoothed is then described in

algorithm 6.

Algorithm 6 The algorithm for smoothing a response matrix Rij .

1: for NMC iterations, do

2: Randomly sample a value of ppar
T from S

(
ppar

T |E trg
T

)
.

3: Randomly sample a value of qjet
T from Q

(
qjet

T |ppar
T , E trg

T

)
.

4: Calculate the corresponding detector-level pdet
T = ppar

T × qjet
T .

5: Add the pair
(
pdet

T , ppar
T

)
to the smoothed response matrix R̃ij .

6: end for

7: Normalize R̃ij such that
∫
R̃
(
pdet

T , ppar
T

)
dpdet

T = 1.

The impact of smoothing the response matrix on the matrix itself can be seen in figure

10.4 which shows projections of pdet
T for a raw matrix versus its smoothed counterpart.

Then the impact on the unfolded Rjet = 0.5 data of smoothing the response matrix can be

seen in figure 10.5.

10.3 Retraining the Response Matrix

There are instances when the response matrix needs to be retrained on a prior other than

the particle-level Py6⊕Geant recoil jet spectrum. For instance, both the Py6⊕Geant and

Py8⊕Param samples used to train the response matrix consist solely of π0-triggered dijet

events. This could produce a bias in the corrected data, especially in the γdir-triggered data.

134



Figure 10.5: 9 - 11 GeV π0-triggeredRjet = 0.5 data unfolded using a raw response matrix
(black stars) versus using a smoothed response matrix (red circules).

While this bias is expected to be small due to the robustness of the Bayesian unfolding

algorithm and to the fact that (to first order at least) the response matrix should only depend

on the jet pT and at most weakly on the shape of the training prior. However, this needs to

be checked and will be in Section 11.1.2.

When the need arose, the response matrix was be retrained on a different prior via

a fast Monte-Carlo simulation. This procedure will be described in terms of retraining

the response matrix on a γdir-triggered recoil jet spectrum. However, the procedure for

retraining the response matrix on something such as a Levy function is identical but with

given function substituted for the γdir-triggered recoil jet spectrum.

First, the Rjet = 0.2 and 0.5 γdir-triggered recoil jet spectra were generated using

PYTHIA 8 for all three ranges of E trg
T . Let these spectra be labeled Pi where i runs over
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(a) Rjet = 0.2 (b) Rjet = 0.5

Figure 10.6: Particle-level 11 - 15 GeV γdir-triggered recoil jet spectrum ("Input") from
PYTHIA 8 versus the detector-level recoil jet spectrum ("output") of the fast monte carlo
for Rjet = 0.2 (10.6a) and 0.5 (10.6b).

the bins of particle-level jet pT. Each spectrum was then multiplied by the corresponding

jet-matching efficiency; let the resulting spectrum be labeled Si = ϵjet × P .

Next, values of unsmeared jet pjet
T (ppar

T ) were sampled from Si. For each sampled ppar
T , a

smeared jet pT (pdet
T ) was sampled from the distribution of detector-level jet pT correspond-

ing to the sampled ppar
T from the π0-triggered response matrix. Each pair

(
pdet

T , ppar
T

)
was

then accumulated in a new response matrix, R̃ij , and each sampled pdet
T was accumulated

in a new detector-level recoil jet spectrum D̃i. This sampling procedure was repeated

a sufficient number of times such that the region defined by ppar
T ∈

(
−1, E trg, max

T

)
and

pdet
T ∈

(
−1, E trg, max

T

)
(where E trg, max

T is the upper limit of the E trg
T range) was adequately

populated.

Lastly, R̃ij and D̃ were appropriately normalized. Note that for Rjet = 0.5 jets, the
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smoothed Rij are used when retraining. Figure 10.6 shows a representative particle-level

γdir-triggered recoil jet spectrum versus the constructed D̃i and the R̃ij from this procedure.

10.4 Bayes’ Theorem and Regularized Unfolding

With the response matrices in hand, it is tempting to simply take their mathematical

inverse and directly apply them to the measured distribution to obtain the true distribution,

i.e.

R−1
ij mj = ti (10.4)

where mi and ti are the number of measured jets and true jets in bin i of pjet
T . Through-

out this section repeated indices will imply summation over the values of those indices.

However, as D’Agostini points out in [183], there are issues with this approach:

1. if Rij is singular, there will be issues with inversion;

2. moreover, there is no a priori reason why R−1
ij should exist; and

3. this approach is not able to handle large statistical fluctuations.

Regarding the last issue, consider that there will inevitably be negative terms in R−1
ij . Any

large fluctuations in Rij due to statistics could in turn lead to large negative terms in R−1
ij

which could result in negative entries in the unfolded distribution.

Thus, especially in light of the last issue, the inversion of Rij must be regularized in

some fashion. One of the earliest proposals towards regularized unfolding was based on

decomposing the Rij into orthogonal polynomials [184]. This method had some technical

shortcomings and was not able to handle multidimensional distributions. However, taking

seriously the fact that Rij can be interpreted as the conditional probability of obtaining a

reconstructed jet with transverse momentum preco
T from a true (or simulated) jet of trans-
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verse momentum ptrue
T , Bayes’ Theorem offers a natural way to think about this process

[183].

As a reminder, Bayes’ Theorem states that the probability of an event A occurring

given that another event B has occurred is

P (A|B) =
P (B|A)P (A)

P (B)
(10.5)

where P (⋆) indicates the probability of an event occurring, and P (A|B) is the conditional

probability ofA occurring givenB. For the discussion here, the events under consideration

are the observation of a reconstructed jet of preco
T and a true jet of ptrue

T . Their probabilities

are:

P (ptrue
T ) = ti/Nt

P (preco
T ) = mi/Nm

(10.6)

where Nt and Nm are the total number of measured and true jets respectively. We can then

state the response matrix in terms of probability [183]:

Rij = P (preco
T |ptrue

T ) (10.7)

Now let us consider an "unfolding matrix" Uij which gives the conditional probability

of obtaining a true jet of ptrue
T given a reconstructed jet of preco

T :

Uij = P (ptrue
T |preco

T ) (10.8)

such that the best guess as to what the true distribution is given by
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t̂i = Uijmj

t̂i =
1

ϵi
P
(
ptrue

T,i |preco
T,j

)
mj

(10.9)

where ϵ =
∑nm

i P
(
preco

T,i |ptrue
T

)
≤ 1 is the efficiency of reconstructing a jet with ptrue

T , and

nm is the number of bins of preco
T . Then making use of Bayes’ Theorem gives:

t̂i =
1

ϵi

P
(
preco

T,j |ptrue
T,i

)
P
(
ptrue

T,i

)
P
(
preco

T,j

) mj (10.10)

Thus, from t̂ the estimated total number of true jets N̂t and their probability distributions:

N̂t =
nt∑
i

t̂i

P̂t = t̂i/N̂t

(10.11)

where nt is the number of bins of ptrue
T .

However, the whole motivation behind unfolding is to obtain the underlying true spec-

trum from measured data. When we make a measurement, we do not know a priori what

that distribution is. To overcome this, let P (ptrue
T ) → P0 (p

par
T ) in 10.10 where P0 is the best

guess as to what the true spectrum should be (usually obtained from simulation) and ppar
T

is the particle-level jet pT. Then everything is calculable in 10.10, and the simple iterative

algorithm described in Algorithm 7 may be used to unfold the measured distribution.

Algorithm 7 An unfolding algorithm based on Bayes’ Theorem as implemented in

[183].

1: Choose P0 (p
par
T ). Then the initial guess of t is t0,i = NmP0

(
ppar

T,i

)
.
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2: Calculate t̂i = Uijmj and P̂
(
ppar

T,i

)
/N̂t.

3: Make a χ2/NDF comparison between t̂ and t0.

4: Replace P0 with P̂ and repeat steps 1 - 3.

5: if after the 2nd iteration the χ2/NDF is small enough, then

6: Terminate algorithm

7: else

8: Replace P0 with P̂ and repeat steps 1 - 4 for an additional niter − 1 iterations.

9: end if

Here niter be the maximum number of iterations. In the context of this analysis, mi is

the measured data and P0 (p
par
T ) is the particle-level recoil jet distribution from either

Py6⊕Geant or Py8⊕Param, and Rij is the calculated response matrix of the previous

section.

Note that Uij is not the mathematical inverse of Rij . However, in the absence of

statistical fluctuations in either ti or mi, UR → 1 as the number of iterations in algorithm

7 goes to infinity. If statistical fluctuations are present, though, sending the number of

iterations to infinity will result in large fluctuations in the unfolded distribution as niter →

∞, Uij → R−1
ij . To avoid large fluctuations, one can (1) reduce the number of degrees

of freedom in ti before unfolding; (2) choose an optimal value of niter before unfolding

(usually niter ≤ 5 is sufficient); or (3) smooth t̂i before feeding it to the next iteration

[183]. Option (2) was selected for this analysis.

Lastly, some of the primary benefits of the Bayesian approach to regularized unfolding

are that [183]:

1. it can manifestly handle different binnings between the measured and true distribu-

140



tions;

2. can be applied to multidimensional distributions; and

3. it is robust against the choice of P0 (even in complete ignorance of the functional

form of ti).

10.5 Applying Corrections to Data

The calculation in Section 10.1 is repeated for each range of E trg
T and each value of

Rjet, producing a set of six response matrices and jet-matching efficiencies (ϵjet). Each pair

of Rij and ϵjet is then used to correct the raw measured π0 and γdir data corresponding to

the range of E trg
T and value of Rjet. The γdir data are corrected using the Rij retrained on

the γdir-triggered recoil jet spectra.

