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The STAR collaboration presents measurements of semi-inclusive dis-
tributions of charged jets recoiling from high transverse energy (E) direct
photon and 7° triggers in p+p and central Au+Au collisions at Vsnn = 200
GeV. Jets are reconstructed from charged particles using the anti-kt algo-
rithm with jet resolution parameters R = 0.2 and 0.5. The large un-
correlated background in central Au+Au collisions is corrected using a
mixed-event technique. This enables a jet measurement extending to low
transverse momentum and large R with well-controlled systematic uncer-
tainties. We present measurements of the jet R dependence of suppression,
intra-jet broadening, and acoplanarity of 70+jet and 7qi,+jet for trigger
Er (EY'®) between 9 — 20 GeV.

1. Introduction

Heavy-ion collisions at RHIC and the LHC produce a medium of decon-
fined partons, the Quark-Gluon Plasma (QGP) [I]. Hard (high momentum
transfer, Q?) interactions of quarks and gluons in such collisions generate en-
ergetic scattered partons which propagate through the medium and interact
with it. Consequently, the parton showers are modified (jet quenching) [2].
Jet quenching manifests in several observable effects: transport of energy
outside of the reconstructed jet cone, modification of the jet substructure,
and enhanced acoplanarity (A¢ = ¢trig — djer) [4]. While the A¢ distribu-
tion has a finite width in vacuum due to Sudakov radiation [3], the presence
of a medium may further broaden it due to mechanisms such as multiple
in-medium soft scatterings [4], the hard scattering of a parton off QGP
quasi-particles [5], and medium response [6].
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32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57

58
59
60
61
62
63
64
65
66
67
68
69
70
71

2 ANDERSONDEREK PROCEEDINGSQM22.v8 PRINTED ON AucuUST 11, 2022

In these proceedings, the STAR collaboration reports measurements of
the semi-inclusive yields of jets recoiling from direct photons (yg;) and 72,
together with their acoplanarity distributions in p+p and central Au+Au
collisions at /snn = 200 GeV. Simultaneous measurements of these differ-
ent observables in the same analysis promise a discriminating and multi-
messenger approach to the study of jet quenching.

Since direct photons are color neutral, they do not interact with the
QGP; their measured energy thereby reflects the Q? of the hard interaction
and provides a constraint on the initial energy of the recoiling jet. Hence,
the measurement of jets coincident with a yqi; (7Vair+jet) provides a valuable
tool for quantifying the effects of jet quenching [7]. In addition, compar-
ison with jets coincident with 7° (7°4-jet) may elucidate the color factor
and path length dependence of medium-induced energy loss, due to differ-
ences between the recoil jet populations of the two triggers in their relative
quark/gluon fraction and mean path length [8].

STAR has previously reported the yield suppression of charged hadrons
coincident with 7% and ~g;; triggers [9]. Additionally, STAR has measured
the yield of reconstructed charged-particle jets coincident with charged
hadron triggers (h*4jet) using a semi-inclusive approach [I0]. In this ap-
proach, the large uncorrelated jet background in heavy-ion collisions is cor-
rected with a Mixed Event (ME) technique, enabling the measurement of
reconstructed jets at low transverse momentum (pr) and large resolution
parameter. In the current analysis, we combine the q;, /7" identification of
[9] with the semi-inclusive and ME approach of [I0] to measure the semi-
inclusive vgir+jet and 7+jet yields in p+p and central Au+Au collisions.

2. Analysis

Two STAR datasets of /snn = 200 GeV collisions are analyzed: a
10 nb~! sample of Au+Au collisions recorded in 2014, and a 23 pb~! sample
of p+p collisions recorded in 2009. Both were recorded using an online high
tower trigger, i.e. a calorimeter tower above a certain threshold in energy.
Two STAR subsystems are used: the Time Projection Chamber (TPC) [11],
which provides charged-particle tracks for jet reconstruction, and the Barrel
Electromagnetic Calorimeter (BEMC) [12], which is used to identify 7% and
Ydir triggers.

Discrimination of 7% and ~q;; candidates in the BEMC is carried out
using the Transverse Shower Profile (TSP) method [9, 13]. Based on the
TSP, the data are separated into two samples: a nearly pure sample of
identified 7°, and a sample with an enhanced fraction of ygir (Yrich)-

Triggers are selected offline to satisfy EtTr & — 920 GeV and In™&| < 0.9.
The purity of the i sample, i.e., the percentage of v;iqn that are actually
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Fig.1: Iaa for m'+jet (blue) and ~qi+jet (red). Dark bands indicate sta-
tistical errors, and light bands indicate systematic uncertainties.

