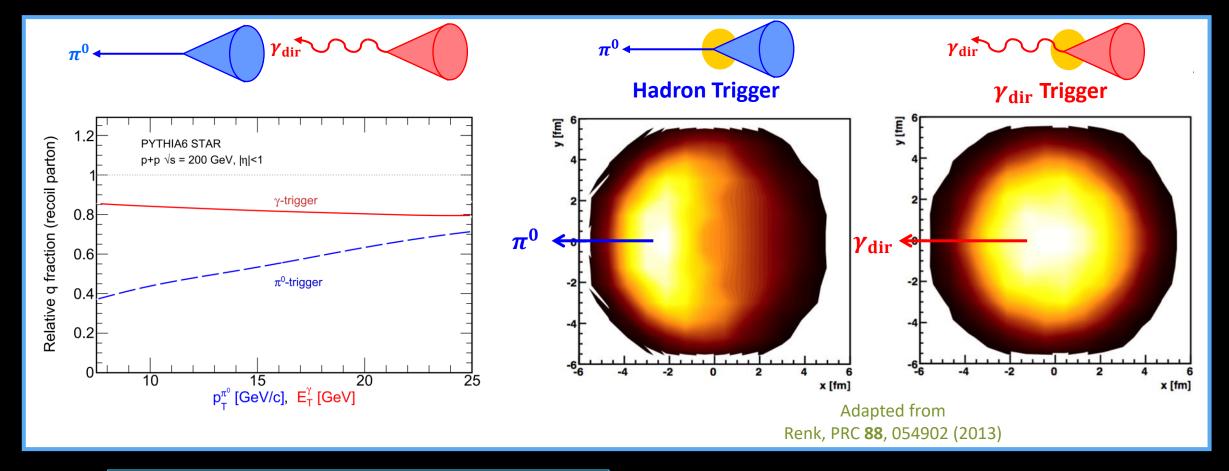
Semi-inclusive measurements of π^0 +jet and $\gamma_{\rm dir}$ +jet in $\sqrt{s}=200$ GeV p+p collisions and their impact on measurements of medium-induced modification at the STAR

experiment

Derek Anderson

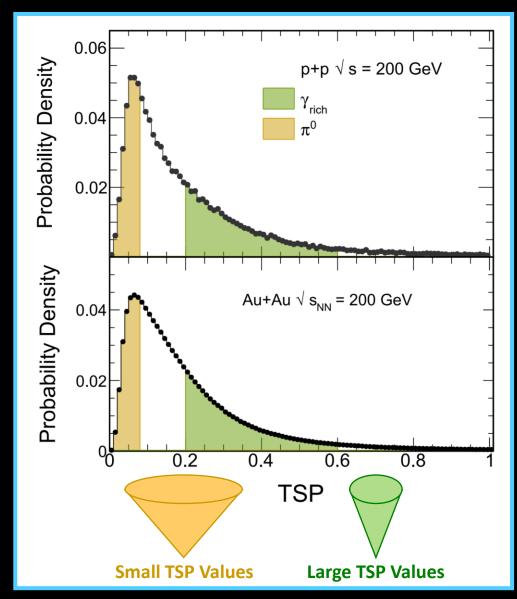
Texas A&M University
For the STAR Collaboration

Supported in part by:



Office of Science

$\gamma_{\rm dir}/\pi^0$ +jet as probes of the QGP



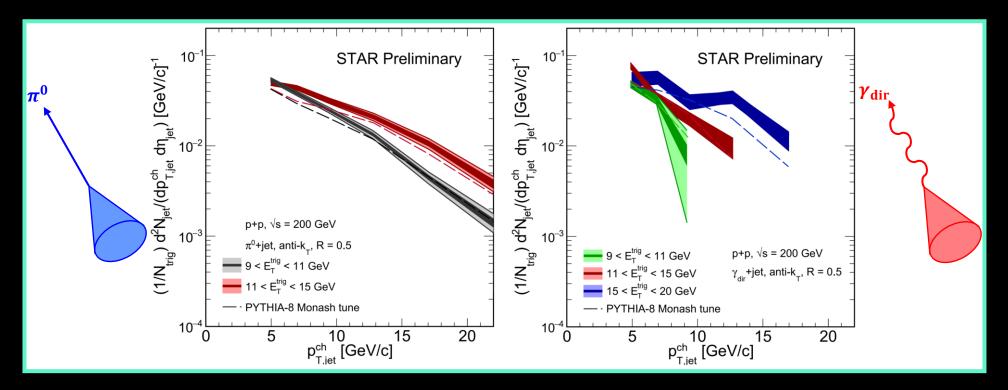
- \circ Jets coincident with direct photons ($\gamma_{\rm dir}$) are valuable probe to study in-medium modification (jet quenching)
 - $: E_{\mathrm{T}}^{\gamma_{\mathrm{dir}}} \approx E_{\mathrm{T}}^{\mathrm{parton}}(t_0)$

- \circ Comparing $\gamma_{
 m dir}/\pi^0$ triggers:
 - **♡** Different q/g fractions
 - To Different recoil path length distributions

$\gamma_{\rm dir}/\pi^0$ identification

- \circ Candidate $\pi^0/\gamma_{\rm dir}$ triggers are clusters made of:
 - 1 or 2 BEMC towers, and
 - 15 η and 15 ϕ BSMD strips
- o $\pi^0/\gamma_{\rm dir}$ identified via Transverse Shower Profile (TSP):