Before unfolding Rjet = 0.5 data, each corresponding response matrix is smoothed

according to the process described in Section 10.2. After unfolding the data (Rjet = 0.2 or

0.5), the corresponding jet-matching efficiency is smoothed by fitting it with the function

J [ϵjet] = ϵjet
0

(
1− e−σ

jet
0 p

jet
T

)
where ϵjet

0 and σjet
0 are fit parameters. The function J is then

used to correct the data and perform the backfolding described below.

The unfolding is handled by the RooUnfold framework [185], a plugin for ROOT built

to automatically unfold a distribution according to a specified algorithm. It requires four

inputs:

1. the "prior," i.e. the original, simulated distribution (in this case the particle-level

recoil jet spectra from the Py6⊕Geant sample);

2. the "smeared prior," i.e. the reconstructed simulated distribution with all detector

effects applied (the detector-level recoil jet spectra);

3. the response matrix which maps the prior onto the smeared prior;
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(a) π0 trigger (b) γdir trigger

Figure 10.7: Unfolding solutions for 11 - 15 GeV π0- (10.7a) and γdir-triggered (10.7b)
Rjet = 0.5 data versus their corresponding raw data, prior, and backfolded distributions.

4. and the measured data to be unfolded.

RooUnfold provides multiple unfolding algorithms out-of-the-box. However, only the

Bayesian algorithm was utilized in this analysis.

The quality of the unfolding is assessed by comparing "backfolded" data against the

original, raw data. The data are first unfolded with a fixed regularization parameter and

corrected bin-by-bin with the relevant J [ϵjet]. Then the backfolded distribution is accu-

mulated by sampling a random value of punf
T according to the unfolded distribution, and

then sampling a random value of preco
T from the response matrix based on the sampled punf

T

for a fixed number of iterations. Finally, J [ϵjet] is applied bin-by-bin to the backfolded

distribution which is then normalized to the raw data. Figure 10.7 shows representative

unfolding solutions compared against the corresponding raw data, prior, and backfolded
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(a) Rjet = 0.2 (b) Rjet = 0.5

Figure 10.8: The reduced χ2 between backfolded and raw π0-triggered Rjet = 0.2 (10.8a)
and 0.5 (10.8b) data as a function of unfolding niter.

distributions.

This process is repeated for several values of Bayesian regularization parameter niter

ranging from 1 to 6. Each time a reduced chi-squared, χ2
N = χ2/NDF, is calculated

between the raw data and the backfolded distribution. As niter increases, χ2
N will eventually

converge to a stable value. As stated in the previous section, an optimal value of niter is

determined before unfolding the data by identifying at which niter χ
2
N begins to converge

(i.e. the inflection point of the χ2
N versus niter curve) and adding one. Figure 10.8 shows

χ2
N as a function of niter with the default value of niter, henceforth denoted n∗

iter, indicated.

For Rjet = 0.2 data, a default value of n∗
iter = 4 was used, and for Rjet = 0.5 data, a default

value of n∗
iter = 3 was used.

In the case of the γrich data, the hadronic background is subtracted before performing

the unfolding. This is to keep the unfolding stable and to prevent uncertainties on the

unfolded data from being artificially inflated by the subtraction process. Ultimately, per-

forming the subtraction before or after unfolding yields the same solution, as can be seen
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(a) Rjet = 0.2 (b) Rjet = 0.5

Figure 10.9: Comparison of unfolded 11 - 15 GeV γdir-triggeredRjet = 0.2 (10.9a) and 0.5
(10.9b) data when performing the hadronic subtraction before vs. after after unfolding.

in figure 10.9.

By default, the response matrix and jet-matching efficiency calculated from the Py6⊕

Geant sample is used to correct the data. These can be seen in figures 10.10 and 10.11 re-

spectively. The Py8⊕Param sample is reserved for computing the systematic uncertainties

on the corrected data.

The rationale behind choosing the Py6⊕Geant response over the Py8⊕Param response

as the default choice for correcting the data is that (1) the sample was generated with an

event generator tuned to match STAR data, and (2) it was generated with a detailed Geant

simulation of STAR and thus more likely to accurately capture all of the relevant detector

effects that might be at play. The raw and corrected per-trigger yields of charged recoil

jets are listed in table 10.1. The integrated yields were obtained by integrating the raw and

unfolded charged recoil jet spectra over the pjet
T range of 0 - 30 GeV/c for π0 triggers and
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(a) Rjet = 0.2 (b) Rjet = 0.5

Figure 10.10: Example Rjet = 0.2 (10.10a) and 0.5 (10.10b) response matrices calculated
from the Py6⊕Geant framework. Note that the matrices used for unfolding are made with
the same binning scheme and E trg

T range as the data to be unfolded.

9 - 11 GeV 11 - 15 GeV 15 - 20 GeV
0.2 0.5 0.2 0.5 0.2 0.5

π0 trig. Raw 1.971 0.702 1.940 0.679 1.731 0.675
Corrected 2.495 1.598 2.446 1.698 2.206 1.859

γdir trig. Raw 1.835 0.728 1.975 0.727 2.025 0.609
Corrected 2.328 1.711 2.490 1.857 2.577 1.460

Table 10.1: Raw vs. corrected per-trigger Rjet = 0.2 and 0.5 charged recoil jet yields.

over the pjet
T range of 0 - 11 GeV/c for 9 - 11 GeV γdir triggers, 0 - 15 GeV/c for 11 - 15

GeV γdir triggers, and 0 - 20 GeV/c for 15 - 20 GeV γdir triggers.
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Figure 10.11: The Rjet = 0.2 (grey curve) and 0.5 (red curve) jet-matching efficiencies
from the Py6⊕Geant simulation. The bands on indicate the systematic uncertainty due to
the STAR tracking efficiency.

146



11. Calculation of Systematic Uncertainties

There are several sources of systematic uncertainty present in the measurements pre-

sented in this thesis. The primary sources are the response of the STAR TPC, the unfolding

procedure, and the hadronic subtraction applied to the γdir-triggered data. There is also an

additional uncertainty associated with the choice of fragmentation model utilized in the

simulation frameworks used to correct the data. In total, there are six sources of uncer-

tainty which are detailed below.

Tracking Efficiency: Past analyses [182] have shown that there is a maximum-extent

systematic uncertainty of roughly ±4% absolute on the tracking efficiency of the

TPC.

Tracking Resolution: As discussed in section 9.1.2, two methods were deployed in order

to estimate the tracking resolution of the TPC. The dependence of this choice can

be explored using the Py8⊕Param response.

Regularization: The choice of niter in the Bayesian unfolding algorithm is arbitrary, and

the corrected spectra may be sensitive to this choice.

Unfolding Prior: The Bayesian algorithm requires a prior to be provided in order to train

the inverse of the response matrix. Once again, the corrected data may be sensitive

to this choice.

Background Level: As detailed in section 7.3, there are systematic uncertainties between

6 and 14% relative on the measured values of B.

Fragmentation Model: Both the Py6⊕Geant and the Py8⊕Param simulations utilize a

particular choice of fragmentation model in generating events. This could bias the
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training of the response matrix, and thus the corrected data.

These six sources can be grouped into three categories based on how their associ-

ated systematic uncertainties are assessed. The Detector Systematic Uncertainties include

the uncertainties which stem from the response of the TPC, the tracking efficiency and

tracking resolution. The approach for evaluating these uncertainties is described in section

11.1.1. The Unfolding Systematic Uncertainties include the uncertainties which stem from

the unfolding procedure, the choice of regularization and unfolding prior. The approach

for evaluating these is described in section 11.1.2. The uncertainty due to the background

level B is assessed alongside the unfolding systematic uncertainties, and the approach to

evaluating it is described in section 11.1.3. This leaves only the Fragmentation Systematic

Uncertainty, which is discussed in section 11.1.4.

While the details differ, the strategy in general for evaluating the systematic uncer-

tainty associated with a particular source is to first generate a new response matrix varied

within the uncertainty of interest, and then to unfold the data with this new variant re-

sponse matrix. The uncertainty is then given by the percent difference between the data

unfolded with the variant response matrix and the data unfolded with the default response

matrix. After calculation, the systematic uncertainty is applied to data corrected with the

response matrix trained on the Py6⊕Geant sample using the default unfolding parameters.

Throughout this section, let Rembed
ij denote a response matrix trained on the Py6⊕Geant

sample, and let Rparam
ij denote a response trained on the Py8⊕Param sample.

11.1 Assessing Systematic Uncertainties

11.1.1 The TPC Response

These uncertainties arise from the response of the STAR TPC. The parameterized re-

sponse functions utilized in the fast simulation allows for the tracking pseudo-efficiency

(ϵ̃trk) and tracking resolution (∆ptrk
T ) to be varied in order to assess the sensitivity of the
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corrected data to each. To do this, five separate response matrices were created using the

fast simulation for each value of Rjet and range of E trg
T :

1. one with the default ϵ̃trk and default ∆ptrk
T (∆pdist

T ) used;

2. one with 4% absolute added to ϵ̃trk across ptrk
T but with default ∆ptrk

T used;

3. one with 4% absolute subtracted from ϵ̃trk across ptrk
T but with default ∆ptrk

T used;

4. one with default ϵ̃trk but with ∆pdiff
T used; and

5. one with default ϵ̃trk but with ∆pRun12
T used.

Here ∆pdist, diff, Run12
T respectively denote the tracking resolutions parameterized by theRdist,

Rdiff, and Run12 functions from section 9.1.2. The data were then unfolded five times,

once with each variant response.