Vdir, 18 determined via a data driven method [9, [13]. The ~qi+jet distribu-
tion is then determined from the 7, sample via a statistical subtraction,
which removes contamination due to hadronic decays and fragmentation
photons to the extent that their near-side azimuthal correlations are iden-
tical to those of the identified 7 [J [13].

Jets are reconstructed from the TPC tracks using the anti-kt algorithm
[14, 15] for two resolution parameters, R = 0.2 and 0.5. Reconstructed jets
are subjected to the same fiducial cuts as in [10].

In Au+Au collisions, there is a substantial background yield of jet can-
didates which are not correlated with the trigger. This background yield is
removed using the ME technique described in [I0]. Uncorrelated jet yield
is small in p+p collisions, and no correction for it is applied. The residual
jet pr-smearing is corrected in two steps [10]: first, jets are corrected for
an event-wise energy pedestal, and then residual fluctuations caused by de-
tector effects (p+p and Au+Au collisions) and the heavy-ion background

(Au+Au collisions only) are corrected using regularized unfolding. We use

prTeEZ;Ch (where the superscript “ch” denotes “charged jets”) to refer to the

jet pr after the event-wise pedestal correction, and p?}fjet to the jet pr after
unfolding.

The two-dimensional acoplanarity distributions must also be unfolded
for both pffjgfh and A¢ fluctuations. Note that the A¢ distributions shown

here have however been unfolded for prTejgfh fluctuations only. We estimate

that A¢ smearing effects are small.
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3. Results

Jet distributions are reported in two ways: the two-dimensional measure-
reco,ch reco,ch
Tjet T,jet

for recoil jets, which satisfy |A¢ — 7| < 7/4. The recoil jet pCTh’jet distribu-
tions in central Au+Au and p+p are compared against PYTHIA-8 with the
MONASH tune [17]. The PYTHIA-8 distributions are smeared to account
for a trigger energy resolution (see the slides accompanying these proceed-
ings). We report two different ratios of the trigger-normalized recoil jet
yields: Iaa, the ratio of the semi-inclusive yield of recoil jets in Au+Au
over that in p+p for fixed R; and R%2/05_ the ratio of the semi-inclusive
yield for R = 0.2 relative to that for R = 0.5, for fixed collision system.
Figureshows Iap for E:}ng =11-15,15—20 GeV 7% and ~q;, triggers.
The recoil jet yield for R = 0.2 is systematically more suppressed than that
for R = 0.5. In addition, the value of I s is observed to be consistent within
uncertainties between 7° and ~q;; for both values of R, despite differences
in the recoil jet quark/gluon fraction and mean path length. Note, however,
that the ygi-+jet p%}tjet spectrum is steeper, so a similar magnitude of yield
suppression corresponds to smaller medium-induced out-of-cone energy loss.
Figure 2| shows the :9-2/0-5 for

ment of A¢p vs. p , and the one-dimensional measurement of p

E};ig — 11 — 15 GeV 70 (upper FTT T T I T T T T T T T T T T T I T T T R
trig - = no+jet  AutAu (0-15%), 11 <E,” < 15 GeV

panel) and Ep® = 15 — 20 GeV  ~ N #epe —PHAsvonas |
Yair (lower panel). We see that % | S v o i
RO-2/05 for pdp is less than unity =& k ]
and that PYTHIA-8 reproduces the | STAR Preliminary ’
ratio well. However, the value of  O"FH--HH-H-HH-HHHHHHHE
RO-2/05 for central Au+Au is signif- IN - e A 019 15 <6 <206
icantly lower than that for p+pand % | "=l

PYTHIA-8. 32 TRe——

. &
Figures [I] and [2] show a clear

0~1T|IJ\ll\lll‘llllll\ll‘F
5 10 15 20 25

observation of significant medium-
induced intra-jet broadening in cen- ps", [Gevic]
tral Au+Au collisions at RHIC.

Figure shows the corrected
A¢ correlations in p+p collisions
between Fp'® = 9 — 11 GeV 7°
triggers and R = 0.5 jets (boxes).
These distributions are reproduced
well by PYTHIA-8 (dotted lines) for all three ranges of p%jet (5—10, 10—15,
and 15 — 20 GeV/c).

Figure[3b] then shows the corrected A¢ correlations in Au+Au collisions

between Etng =11 —15 GeV 7¥ and g, triggers and recoil jets of R = 0.5

Fig.2: R02/05 for 70 (upper panel)
and vqir (lower panel) triggers from
p+p (green), Au+Au (blue and red),
and PYTHIA-8 (black dashed lines).