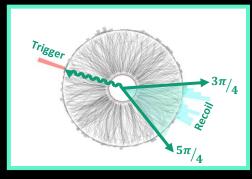
$$TSP \equiv \frac{E_{\text{cluster}}}{\sum_{i} e_{i} r_{i}^{1.5}} \blacktriangleleft$$


- TSP used to split data into two samples:
 - i. 95% pure sample of π^0
 - ii. Sample with an enhanced fraction of $\gamma_{\rm dir}$ ($\gamma_{\rm rich}$)
- $rightarrow \gamma_{
 m rich}$ background levels (B)
 - $-33\% \sim 16\%$ (Au+Au)
 - $-57\% \sim 47\% (p+p)$
- Decay background in $\gamma_{\rm rich}$ removed via statistical subtraction

$$Y_{\rm pp}^{\gamma_{\rm dir}} = \frac{Y_{\rm pp}^{\gamma_{\rm rich}} - B \cdot Y_{\rm pp}^{\pi}}{1 - B}$$

- r_i: distance of BSMD strip to cluster centroid
- $^{\smile}$ Measured via near-side h^{\pm} yields
- Includes some fragmentation photons
- > STAR, PRC **82**, 034909 (2010)

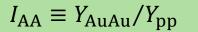
Corrected recoil jet distributions

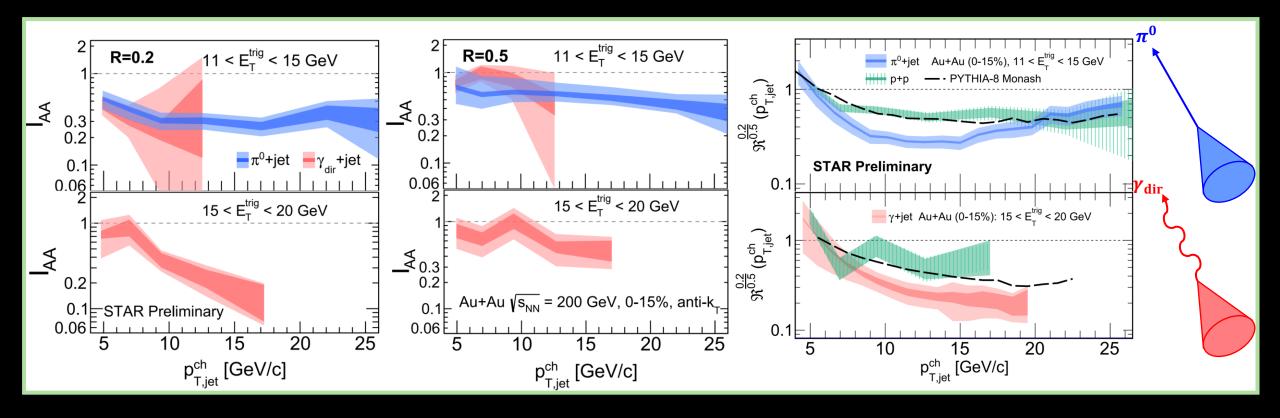


- Recoil jets reconstructed by clustering TPC tracks
 - Clustered using anti- $k_{\rm T}$ algorithm with R=0.2,0.5 (shown)
- \circ Negligible effect of UE in p+p
 - ∴ No ME subtraction applied

- $\circ p_{
 m T, jet}^{
 m ch}$ smearing and shifting corrected in 2 steps
 - 1) Event-wise adjustment:

$$p_{\mathrm{T,jet}}^{\mathrm{reco,ch}} = p_{\mathrm{T,jet}}^{\mathrm{raw,ch}} - \rho \cdot A_{\mathrm{jet}}$$


- 2) Residual fluctuations corrected with regularized unfolding
 - > STAR, PRC **96**, 024905 (2017)


- $hoorset p_{
 m T,jet}^{
 m raw,ch}$: raw $p_{
 m T}$ of reconstructed recoil jet
- $p_{\mathrm{T,jet}}^{\mathrm{reco,ch}}$: p_{T} of recoil jet after event-wise adjustment
- $p_{\mathrm{T,jet}}^{\mathrm{ch}} : p_{\mathrm{T}}$ of recoil jet after unfolding

Impact of p+p data

$$\Re^{0.2/0.5} \equiv Y_{0.2}/Y_{0.5}$$

- $\circ R = 0.2$ more suppressed than 0.5
 - ⇒ Indication of wide angle energy redistribution
- \circ π^0 and $\gamma_{
 m dir}$ $I_{
 m AA}$ consistent

- $\circ \mathfrak{N}^{0.2/0.5} < 1$ in p+p due to vacuum parton shower
 - PYTHIA-8 agrees with p+p data
- $\circ \Re^{0.2/0.5}$ in Au+Au less than in p+p
 - ⇒ Observation of medium-induced intra-jet broadening in heavy-ion collisions


Summary & Next Steps

o Summary:

- $arphi_{
 m AA}$ consistent between π^0 +jet and $\gamma_{
 m dir}$ +jet
- ${^{{}_{\circ}}I_{
 m AA}}$ and ${\mathfrak N}^{0.2/0.5}$ demonstrate intra-jet broadening

○ Next Steps:

- → Very sensitive measurement! Will utilize higher statistics datasets (Runs 23 25)
- $rac{1}{2}$ Extension of $\pi^0/\gamma_{\rm dir}$ +jet spectrum analysis to **full jets** (tracks + calorimeter)