For the sake of clarity, let Rparam
ij

[
ϵ̃trk,∆p

trk
T

]
denote the Py8⊕Param response matrix

with the tracking pseudo-efficiency ϵ̃trk and tracking resolution ∆ptrk
T applied. From hereon

the arguments of Rparam
ij will be suppressed when the default ϵ̃trk and ∆ptrk

T are used.

11.1.2 The Unfolding Procedure

These uncertainties arise from the unfolding procedure itself: the choice of niter and

the choice of prior supplied to the Bayesian algorithm. Let n∗
iter denote the default value

of niter = 4 (for Rjet = 0.2) or 3 (for 0.5) used to correct data (see 10.8 and surrounding

discussion). Then to assess the uncertainty associated with niter, the data were unfolded

twice: once with n∗
iter − 1 and once with n∗

iter + 1. In both cases, the response matrix and

prior were unchanged.

The uncertainty associated with the choice of prior poses additional complications,

however. A choice of prior that is wildly unphysical (e.g. a sine function) runs the risk of

artificially inflating the calculated uncertainty. Thus some amount of care has to be taken
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when selecting an alternate prior. For the case of Rjet = 0.2, the small jet radius means

that a single-particle spectrum is a rough but decent approximation of the jet spectra. Thus

Rjet = 0.2 jets were generated using particle-level PYTHIA 8 for the three range of E trg
T

for both π0 and γdir triggers. Then each generated spectrum was fit with a Lévy function

(an example of a Tsallis distribution) [186, 187, 188]:

L (pT) =
bpT[

1 +

√
p2T+m2−m

nt

]n . (11.1)

To further probe the space of possible priors, the parameters of these fits were adjusted

to obtain a set of alternate Lévy functions. The default parameters extracted for the fit,

(b, n, t)1, and the adjusted alternate parameters, (b′, n′, t′), are listed in table 11.1. Ul-

timately, it was found that the corrected data were largely insensitive to the fine details

of the choice of prior. Thus both the Rjet = 0.2 and 0.5 data were unfolded using vari-

ant response matrices retrained on the default and alternate Lévy functions following the

procedure of section 10.3.

Lastly, recall that the γdir-triggered data are corrected with the response matrix re-

trained on a PYTHIA 8 generated spectrum of γdir-triggered charged recoil jets. Thus,

as an additional point of comparison in evaluating the systematic uncertainty associated

with the prior, the γdir data are unfolded once using the response matrix trained on the

π0-triggered prior, and the π0 data are unfolded once using the response matrix trained on

the γdir prior in addition to the default choice of prior and the two Lévy functions.

For the sake of clarity let Rembed
ij [P ] indicate the Py6⊕Param (smoothed or raw) re-

sponse matrix trained on the prior P ∈ {π0, γdir, Ldef, Lalt}. Here π0 denotes the Py6⊕Param

π0-triggered charged recoil jet spectrum, γdir denotes the PYTHIA 8 γdir-triggered charged

1The Lévy function was previously deployed by STAR to fit single particle spectra in [188]. The pa-
rameter m was reserved for the particle mass. Here it is fixed to be roughly the mass of a pion, 0.140
GeV/c2.
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Parameter 9 - 11 GeV 11 - 15 GeV 15 - 20 GeV

π0 γdir π0 γdir π0 γdir

b 3.3 0.7 2.8 0.7 2.4 1.8
b′ 3.3 0.7 2.8 0.7 2.4 1.8

n 4.6 11.8 4.3 8.1 3.8 4.5
n′ 6.1 25.8 7.2 15.1 6.4 8.5

t 0.4 0.8 0.4 0.8 0.5 0.5
t′ 0.5 1.1 0.7 1.1 0.8 0.8

Table 11.1: Lévy function parameters extracted fits to simulated Rjet = 0.2 charged recoil
jets, (b, n, t), and adjusted parameters, (b′, n′, t′).

recoil jet spectrum, Ldef denotes the default Lévy function, and Lalt denotes the alternate

Lévy function. From hereon, the arguments of Rembed
ij will be suppressed when using the

default choice of prior.

11.1.3 The Hadronic Subtraction Scheme

The γrich-triggered data have an additional source of systematic uncertainty: the value

of the measured background level B used in the hadronic subtraction applied to obtain

γdir-triggered spectra listed in table 7.3. The uncertainty associated with the choice of B

is evaluated in parallel with the uncertainties stemming from the unfolding procedure. For

each value of niter and choice of prior, the γdir data are unfolded twice: once where the

value used to perform the hadronic subtraction is B − δB, where δB is the uncertainty on

the background level, and once where the value used to perform the hadronic subtraction is

B+ δB. The combination of B± δB with the default niter is included in the Regularization

Parameter category.
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11.1.4 The Fragmentation Model

The impact of the choice of fragmentation model on the corrected data has yet to be

assessed and will not be included in the results presented here. A study is planned and

will be carried out in the near future wherein a fast simulation similar to the Py8⊕Param

simulation described in section 9.2 will be created, except HERWIG 7 [189, 190] rather

than PYTHIA 8 will serve as the event generator.

In PYTHIA 8, fragmentation is handled according to the Lund String Model [54]. This

model is inspired by the effective string picture of QCD at high coupling strength: a color

string, the color flux tubes of sections 2.1.2, will connect a produced qq̄ pair. This string

will then snap into pairs of massless (anti-) quarks according to a certain probability. Then

hadronization occurs via a simple phenomenological rule assigning (anti-) quark pairs and

triplets to meson and baryon states respectively.

In HERWIG, however, fragmentation occurs via the fragmentation model of B. R.

Webber [191]. This model simulates hadronization by grouping partons into color-singlet

clusters and then allowing them to decay to hadrons according to a simple phase-space

model.

Just like with the Py8⊕Param simulation, events will be generated using HERWIG

and detector effects will be applied post-hoc via the calculated ϵ̃trk and ∆ptrk
T . A response

matrix will then be calculated using this new simulation, Herwig⊕Param, and the data will

be unfolded using this new response matrix.

11.2 Calculation of Systematic Uncertainties

In total, for each range of E trg
T and value of Rjet there are 9 π0-triggered systematic

variations and 17 γdir-triggered systematic variations. These are listed in table 11.2. In

every variation, only the Bayesian unfolding algorithm is used.

Let Dvar
pp,ijkl denote the corrected per-trigger yield of charged recoil jets with unfolded
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Category Source Reg. Resp. Bkgd. Notes

Detector Sys. Baseline n∗
iter Rparam

ij B
Track Eff. n∗

iter Rparam
ij

[
ϵ̃trk + 4%,∆ptrk

T

]
B

n∗
iter Rparam

ij

[
ϵ̃trk − 4%,∆ptrk

T

]
B

Track Res. n∗
iter Rparam

ij

[
ϵ̃trk,∆p

diff
T

]
B

n∗
iter Rparam

ij

[
ϵ̃trk,∆p

Run12
T

]
B

Unfolding Sys. Default n∗
iter Rembed

ij B
Regularization n∗

iter + 1 Rembed
ij B ± δB

n∗
iter − 1 Rembed

ij B ± δB
n∗

iter Rembed
ij B ± δB γdir only

Prior n∗
iter Rembed

ij [Ldef] B ± δB
n∗

iter Rembed
ij [Lalt] B ± δB

n∗
iter Rembed

ij [γdir] π0 only
n∗

iter Rembed
ij [π0] B ± δB γdir only

Table 11.2: Systematic variations used in calculating the systematic uncertainty.

jet transverse momentum falling in the ith bin of punfold
T of the lth systematic variation of

unfolding parameters for the kth uncertainty source of the j th category of systematic un-

certainties. Then let D⋆
pp,ij indicate the same quantity but for the default choice of unfold-

ing parameters for the j th category of systematic uncertainties. For unfolding systematic

uncertainties, this is the "Default" line in table 11.2. For the detector systematic uncer-

tainties, the tracking resolution variations were compared against the data unfolded using

the combination of parameters listed in the "Baseline" line in table 11.2, and the tracking

efficiency variations were compared against the average of the variations. This is to make

sure that the uncertainty assigned to the tracking efficiency was not overestimated. Lastly,

let σsys,ij = {σunfold
sys,i , σ

unfold
sys,i } denote the systematic uncertainty for the j th category of sys-

tematic uncertainty assigned to the ith bin of punfold
T . Then the systematic uncertainties are

calculated according to algorithm 8.
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Algorithm 8 The systematic uncertainty calculation.

1: for each bin i of punfold
T , do

2: for each category j of systematic uncertainty, do

3: for each source of uncertainty k within the category, do

4: for each variation l within the category, do

5: Calculate the difference in per-trigger yields between the variation

and default unfolding parameters δsys
ijkl:

δsys
ijk = |Dvar

pp,ijkl −D⋆
pp,ij|

6: end for

7: Take the maximum of δsys
ijkl to be the systematic uncertainty ςsys,ijk

assigned to source k:

ςsys,ijk = Max{δsys
ijkl}

8: end for

9: Sum the uncertainties assigned to each source in quadrature to obtain the

systematic uncertainty assigned to category j:

σsys,ij =
⊕

k ςsys,ijk

10: end for

11: end for

Algorithm 8 produces a systematic uncertainty as a function of punfold
T for each category:

the unfolding systematic uncertainty σunfold
sys and the detector systematic uncertainty σdet

sys.