136
137

139
140

141

142

143
144
145
146
147
148
149
150
151
152

153

AndersonDerek ProceedingsQM22.v8  printed on August 11, 2022 5

- — T T T T T T T
T T T =
o PR

STAR Preliminary e 5<pf),<10GeVic 8 4L STAR Prellmmary . B
1L ! - E Au+Au Vs, =200 GeV, 0-15% E|
o ppVs=200GeV 10<p,< 15 GeVic T F Y+iet N €
- 0+ jet > L i _
‘13 antik, R0 S= 15<p5, <20 GeVie 8 § —a— n0+jet P P ;
= 10 vig = T s ' —— PYTHIA-8 ;—n—""“_
s 9<Er?<11GeV ] 5 E f———
3 ¥ = = 5 |—— E
¢ 102k EE;EEE—, Z|a 10°F - =
L —_— E 5 F " E
5e F == ] 5.5 10 == anti-k;, R=0.5 ]

% T s 11<E®<15GeV
5 & 10°F E o 1
o E = - 2 s 10<pl <15GeVic |
"‘; oot TN B
~ T T T E|
r4 |————————r ]
10 E 2 L E!
m|< F — — E
------- PYTHIA-8 = T 1k ]
10° b L x =
2 3 107" E
E Il L L E |

A0(=0 tng ¢Jet) [rad] 2 25 3

AdD(=¢ - rad
0(=0, -0 )lrad]
(a) (b)

Fig.3: Corrected R = 0.5 A¢ distributions in p+p (a) and Au+Au (b)
collisions for 7° (p+p and Au+Au) and vq; (Au+Au only) triggers. Ver-
tical lines indicate statistical errors, and filled and open boxes indicate un-
correlated and correlated systematic uncertainties, respectively (note that

the statistical errors are smaller than the marker size for the Au+Au data
points). Dotted and dashed lines are PYTHIA-S8.

and pT et = 10— 15 GeV/c. The dashed lines are the corresponding distri-
butions from PYTHIA-8, that is validated in the left panel. We observe a
marked enhancement in yleld at wide angles (small A¢) in central Au+Au
collisions relative to vacuum fragmentation. This is the first observation
of significant medium—induced modification of 7%4jet and ~qi,+jet acopla-
narity at low pT et 1D central Au+Au collisions at RHIC.

4. Summary

STAR has measured the R dependence of recoil jet yield, and acopla-
narity using the semi-inclusive distributions of charged-particle jets recoiling
from 7% and 7g;, triggers in central Au+Au and p+p collisions at V5NN =
200 GeV. Model calculations based on the PYTHIA-8 event generator are
found to be consistent with the measurements in p+p collisions.

We have reported both the recoil yield in a fixed angular Window as a
function of pT et and the distribution of acoplanarity at fixed pT et We
observe marked medium-induced intra-jet broadening. We also observe clear
medium-induced acoplanarity at low jet pCT}fjet, which may arise from in-
medium jet scattering or from the contribution of medium response to the
jet signal. To further investigate the medium-induced acoplanarity and
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disentangle the underlying mechanisms, it will be essential to extend the
kinematic range of this measurement in heavy-ion collisions and compare
against theoretical calculations.

Acknowledgements

This work funded in part by the United States Department of Energy
under grant number DE-SC0015636.

REFERENCES

[1] W. Busza, K. Rajagopal, and W. van der Schee, Ann. Rev. Nucl. Part. Sci. 68,
339 (2018)

2] L. Cunqueiro and A. M. Sickles, (2021) arXiv:2110.14490 [nucl-ex]
3] P. Sun, C.-P. Yuan, and F. Yuan, Phys. Rev. D 92, 094007 (2015)
4] A. Mueller et al., Phys. Lett. B 763, 208 (2016)

]

5] F. D’Eramo, M. Lekaveckas, H. Liu, and K. Rajagopal, J. High Energy Phys.
2005, 031 (2005)

[
[
[
[

11] M. Anderson et al., Nucl. Instrum. Methods Phys. Res., Sect. A 499, 659
2003)

[12] M. Beddo et al., Nucl. Instrum. Methods Phys. Res., Sect. A 499, 725 (2003)
[13] B. I. Abelev et al., Phys. Rev. C 82, 034909 (2010)

[14] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 2008, 063
2008)

[15] M. Cacciari, G. P. Salam, and G. Soyez, Euro. Phys. J. C 72, 1896 (2012)
[16] T. Adye, (2011) arXiv:1105.1160 [physics.data-an]

[17] T. Sjostrand, S. Mrenna, and P. Z. Skands, Comput. Phys. Commun. 178,
52 (2008)

] N.-B. Chang and G.-Y. Qin, Phys. Rev. C 94, 024902 (2016)
[19] T. Luo, S. Cao, Y. He, and X.-N. Wang, Phys. Lett. B 782, 707 (2018)
] M. D. Sievert, I. Vitev, and B. Yoon, Phys. Lett. B 795, 502 (2019)

—~

—~

0]



	Introduction
	Analysis
	Results
	Summary

