

Reconstruction of neutral-triggered charged recoil jets in $\sqrt{s}=200$ GeV p+p collisions at the STAR experiment

Derek Anderson
Texas A&M University
For the STAR Collaboration

Jets and Heavy-Ion Collisions

- Heavy-ion collisions produce a hot, dense medium consistent with QGP
 - e.g. Au+Au collisions at RHIC
- Jets: collimated sprays of hadrons from the fragmentation of partons
 - Produced in early stages of heavy-ion collisions
 - ∴ Excellent probes of the medium
- Jet Quenching: suppression of energetic particles due to partonic energy loss
 - Partons lose energy via radiative and collisional interactions with medium
 - Depends on path length, "flavor" of jet, etc.

Prompt and Direct Photons

- Prompt photon (γ_{prompt}): photon scattered from energetic partons
 - Doesn't strongly interact with medium so (to leading order)

$$E_T^{\gamma} \approx E_T^{parton}(t_0)$$

- ∴ Recoiling parton provides a well-calibrated probe of partonic energy loss...
 - > Wang et al.; PRL 77, 231 (1996)
- An admixture of prompt, thermal, and fragmentation photons is measured
 - Collectively referred to as **direct photons** (γ_{dir})
 - Thermal contribution is negligible (at sufficiently large energies)
 - Background dominated by hadronic decays

Campbell; PRC 92, 014907 (2015)

Neutral Triggers

- Comparing γ_{dir} to π^0 triggers:
 - a) Production of π^0 biased towards surface while γ_{dir} have no such bias
 - > T. Renk, Phys. Rev. C 88, 054902 (2013)
 - b) Production of γ_{dir} dominated by quarkgluon Compton scattering
 - \Rightarrow On average, jets recoiling from γ_{dir} should be less suppressed than those from π^0
- \circ I_{AA} : quantifies level of suppression

$$I_{AA} \equiv \frac{D^{AuAu}}{D^{pp}}$$

- Where D^{AuAu} and D^{pp} are the per-trigger yields in Au+Au and p+p collisions
- \circ Now measuring charged jet spectra for γ_{dir} and π^0 triggers as a baseline for I_{AA}

T. Renk; arXiv:1212.0646

STAR Detector

- Relevant subsystems:
 - a) Time Projection Chamber (TPC):
 - \rightarrow Measure charged particle (track) p_T , η , φ , etc.
 - b) Barrel Electromagnetic Calorimeter (BEMC):
 - > Used to trigger on p+p collision containing energetic γ_{dir} or π^0
- Triggers satisfy $E_T^{trg} \in (9, 20)$ GeV and $|\eta^{trg}| < 0.9$
 - Triggers then split into bins of E_T^{trg} with $(9,11),\,(11,15),\,$ and (15,20) GeV
- Barrel Shower Maximum Detector (BSMD):
 - Located inside BEMC
 - Distinguishes γ_{dir} and π^0 based on shower shape

STAR; PRD 86, 032006 (2012)

TSP

 Transverse Shower Profile (TSP): quantifies shower shape

$$TSP \equiv \frac{E_{cluster}}{\sum_{i} e_{i} r_{i}^{1.5}}$$

- $E_{cluster}$ is total energy of 1 2 tower cluster
- e_i and r_i are the energy and distance from cluster centroid of the ith strip
 - > STAR, Phys. Rev. C 82, 034909 (2010)
- O TSP used to split data into two samples:
 - i. A 95% pure sample of identified π^0 satisfying TSP < 0.08
 - ii. A sample with an enhanced fraction of γ_{dir} (labeled γ_{rich}) satisfying TSP \in (0.2, 0.6)
- o Background level of γ_{rich} signal in p+p for $E_T^{trg} \in (9,11)$ GeV is measured to be:

$$B \approx 0.57 \pm 0.05$$

Jet Reconstruction

- \circ Jets are reconstructed using the anti- k_T algorithm from
 - TPC tracks with $p_T^{trk} \in (0.2,\!30)$ GeV/c and $\left|\eta^{trk}\right| < 1$
 - Clustered using Fastjet 3.0.6 for $R_{jet} = 0.2$ (0.5 and others in progress)
 - M. Cacciari, G. P. Salam, and G. Soyez, Eur.
 Phys. J. C72, 1896 (2012)
- \circ Jet p_T adjusted for background energy density via

$$p_T^{reco} = p_T^{jet,raw} - \rho \cdot A_{jet}$$

- Where $\rho \equiv \mathrm{median}\{p_{T,i}^{jet,raw}/A_{jet,i}\}$ excluding the hardest jet in the event
- Some definitions:
 - Recoil jet: any jet satisfying $\Delta \varphi^{jet} \in (3\pi/4, 5\pi/4)$
 - Charged jet: a jet consisting only of TPC tracks

Jets shown here satisfy

$$-A_{jet} > 0.05$$

$$-p_T^{jet,raw} > 0.2 \text{ GeV/}c$$

$$- \left| \eta^{jet} \right| < 1 - R_{jet}$$

Corrected Spectra

- \circ Correction scheme follows recent h^{\pm} -jet measurement by the STAR collaboration
 - STAR, Phys. Rev. C **96**, 024905 (2017)
- Corrected data are compared against Pythia 8.185
 - T. Sjöstrand, S. Mrenna, and P. Z. Skands,
 Comput. Phys. Commun. 178, 852 (2008)
 - Darker bands indicate statistical uncertainty
 - Dominant uncertainties:
 - > Unfolding (prior, algorithm, etc.)
 - Tracking efficiency
 - γ_{rich} background subtraction scheme (γ_{dir} only)
- Corrected data Consistent with Pythia8!

Conclusions and Future Work

- \circ Charged $R_{jet}=0.2$ recoil jets have been reconstructed in p+p collisions for π^0 and γ_{dir} triggers with $E_T^{trg}\in (9,11)$ GeV
 - Spectra corrected for detector effects are consistent with Pythia 8

o Future work:

- Correct charged jet spectra for γ_{dir} and π^0 triggers with $E_T^{trg} \in (11,15)$ and (15,20) GeV for $R_{iet}=0.2-0.5$
- Extend analysis to full jets (consisting of TPC tracks and BEMC towers)

Thank You!