Figures 11.1 and 11.2 show representative unfolding and detector systematic variations

compared against their baselines (upper panels) and the ratio of the variations over the

baselines (lower panels). The assigned systematic uncertainties of each category are shown
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(a) γdir, Rjet = 0.2 (b) π0, Rjet = 0.5

Figure 11.1: Example unfolding systematic variations forRjet = 0.2 (11.1a) andRjet = 0.5
(11.1b). See text for details. Variations visualized without uncertainties.

as solid bands in the lower panels, where the different colors indicate the total accumulated

uncertainty as each source is considered. For instance, the darker bands in figure 11.1

show the assigned regularization systematic uncertainty while the lighter bands show the

assigned regularization and prior uncertainties added in quadrature. Similar plots for all

combinations of trigger species, E trg
T and Rjet can be found in appendix D.

Ultimately, the n∗
iter + 1 and n∗

iter with background values of B + δB variations for

the Rjet = 0.2 11 - 15 GeV γdir data were excluded from the calculation of σunfold
sys . These

unfolding solutions produced by these two combinations of unfolded parameters were

found to produce poor χ2/ndf values between the raw data and backfolded solutions and

to have unreasonably large unfolding uncertainties. This indicates that the unfolding did

not converge, and so were not counted towards the total σunfold
sys .

Furthermore, the γdir prior variation was excluded from the calculation of the π0 σunfold
sys
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(a) π0, Rjet = 0.2 (b) γdir, Rjet = 0.5

Figure 11.2: Example detector systematic variations for Rjet = 0.2 (11.2a) and Rjet = 0.5
(11.2b). See text for details. Variations visualized without uncertainties.

for all E trg
T and Rjet. This was done to prevent this variation from artificially inflating the

uncertainty at high punfold
T where the variation tends to zero yield due to the kinematic reach

of the γdir-triggered prior. As punfold
T decreases, though, the γdir variation quickly converges

to the other variations.

Both π0 Lévy variations end up beneath the default unfolding solution for all combi-

nations of E trg
T and Rjet. This would suggest an asymmetric uncertainty should be assigned

to the choice of prior when taken by themselves. However, the γdir prior results in an

unfolding variation which tends quite strongly in the opposite direction from both Lévy

variations, thereby demonstrating that there do exist possible priors which would result in

opposite behavior from the Lévy variations. Thus, the assignation of a symmetric uncer-

tainty due to the choice of prior is justified.

With both σunfold
sys and σdet

sys calculated, the two are ultimately added in quadrature. How-
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ever, the σunfold
sys was first smoothed such that it only increases monotonically, the rationale

being that there was no a priori reason why σunfold
sys should fluctuate bin-to-bin. Moreover,

by smoothing, σunfold
sys will only ever increase with increasing punfold

T . Thus, the smoothed

uncertainties represent a more conservative estimate of σunfold
sys .

The σdet
sys, on the other hand, was not smoothed before being added in quadrature. This

was done in light of the shape of the unfolded spectra: to varying degrees, each spectrum

exhibits a plateau at mid pT between the soft region where background dominates and the

hard region where signal dominates. This plateau forms a "saddle point" of sorts where the

jets are less likely to lose or gain energy due to the detector response. The local minimum

in σdet
sys can be seen in figure 11.2 and in the other data shown in appendix D.

Note that the hadronic background subtraction applied to the γrich-triggered data im-

plies that the subtracted per-trigger yields go to zero for preco
T & E trg

T due to momentum

conservation. Since γdir at LO are produced with zero NS yield, i.e. not as part of a jet, the

γdir carries the full energy of the recoiling parton. This means that any jet recoiling from

a γrich trigger with preco
T > E trg

T are generally part of the hadronic background and will be

subtracted. As B is varied to assess the systematic uncertainty of this subtraction, the point

where the subtracted yields go to zero will also vary.

This leads to rapidly expanding systematic uncertainties as pjet
T approaches the upper

limit of the E trg
T range. This effect can be seen in figures D.3 and D.4, and in table 11.4.

Tables 11.3 and 11.4 list the largest systematic uncertainty (rounded up to the nearest

percent) for a given category over certain ranges of pjet
T . The large unfolding systematic

uncertainties of the γdir-triggered data are driven by the aforementioned effect. Note that

the listed cumulative uncertainty are the quadrature-sums of each contribution.
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Table 11.3: Systematic uncertainties for π0-triggered data. See text for details.

E trg
T Rjet pjet

T Systematic uncertainty (%)

[GeV] [GeV] TPC Response Unfolding Fragmentation Cumulative

[9, 11]

0.2

[0, 5] 7 1 - 7
[5, 10] 7 2 - 7

[10, 15] 9 2 - 10
[15, 20] 12 4 - 13
[20, 25] 10 22 - 25
[25, 30] 14 22 - 27

0.5

[0, 5] 6 4 - 8
[5, 10] 6 4 - 8

[10, 15] 10 4 - 11
[15, 20] 14 7 - 16
[20, 25] 15 20 - 25
[25, 30] 11 54 - 56

[11, 15]

0.2

[0, 5] 6 1 - 7
[5, 10] 7 1 - 8

[10, 15] 8 2 - 9
[15, 20] 10 3 - 11
[20, 25] 12 20 - 24
[25, 30] 10 57 - 58

0.5

[0, 5] 7 5 - 9
[5, 10] 5 5 - 8

[10, 15] 9 5 - 11
[15, 20] 11 9 - 15
[20, 25] 14 14 - 20
[25, 30] 16 40 - 44

[15, 20]

0.2

[0, 5] 7 1 - 8
[5, 10] 6 2 - 7

[10, 15] 7 4 - 9
[15, 20] 12 10 - 16
[20, 25] 2 48 - 49
[25, 30] 10 50 - 51

0.5

[0, 5] 7 4 - 9
[5, 10] 7 9 - 12

[10, 15] 9 9 - 13
[15, 20] 8 16 - 18
[20, 25] 8 22 - 24
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Table 11.3 Continued: Systematic uncertainties for π0-triggered data. See text for details.

E trg
T Rjet pjet

T Systematic uncertainty (%)

[GeV] [GeV] TPC Response Unfolding Fragmentation Cumulative

[25, 30] 13 53 - 55

Table 11.4: Systematic uncertainties for γdir-triggered data. See text for details.

E trg
T Rjet pjet

T Systematic uncertainty (%)

[GeV] [GeV] TPC Response Unfolding Fragmentation Cumulative

[9, 11]
0.2

[0, 5] 7 6 - 10
[5, 10] 11 80 - 81

0.5
[0, 5] 6 6 - 9

[5, 10] 14 82 - 84

[11, 15]

0.2
[0, 5] 6 1 - 7

[5, 10] 9 21 - 23
[10, 15] 17 90 - 92

0.5
[0, 5] 6 6 - 9

[5, 10] 7 8 - 11
[10,15] 12 20 - 24

[15, 20]

0.2

[0, 5] 4 7 - 9
[5, 10] 3 13 - 14

[10, 15] 2 16 - 17
[15, 20] 8 20 - 22

0.5

[0, 5] 7 11 - 14
[5, 10] 4 12 - 13

[10, 15] 3 16 - 17
[15, 20] 2 16 - 17
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11.3 Closure Tests

With the measured recoil jets fully corrected and the size of the systematic uncertain-

ties assessed, all that remains is to validate the applied correction scheme. This is done

via a closure test wherein the simulation sample used to train the response matrix and

jet-matching efficiency used to correct the data is divided in half: one half is reserved to

train the response (this is the training sample), and this response is then used to correct the

detector-level of the other half (the validation sample) back to the particle-level. Since the

FF and RFF sub-samples of the Embedding Sample used in this analysis contain roughly

equal statistics, they were used to carry out the closure test. The test was carried out twice:

one with the RFF sub-sample serving as the training sample and the FF sub-sample serving

as the validation sample, and once with the roles reversed.

The criteria for successful closure here is taken to be that any unfolding solution from

the validation sample using any one of the combination of unfolding parameters from

table 11.2 associated with the π0-triggered unfolding systematic uncertainties (excluding

the Rembed
ij [γdir] variation) should agree with the validation sample’s particle-level recoil

jet distribution within the statistical and systematic precision of the data.

The first step of the test was to account for the difference in statistics between the

Py6⊕Geant sample and the data. Since the Py6⊕Geant sample was generated in bins

of p̂T , it contains substantially more statistics than do the data at high E trg
T even after

dividing it into the FF and RFF sub-samples (c.f. tables 8.3 and 9.2). Consequently,

before any unfolding was carried out, the particle- and detector-level recoil jet distributions

of the validation sample were modified to match the corresponding distributions in data.

Let ∆ηjet = 2 (1−Rjet) indicate the width of the jet acceptance window in η, then the

algorithm for this process is described in Algorithm 9.
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(a) 9 - 11 GeV (b) 11 - 15 GeV (c) 15 - 20 GeV

Figure 11.3: Rjet = 0.2 FF closure test for 9 - 11 (11.3a), 11 - 15 (11.3b), and 15 - 20 GeV
(11.3c) π0 triggers. See text for details.

Algorithm 9 The algorithm for modifying the statistics of a provided recoil jet dis-

tribution. It requires two inputs: the number of measured triggers (Nmeas
trg ) to match,

and the simulated jet distribution S.

1: for each preco
T bin i in S, do

2: Let the per-trigger yield of simulated jets in bin i be Din
sim and the bin width

be ∆preco
T

3: Compute the mean of a Poisson distribution µ:

µ = Nmeas
trg Din

sim∆p
reco
T ∆ηjet

4: The new number of recoil jets in bin i is sampled from the Poisson distribution

with mean µ:

N out
jet = Poisson (µ)

5: Then the new per-trigger yield in bin i is:

Dout
sim = N out

jet /
(
∆pjet

T ∆ηjet
)

6: And its uncertainty is:
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σ =
√
µ

7: end for

8: Normalize S by the number of measured triggers, Nmeas
trg .

(a) 9 - 11 GeV (b) 11 - 15 GeV (c) 15 - 20 GeV

Figure 11.4: Rjet = 0.5 FF closure test for 9 - 11 (11.4a), 11 - 15 (11.4b), and 15 - 20 GeV
(11.4c) π0 triggers. See text for details.

Lastly, the modified detector-level recoil jet distributions were unfolded five times,

once with each of the five combinations of unfolding parameters corresponding to the

unfolding systematic variations (niter and unfolding prior) listed in table 11.2. To aid in

visualization, the five unfolding variations are averaged together. Figures 11.3 and 11.4

show the averages of the FF unfolding variations (dashed lines) compared against the

modified FF particle-level recoil jet spectra (black stars) forRjet = 0.2 and 0.5 respectively.

The unfolding systematic uncertainty of the measured data is visualized as solid boxes, and

the hollow band on the averages of the FF unfolding variations indicates the maximum

deviation of the variations from the average.
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For Rjet = 0.2, the unfolded modified detector-level FF recoil jet distributions were

generally found to agree with the modified particle-level FF recoil jet distributions within

the statistical and systematic precision of the data. For RJet = 0.5, the unfolded modified

detector-level FF recoil jet distributions were found to agree with the modified particle-

level FF recoil jet distributions within the desired precision only for punfold
T & 3 GeV/c.

Beneath this, substantial non-closure was observed. This non-closure will be further in-

vestigated in an upcoming publication.

This process was then repeated using the FF sub-sample as the training sample and the

RFF sub-sample as the validation sample, the results of which may be seen in appendix E.

Similar levels of agreement were found for this test as well. This validates the correction

scheme deployed in this analysis.

It should be noted here that the detector systematic uncertainty of the data and the

combinations of unfolding parameters associated with the detector systematic uncertainty

were excluded here. This is because in the embedding sample, both the tracking efficiency

and resolution are known exactly, and so they will be applied and corrected for in the

process of moving from particle- to detector-level through the embedding process and

back through the unfolding process. Hence they are not relevant for the closure test.
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12. The Trigger Energy Scale and Resolution

Chapters 9 to 11 grappled with assessing the impact the physical limitations of STAR

have on the measured charged recoil jet spectra. These chapters dealt with determining the

Jet Energy Scale (JES) and Jet Eenergy Resolution (JER) of the measurement. The JES

quantifies an overall shift in jet energy induced by detector effects, and the JER quantifies

the precision with which jet energies are reconstructed.

However, jets are not only objects that are affected by detector effects. The π0 and γdir

which serve as triggers in this analysis are also subject to a reconstruction efficiency and

finite energy resolution. The measured energy distribution of π0 and γdir will be distorted

by these effects: there is a Trigger Energy Scale (TES) and Trigger Energy Resolution

(TER). Hence, before the measured jets can be compared against theory, both the JES and

JER and the TES and TER must be accounted for.

In order to assess the TES and TER, a separate fast simulation was constructed to

simulate individual π0 and γ as they pass through STAR. This will be described in section

12.1, section 12.2 will describe how these quantities are calculated, and section 12.3 will

describe how the TES and TER are accounted for in the comparison of data and theory.

12.1 Simulation Overview

The simulation framework utilized here consists of single π0 and γ passing through a

Geant3 simulation of STAR. The geometry, detector response, and software options used

are identical to those used in the Run9 Dijet Embedding Sample in order to compare with

that simulation and the analyzed data.

Each "event" in the simulation consists of either 28 π0 or 118 γ with a flat ET distri-

bution thrown at random on an (η, φ) grid with spacing of either agrid =0.6 radians (12

BEMC tower lengths), in the case of the π0, or 0.3 radians, in the case of the γ. The
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larger grid spacing in the case of the π0 is to ensure that a decay γ from one π0 isn’t cor-

related with one from another. The sample of π0 and γ are generated such that there are

no events containing both π0 and γ, and generating multiple particles per event improves

computational efficiency.

The particular numbers of π0 and γ simulated per event corresponds to the maximum

number of π0 or γ grid sites that can be fit into the acceptance of the STAR BEMC with

two sites reserved for two soft π±. These π± ensure that a TPC response is generated,

which is required for the code that implements the clusterizing algorithm described in

chapter 7 to work. They are purely technical, and are not analyzed here.

As this simulation consists of single particles being processed by a Geant simulation

of STAR, this simulation framework shall be referred to as Particle⊕Geant.

12.2 Calculation of the Trigger Energy Scale and Resolution

After generating the sample of π0 and γ, for each particle species there will be a

list of events E = {ei} each with a list of EMC clusters Ci = {cij} with 3-momentum

(Ereco
T , ηreco, φreco) and a list of generated particles Pi = {pij} with 3-momentum

(
Esim

T , ηsim, φsim
)
.

Similar to the detector-level jets in the Py6⊕Geant sample, the EMC clusters can only

be matched geometrically in (η, φ) space to the simulated particles. Finally, let ∆η =

ηreco − ηsim and ∆φ = φreco − φsim. Then the algorithm for matching reconstructed EMC

clusters (trigger candidates) to their simulated counterparts is described in algorithm 10.

Algorithm 10 The algorithm for matching BEMC clusters to simulated π0 or γ in

the Particle⊕Geant framework.

1: for each event ei ∈ E , do

1: for each EMC cluster cij ∈ Ci, do

2: if cij does not satisfy the criteria listed in table 8.2, continue
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3: for each particle pik ∈ Pi, do

4: if pik does not satisfy the criteria listed in table 9.3 excluding the AS

criterion, continue

5: Calculate the displacement in (η, φ) and energy fraction qtrg
T :

∆r =
√
∆φ2 +∆η2,

qtrg
T = Ereco

T /Esim
T .

6: if ∆r < ∆Rmatch, then

7: pik and cij are a match, so add the pair (pik, cij) to the list of matched

particles and EMC clusters M and remove them from Ci and Pi.

8: Fill relevant histograms.

9: break

10: end if

11: end for

12: end for

13: end for

Note that ∆Rmatch is a free parameter to be specified in the algorithm. For this analysis,

∆Rmatch was set to be 6
√
2 · atwr

1 (≈ 0.41 rad.) for π0 and 3
√
2 · atower (≈ 0.21 rad.) for γ

respectively. These values correspond to the hypotenuse of a right triangle with base and

height of 2 1/2 (1 1/2) towers.

Since the particles were simulated with a flat ET distribution, they will need to be

weighted to a physical ET distribution post-hoc. Thus all particle-level quantities are

weighted according to their Esim
T by a power law fit to a single particle distribution (π0 or

γdir) from PYTHIA 8.185 shown in figure 12.1, and all cluster-level quantities are weighted
1Here atwr is the side-length of one BEMC tower, 0.05 radians.
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Figure 12.1: Power law fits to single particle π0 and γdir E
trg
T distributions from PYTHIA

8 which are used to reweight relevant distributions from the Particle⊕Geant framework.

by the same function according to the Esim
T of their matched particle. Quantities associated

with clusters before matching are not reweighted.

TheET distribution at various stages of the calculation - the input particle spectrum, the

spectrum of EMC clusters matched to particles, and the corresponding matched particle

spectrum - after weighting can be seen in figure 12.2. Furthermore, after matching each

EMC cluster to a particle (and reweighting accordingly), the TES and TER are encoded

in the quantity qtrg
T = Ereco

T /Esim
T , the ratio of reconstructed transverse energy in the EMC

cluster to the transverse energy of its match, shown in figure 12.3. The TES and TER are

extracted from qtrg
T by fitting a gaussian to the peak of the distribution: the TES corresponds

to the mean µ of the fit, and the TER corresponds to the width σ of the fit. Table 12.1 lists

the calculated TES and TER as a function of Ereco
T .
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(a) π0 (b) γ

Figure 12.2: Ereco
T and Esim

T distributions of matched particle-cluster pairs vs. the input
simulated ET spectrum of π0 (12.2a) and γ (12.2b).

Ereco
T [GeV] π0 γ

TES TER TES TER

9 - 11 92.4± 0.2 9.1± 0.1 97.97± 0.05 8.12± 0.03
11 - 15 94.4± 0.2 8.4± 0.1 97.77± 0.03 7.83± 0.02
15 - 20 96.9± 0.3 8.0± 0.2 97.74± 0.03 7.56± 0.02

Table 12.1: Calculated TES and TER values and their uncertainties as a function of Ereco
T

expressed as percentages.

Moreover, by comparing the unweighted input ET distribution to the output recon-

structed ET (also unweighted) from the clusterizer algorithm, one can obtain an estimate

of the efficiency of the clusterizer algorithm used here. The overall efficiency of the trig-

ger selection of this analysis can be obtained by comparing the input ET distribution to the

reconstructed ET after clusterizing and after applying all the trigger QA criteria. These
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(a) π0 (b) γ

Figure 12.3: Calculated qtrg
T of matched particle-cluster pairs of π0 (12.3a) and γ (12.3b)

as a function of Ereco
T . The peak of each distribution is fit with a gaussian (solid lines) to

extract the TES (µ) and TER (σ).

can be seen in figures 12.4 and 12.5 respectively. Note that in figure 12.4, the simulated

π0 and γ were thrown with Esim
T ∈ (9, 20) GeV.

12.3 Accounting for the Trigger Energy Scale and Resolution

As the TES is not one and the TER is nonzero, they must be accounted for when

comparing unfolded data against particle-level simulation (e.g. PYTHIA 8 or PYTHIA

6). This is accomplished by first approximating the underlying sampled ET distribution

of the measured data by "back-smearing" them, i.e. by convoluting the measured ET

distributions with the reciprocal of the calculated qtrg
T distributions. Then, the simulation

will be weighted such that its ET distributions match the back-smeared data.

In order to quantify the TES and TER, the central peak of qtrg
T distribution, Qtrg

T is
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(a) Esim
T vs. Ereco

T (b) Ratio of Ereco
T to Esim

T

Figure 12.4: Unweighted input Esim
T vs. unweighted output of the clusterizing algorithm

(12.4a), and their ratio (12.4b).

fit with a gaussian to extract its mean and width. However, there are substantial tails

extending beyond the central peak of Qtrg
T . To assess the extent to which these tails play

a role in smearing the ET of a π0 or γ, the simulated E trg
T distributions will be convoluted

with Qtrg
T twice: once with only the fit to the primary peak, labeled Qfit

T , and once with the

whole distribution, labeled Qdist
T .

To validate the TES and TER calculation, the reciprocal ofQfit
T andQdist

T are first convo-

luted with the output of the Particle⊕Geant framework – the reconstructedET distributions

of the simulated π0 and γ, labeled Ereco
T

[
∆E trg

T |π0, γ
]

(where ∆E trg
T indicates the bin of

measured E trg
T ) – to yield the distributions Ẽreco

TF,D

[
∆E trg

T |π0, γ
]
, where the subscripts F and

D indicate whether Ereco
T was convoluted with the either the fit to or the whole distribution

of Qtrg
T :
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(a) Esim
T vs. Ereco

T (b) Ratio of Ereco
T to Esim

T

Figure 12.5: Weighted input Esim
T versus unweighted reconstructed ET after clusterizing

and applying trigger QA criteria (12.5a), and their ratio (12.5b), an estimate of the effi-
ciency of the trigger selection of this analysis.

Ẽreco
TF

[
∆E trg

T |π0, γ
]
= Ereco

T ◦ 1

Qfit
T

[
∆E trg

T |π0, γ
]

Ẽreco
TD

[
∆E trg

T |π0, γ
]
= Ereco

T ◦ 1

Qdist
T

[
∆E trg

T |π0, γ
] (12.1)

These back-smeared distributions are then compared against theET distributions of the

simulated π0 and γ matched to reconstructed BEMC clusters, Ematch
T

[
∆E trg

T |π0, γ
]
. The

distributions Ereco
T , Ẽreco

T , and Ematch
T are shown in figure 12.6.

By back-smearing Ereco
T with Qfit

T , the peaks of the Ematch
T distributions are successfully

recovered in Ẽreco
T . Furthermore, back-smearing Ereco

T with Qdist
T , the entire Ematch

T distribu-

tions are successfully recovered, thus validating the TES and TER calculation. Now the

weights to be applied to the simulation may be calculated with confidence.

The measured data, labeled Emeas
T

[
∆E trg

T |π0, γrich
]
, are back-smeared by convoluting
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(a) π0 (b) γ

Figure 12.6: Ereco
T , Ẽreco

T , and Ematch
T distributions of simulated π0 (12.6a) and γ (12.6b)

from the Particle⊕Geant framework.

Emeas
T with the reciprocal of Qfit

T and Qdist
T . When normalized to unity, Ẽmeas

T may be inter-

preted as the probability that a π0 or γrich reconstructed by STAR with transverse energy

in the range ∆E trg
T came from a π0 or γdir with transverse energy Ẽmeas

T . The back-smeared

data, labeled Ẽmeas
TF and Ẽmeas

TD respectively, can be seen in figure 12.7.

In order to compare the fully-corrected data to simulation, the simulated recoil jet dis-

tributions are reweighted such that the E trg
T distributions of their correlated triggers match

Ẽ trg
T . There are two simulation samples which will be compared against the fully corrected

data: a sample of "out-of-the-box" PYTHIA 8.185 – i.e. using the Monash Tune described

in chapter 9.2 – and a sample of PYTHIA 6.42 tuned to STAR data. These two samples

will be labeled Py8 and Py6⋆ respectively. The trigger ET distribution (EPy8
T ) extends

down to 9 GeV. While in Py6⋆, the trigger ET distribution (EPy6⋆
T ) extends down to 7 GeV

172



(for γ triggers) and 6 GeV (for π0 triggers).

In calculating the weights to be applied to Py8 and Py6⋆, no cut on ET will be applied

to either simulation. First, the distributions Ẽmeas
TF , EPy8

T , and EPy6⋆
T are normalized to unity.

Then the weights are given by taking the ratio of Ẽmeas
TF,D and EPy8,Py6⋆

T :

∆Py8,Py6⋆
F,D

[
∆E trg

T |π0, γ
]
=
Ẽmeas

TF,D

[
∆E trg

T |π0, γ
]

EPy8,Py6⋆
T [π0, γ]

(12.2)

where ∆Py8,Py6⋆
F,D are the weights corresponding to the data back-smeared with Qfit

T and Qdist
T

respectively. In total, there are twenty-four sets of weights corresponding to the three bins

of measured E trg
T , the two trigger species, the two simulation samples, and the two choices

of qtrg
T distributions for convolution. Figure 12.7 shows Ẽmeas

TF versus EPy8
T and EPy6⋆

T , and

figure 12.8 the corresponding sets of weights.
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(a) EPy8
T

[
π0
]

vs. Ẽmeas
TF,D

[
∆E

trg
T |π0

]
(b) EPy6⋆

T

[
π0
]

vs. Ẽmeas
TF,D

[
∆E

trg
T |π0

]

(c) EPy8
T [γ] vs. Ẽmeas

TF,D
[
∆E

trg
T |γdir

]
(d) EPy6⋆

T [γ] vs. Ẽmeas
TF,D

[
∆E

trg
T |γdir

]
Figure 12.7: Py8 (12.7a, 12.7c) and Py6⋆ (12.7b, 12.7d) π0 (12.7a, 12.7b) and γ (12.7c,
12.7d) E trg

T distributions compared against back-smeared data.
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(a) ∆Py8
F,D

[
∆E

trg
T |π0

]
(b) ∆Py6⋆

F,D

[
∆E

trg
T |π0

]

(c) ∆Py8
F,D

[
∆E

trg
T |γ

]
(d) ∆Py6⋆

F,D

[
∆E

trg
T |γ

]
Figure 12.8: The weights ∆Py8,Py6⋆

F,D which map the Py8 (12.8a, 12.8c) and Py6⋆ (12.8b,
12.8d) π0 (12.8a, 12.8b) and γ (12.8c, 12.8d) E trg

T distributions onto the back-smeared
data.
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13. Results and Summary

13.1 Comparison to Fully Corrected Data

(a) π0 (b) γdir

Figure 13.1: Weighted vs. unweighted PYTHIA 8.185 9 - 11 GeV π0- (13.1a) and γ-
triggered (13.1b) recoil jet pT distributions. Weighted distributions visualized without
uncertainties.

Once the weights ∆Py8
F,D and ∆Py6⋆

F,D have been calculated, they may be applied to the

relevant PYTHIA π0- and γdir-triggered charged recoil jet distributions. For the sake of

illustration, only Py8 will be discussed here and compared against the fully corrected

data. The comparison between the fully corrected data and Py6⋆ will be reserved for an

upcoming publication.

As the range of Ẽmeas
T extends well past the small bins of Emeas

T used to select triggers
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(9 - 11, 11 - 15, and 15 - 20 GeV), the selected Py8 π0 and γdir triggers are allowed to

have any transverse energy. Figure 13.1 shows the weighted 9 - 11 GeV Py8 distributions

compared against the corresponding unweighted π0- and γdir-triggered Py8 charged recoil

jet distributions. The triggers of the unweighted spectra were required to have a transverse

energy falling within the corresponding bin of measured transverse energy, e.g. 9 - 11

GeV.

(a) Rjet = 0.2 (b) Rjet = 0.5

Figure 13.2: Fully correctedRjet = 0.2 (13.2a) and 0.5 (13.2b) data vs. weighted PYTHIA
8.185 recoil jet spectra. The bars and shaded bands respectively indicate the statistical and
systematic uncertainty of the measured data.

Figure 13.2 shows the corrected data compared against the weighted Py8 recoil jet

spectra. To account for the wide pjet
T , the data and weighted PYTHIA are plotted at their

barycenters rather than at their bin centers. The barycenters of the bins were determined

according to the algorithm presented in [192]. Agreement is observed between the cor-
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rected data and weighted Py8 spectra for 9 - 11 and 11 - 15 GeV π0 and γdir triggers and

for the 15 - 20 GeV γdir trigger. However, there is a surprising differences between the

weighted simulation and the corrected 15 - 20 GeV π0 data. Both the Rjet = 0.2 and 0.5

15 - 20 GeV π0 data are systematically lower than the weighted Py8 spectra. This could be

due to the Particle⊕Geant simulation not accurately simulating the TSP for 15 - 20 GeV

π0: these π0 have a small opening angle, and so have on average larger TSP values than

the lower energy π0. It could be that this effect has not been reproduced in the simulation.

If so, this would have a large impact on the 15 - 20 GeV weighted Py8 spectra, and so

warrants further investigation.

13.2 Summary

The per-trigger yield of charged recoil jets opposite π0 and γdir triggers were mea-

sured with high precision to furnish a vacuum fragmentation reference for a forthcom-

ing measurement of IAA of π0- and γdir-triggered charged recoil jets. These per-trigger

yields were corrected using a regularized unfolding procedure carried out at the level of

ensemble-averaged distributions as described in chapter 10. This enabled a semi-inclusive

measurement of charged recoil jets over a broad range of jet transverse momentum with

well-controlled uncertainties.

The energy scale and resolution of the π0 and γdir triggers were assessed using a simu-

lation of the STAR electromagnetic calorimeter. The simulation determined that using the

π0 and γdir identification techniques described in chapter 7, STAR is able to on average

reconstruct roughly 97% of the energy of a γdir and between 92% to 96% of the energy of

a π0. Weights were calculated which enabled the comparison of the fully corrected data

to π0- and γdir-triggered recoil jet distributions generated by Py8 while accounting for the

effects of the finite trigger energy scale and resolution in the measured data. The weighted

Py8 semi-inclusive charged recoil jet distributions were found to agree with the fully cor-
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rected 9 - 11 and 11 - 15 GeV π0-triggered data and the γdir-triggered data. However, there

are currently substantial differences between the fully corrected 15 - 20 GeV π0 data and

the weighted PYTHIA spectra, and will be the subject of further studies.

In summary, the measured data will be a valuable vacuum fragmentation baseline for

the corresponding measurement of charged recoil jet per-trigger yields in AuAu-collisions

and for the measurement of IAA for π0- and γdir-triggered charged recoil jets. Moreover, it

would be interesting to compare the fully corrected data against NLO calculations.
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APPENDIX A

DATA PRODUCTION DETAILS AND BAD RUN/TOWER LISTS

As stated, the analysis presented in this thesis makes use of data (pp-collisions) recorded

by STAR during the running year 2009 (Run9). Specifically, this analysis makes use of

data from the P11id MuDSTs for the L2gamma trigger (the st_gamma stream). The

relevant query for the STAR file catalog is:

get_file_list.pl -keys node,path,filename -cond

trgsetupname=commission2009_200Gev_Hi||

production2009_200GeV_Hi||

production2009_200GeV_noendcap||

production2009_200GeV_Single||

tof_production2009_single, production=P11id,

filetype=daq_reco_MuDst,filename~st_gamma,

storage!=HPSS -limit 0

Furthermore, L2gamma events from this data-set which were recorded during any of

the runs whose IDs are listed below were excluded from this analysis:

10114082, 10120093, 10159043, 10166054, 10126064, 10128094, 10128102,

10131009, 10131075, 10131087, 10132004, 10135072, 10136036, 10138049,

10140005, 10140011, 10142012, 10142035, 10142093, 10144038, 10144074,

10149008, 10150005, 10151001, 10152010, 10156090, 10157015, 10157053,

10158047, 10160006, 10161006, 10161016, 10161024, 10162007, 10165027,
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10165077, 10166024, 10169033, 10170011, 10170029, 10170047, 10171011,

10172054, 10172059, 10172077

These runs were excluded based on six event-wise observables:

• the average pseudorapidity of all accepted primary tracks;

• the average azimuthal angle of all accepted primary tracks;

• the average number of interaction vertices;

• the average reference-multiplicity, the number of global tracks with η ∈ (−0.5, 0.5);

• the average total energy in the BEMC;

• and the average z-component of the primary interaction vertex.

The runs excluded are outliers in one or more of these observables. The same criteria was

applied to identify bad runs in the AuAu data, and is the same list of bad runs used in [9].

And lastly, any L2gamma event from this data-set whose associated trigger cluster

contains one of the towers whose IDs are listed below is also excluded from this analysis:

34, 106, 113, 160, 266, 267, 275, 280, 282, 286, 287, 293, 410, 504, 533, 541,

555, 561, 562, 594, 615, 616, 629, 633, 637, 638, 647, 650, 653, 657, 671,

673, 743, 789, 790, 791, 792, 806, 809, 810, 811, 812, 813, 814, 821, 822,

823, 824, 829, 830, 831, 832, 837, 841, 842, 843, 844, 846, 849, 850, 851,

852, 857, 875, 897, 899, 903, 939, 953, 954, 956, 993, 1026, 1046, 1048,

1080, 1081, 1100, 1125, 1130, 1132, 1180, 1197, 1198, 1199, 1200, 1207,

1217, 1218, 1219, 1220, 1221, 1222, 1223, 1224, 1237, 1238, 1240, 1241,

1242, 1243, 1244, 1257, 1258, 1259, 1260, 1312, 1348, 1353, 1354, 1388,

1407, 1409, 1434, 1448, 1537, 1567, 1574, 1597, 1612, 1654, 1668, 1713,
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1762, 1765, 1766, 1877, 1878, 1984, 2032, 2043, 2054, 2073, 2077, 2092,

2093, 2097, 2107, 2162, 2168, 2214, 2305, 2392, 2409, 2415, 2439, 2459,

2589, 2590, 2633, 2652, 2749, 2834, 2961, 2969, 3005, 3017, 3070, 3071,

3186, 3220, 3289, 3360, 3493, 3494, 3495, 3508, 3588, 3604, 3611, 3668,

3678, 3679, 3690, 3692, 3732, 3738, 3838, 3840, 3927, 3945, 4005, 4006,

4013, 4018, 4019, 4053, 4059, 4124, 4331, 4355, 4357, 4458, 4464, 4500,

4677, 4678, 4684, 4768, 360, 493, 779, 1284, 1306, 1337, 1438, 1709, 2027,

2445, 3407, 3720, 4217, 4288, 95, 96, 296, 316, 443, 479, 555, 562, 637, 671,

709, 740, 743, 796, 857, 897, 899, 915, 953, 1130, 1132, 1294, 1318, 1337,

1348, 1359, 1378, 1427, 1429, 1440, 1537, 1563, 1574, 1709, 1763, 1773,

1819, 1854, 1874, 1936, 1938, 2018, 2043, 2098, 2099, 2256, 2259, 2294,

2514, 2520, 2552, 2589, 2598, 2680, 2706, 2799, 2880, 2897, 2917, 2969,

3020, 3028, 3310, 3319, 3375, 3399, 3504, 3539, 3541, 3679, 3690, 3692,

3718, 3719, 3720, 3738, 3806, 3838, 3840, 3928, 4013, 4017, 4038, 4053,

4057, 4058, 4079, 4097, 4099

These are towers which have been identified as being hot, registering an anomalously large

number of counts (a signal above a determined threshold) over the entirety of a data-taking

period.
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APPENDIX B

ADDITIONAL TRIGGER AND TRACK DISTRIBUTIONS

This appendix compiles additional figures which show various event, trigger, and track

distributions on which the selection criteria in chapter 8 are applied. Figure B.1 shows the

primary vertex vz, vx, and vy distributions of the recorded data and the selection criteria

applied to vz. Figure B.2 shows the trigger E trg
T versus the trigger ηtrg and φtrg. Lastly,

figure B.3 shows the distribution of trigger E trg
T and TSP and the selection criteria applied

to them.

Figure B.4 shows the number of primary tracks for all events selected for analysis.

Figure B.5 shows the distribution of the number of used fit points and the ratio of used fit

points to total possible fit points for primary tracks and the selection criteria applied to the

distributions. Figure B.6 shows the distribution of global DCA (i.e. the distance of closest

approach of the track to the IV calculated with respect to the IP) for primary tracks and the

selection criteria applied. Figure B.7 shows the distribution of primary track ptrk
T and ηtrk

and the selection criteria applied. Figure B.8 and B.9 show the ∆φtrk and ηtrk distributions

of primary tracks as a function of the track ptrk
T for both π0 and γrich triggers. Figure B.10

shows the
(
ηtrk,∆φtrk

)
distribution of all primary tracks selected for jet reconstruction.

Lastly, figure B.11 shows the distribution of ptrk
T for all primary tracks selected for jet

reconstruction for both π0 and γrich triggers.
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(a) Primary vertex vz . (b) Primary vertex vx and vy.

(c) vy and vx vs. vz of primary vertices.

Figure B.1: Primary vertex coordinates (vx, vy, vz) of all events. The shaded regions in
B.1a indicate events excluded by the vz selection criterion. All events satisfy the vr selec-
tion criterion.
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(a) Trigger (ηtrg, φtrg) (b) Trigger Etrg
T vs. (ηtrg, φtrg)

Figure B.2: Trigger (ηtrg, φtrg) (B.2a) and E trg
T vs. (ηtrg, φtrg) (B.2b). The shaded regions

of B.2b indicate the E trg
T selection window.

(a) Trigger Etrg
T (b) Trigger TSP

Figure B.3: E trg
T and TSP distributions from data. The shaded regions in B.3a indicate

triggers excluded by the E trg
T trigger selection criterion, and the shaded regions in B.3b

indicate identified π0 and γrich triggers.
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Figure B.4: Number of primary tracks.

(a) Track Nfit vs. ptrk
T (b) Track Nfit (c) Track Nfit/Nposs

Figure B.5: Track Nfit and Nfit/Nposs distributions The shaded region in B.5a indicates
tracks satisfying the ptrk

T vs. Nfit selection window, and the shaded regions in B.5b and
B.5c indicate tracks excluded by the Nfit and Nfit/Nposs track acceptance criteria.
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(a) Track DCA vs. ptrk
T (b) Track DCA

Figure B.6: Global DCA of all tracks. The shaded region in B.6a indicates the ptrk
T vs.

DCA selection window, and the shaded region in B.6b indicates tracks excluded by the
DCA selection criterion.

(a) Track ηtrk (b) Track ptrk
T

Figure B.7: The pseudorapidity and transverse momentum distributions of all tracks. The
shaded regions indicate tracks excluded by the ηtrk and ptrk

T track selection criteria.
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Figure B.8: ∆φtrk of all accepted tracks (top panels) and ∆φtrk vs. ptrk
T (lower panels) for

all tracks correlated with π0 and γrich triggers. The shaded regions in the lower panels
indicate the ptrk

T selection window.

Figure B.9: ηtrk of all accepted tracks (top panels) and ηtrk vs. ptrk
T (lower panels) for

all tracks correlated with π0 and γrich triggers. Shaded regions indicate the ptrk
T vs. ηtrk

selection window.
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Figure B.10: ηtrk vs. ∆φtrk of all accepted tracks for π0 and γrich triggers.

Figure B.11: ptrk
T for π0 and γrich triggers.
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APPENDIX C

FIT PARAMETERS FOR SMOOTHING RESPONSE MATRICES

Figure C.1: A flow chart which illustrates the layout of the unfolding code.

This appendix compiles tables of the parameters extracted from the fits to the Rjet =

0.5 Py6⊕Geant unfolding priors and qjet
T distributions used to smooth the Rjet = 0.5 re-

sponse matrices. Table C.1 lists the parameters for the exponential piece of the prior fits,

and table C.2 lists the parameters for the hyperbolic tangent piece of the prior fits. Tables

C.3, C.4, C.5, C.6, C.7 list the parameters extracted from the double Gaussian fits to the

qjet
T distributions for ppar

T = 0.2 - 0.6, 0.6 - 1, 1 - 2, 2 - 10, and 10 - 57 GeV/c respectively.

Figure C.1 illustrates the structure of the code used to perform the unfolding described in

chapters 10 and 11. It also illustrates the order of operations when smoothing the prior,

smoothing the response matrix, and retraining the response matrix.
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Etrg
T [GeV] nexp ci bi

9 - 11 2 (0.39,−1.78) (−1.17,−0.260)
11 - 15 3 (0.39,−2.44,−1.78) (−1.17,−0.14,−0.260)
15 - 20 4 (0.31,−1.36,−3.81,−0.49) (−1.18,−0.39, 0.01,−0.22)

Table C.1: Exponential fit parameters used to the smooth the Rjet = 0.5 Py6⊕Geant
unfolding priors.

Etrg
T [GeV] ntan p0

T ai

9 - 11 1 (−8.12) (10.70)
11 - 15 2 (7.14, 7.33) (13.29,−13.34)
15 - 20 2 (9.07, 9.28) (8.15,−8.15)

Table C.2: Hyperbolic tangent parameters used to smooth the Rjet = 0.5 Py6⊕Geant
unfolding priors.

Etrg
T [GeV] Low qjet

T High qjet
T

A µ σ A µ σ

9 - 11 0.007 0.67 0.06 0.59 1.01 0.06
11 - 15 0.003 0.60 0.06 0.66 1.00 0.06
15 - 20 0.003 0.64 0.06 0.53 1.00 0.06

Table C.3: Fit parameters for ppar
T ∈ (0.2, 0.6) GeV/c used to smooth the qjet

T projections of
the Rjet = 0.5 Py6⊕Geant response matrix.

Etrg
T [GeV] Low qjet

T High qjet
T

A µ σ A µ σ

9 - 11 0.04 0.67 0.06 0.68 1.02 0.06
11 - 15 0.03 0.67 0.06 0.51 1.00 0.06
15 - 20 0.002 0.60 0.06 0.56 1.00 0.06

Table C.4: Fit parameters for ppar
T ∈ (0.6, 1) GeV/c used to smooth the qjet

T projections of
the Rjet = 0.5 Py6⊕Geant response matrix.
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Etrg
T [GeV] Low qjet

T High qjet
T

A µ σ A µ σ

9 - 11 0.06 0.68 0.06 0.57 1.02 0.07
11 - 15 0.12 0.68 0.06 0.53 1.01 0.07
15 - 20 0.04 068 0.06 0.57 1.00 0.07

Table C.5: Fit parameters for ppar
T ∈ (1, 2) GeV/c used to smooth the qjet

T projections of the
Rjet = 0.5 Py6⊕Geant response matrix.

Etrg
T [GeV] Low qjet

T High qjet
T

A µ σ A µ σ

9 - 11 0.15 0.73 0.08 0.47 1.01 0.07
11 - 15 0.09 0.71 0.08 0.52 1.00 0.07
15 - 20 0.14 0.70 0.07 0.48 1.00 0.07

Table C.6: Fit parameters for ppar
T ∈ (2, 10) GeV/c used to smooth the qjet

T projections of
the Rjet = 0.5 Py6⊕Geant response matrix.

Etrg
T [GeV] Low qjet

T High qjet
T

A µ σ A µ σ

9 - 11 0.12 0.71 0.08 0.48 0.99 0.07
11 - 15 0.11 0.69 0.08 0.47 0.97 0.07
15 - 20 0.13 0.68 0.08 0.47 0.97 0.07

Table C.7: Fit parameters for ppar
T ∈ (10, 57) GeV/c used to smooth the qjet

T projections of
the Rjet = 0.5 Py6⊕Geant response matrix.
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APPENDIX D

ADDITIONAL SYSTEMATIC VARIATIONS

(a) 9 - 11 GeV (b) 11 - 15 GeV (c) 15 - 20 GeV

Figure D.1: Unfolding systematic variations for 9 - 11 (D.1a), 11 - 15 (D.1b), and 15 - 20
GeV (D.1c) π0-triggered Rjet = 0.2 data. Variations visualized without uncertainties.

This appendix compiles plots showing unfolding and detector systematic variations

compared against the respective baselines and their assigned uncertainties for each com-

bination of trigger species, E trg
T range, and Rjet. As described in section 11.2, the solid

bands in the lower panels of each plot show the total accumulated uncertainty as each

source is considered. Figures D.1 and D.2 show the unfolding systematic variations for

π0-triggered Rjet = 0.2 and 0.5 data respectively. Figures D.3 and D.4 show the same

but for γdir triggers. Figures D.5 and D.5 show the detector systematic variations for π0-

triggered Rjet = 0.2 and 0.5 data respectively. Lastly, figures D.7 and D.8 show the same

but for γdir triggers.
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(a) 9 - 11 GeV (b) 11 - 15 GeV (c) 15 - 20 GeV

Figure D.2: Unfolding systematic variations for 9 - 11 (D.2a), 11 - 15 (D.2b), and 15 - 20
GeV (D.2c) π0-triggered Rjet = 0.5 data. Variations visualized without uncertainties.

As was mentioned in section 11.2, the γdir prior variation was excluded from the calcu-

lation of σunfold
sys for all E trg

T and Rjet = 0.2. Similarly, the n∗
iter +1 and n∗

iter with background

values of B + δB variations for 11 - 15 GeV γdir were excluded as the solutions did not

converge.
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(a) 9 - 11 GeV (b) 11 - 15 GeV (c) 15 - 20 GeV

Figure D.3: Unfolding systematic variations for 9 - 11 (D.3a), 11 - 15 (D.3b), and 15 - 20
GeV (D.3c) γdir-triggered Rjet = 0.2 data. Variations visualized without uncertainties.

(a) 9 - 11 GeV (b) 11 - 15 GeV (c) 15 - 20 GeV

Figure D.4: Unfolding systematic variations for 9 - 11 (D.4a), 11 - 15 (D.4b), and 15 - 20
GeV (D.4c) γdir-triggered Rjet = 0.5 data. Variations visualized without uncertainties.
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(a) 9 - 11 GeV (b) 11 - 15 GeV (c) 15 - 20 GeV

Figure D.5: Detector systematic variations for 9 - 11 (D.5a), 11 - 15 (D.5b), and 15 - 20
GeV (D.5c) π0-triggered Rjet = 0.2 data. Variations visualized without uncertainties.

(a) 9 - 11 GeV (b) 11 - 15 GeV (c) 15 - 20 GeV

Figure D.6: Detector systematic variations for 9 - 11 (D.6a), 11 - 15 (D.6b), and 15 - 20
GeV (D.6c) π0-triggered Rjet = 0.5 data. Variations visualized without uncertainties.
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(a) 9 - 11 GeV (b) 11 - 15 GeV (c) 15 - 20 GeV

Figure D.7: Detector systematic variations for 9 - 11 (D.7a), 11 - 15 (D.7b), and 15 - 20
GeV (D.7c) γdir-triggered Rjet = 0.2 data. Variations visualized without uncertainties.

(a) 9 - 11 GeV (b) 11 - 15 GeV (c) 15 - 20 GeV

Figure D.8: Detector systematic variations for 9 - 11 (D.8a), 11 - 15 (D.8b), and 15 - 20
GeV (D.8c) γdir-triggered Rjet = 0.5 data. Variations visualized without uncertainties.
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APPENDIX E

ADDITIONAL CLOSURE TESTS

(a) 9 - 11 GeV (b) 11 - 15 GeV (c) 15 - 20 GeV

Figure E.1: Rjet = 0.2 RFF closure test for 9 - 11 (E.1a), 11 - 15 (E.1b), and 15 - 20 GeV
(E.1c) π0 triggers. See text for details.

The closure test described in section 11.3 was performed twice: once with the FF

sub-sample of the Py6⊕Geant simulation serving as the validation sample and the RFF

sub-sample serving as the training sample, and once with the roles reversed. The results

of the closure test with reversed roles may be seen in figures E.1 and E.2. As before, the

dashed lines indicate the averages for the five unfolding variations of the modified RFF

detector-level and the black stars indicate the modified RFF particle-level, the solid boxes

indicate the unfolding systematic uncertainty of the measured data, and the hollow bands

indicate the maximum deviation of the unfolding variations from the average.
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(a) 9 - 11 GeV (b) 11 - 15 GeV (c) 15 - 20 GeV

Figure E.2: Rjet = 0.5 RFF closure test for 9 - 11 (E.2a), 11 - 15 (E.2b), and 15 - 20 GeV
(E.2c) π0 triggers. See text for details.
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