Reconstruction of neutral-triggered charged recoil jets in $\sqrt{s}=200$ GeV p+p collisions at the STAR experiment Derek Anderson Texas A&M University For the STAR Collaboration # Jets and Heavy-Ion Collisions - Heavy-ion collisions produce a hot, dense medium consistent with QGP - e.g. Au+Au collisions at RHIC - Jets: collimated sprays of hadrons from the fragmentation of partons - Produced in early stages of heavy-ion collisions - ∴ Excellent probes of the medium - Jet Quenching: suppression of energetic particles due to partonic energy loss - Partons lose energy via radiative and collisional interactions with medium - Depends on path length, "flavor" of jet, etc. # Prompt and Direct Photons - Prompt photon (γ_{prompt}): photon scattered from energetic partons - Doesn't strongly interact with medium so (to leading order) $$E_T^{\gamma} \approx E_T^{parton}(t_0)$$ - ∴ Recoiling parton provides a well-calibrated probe of partonic energy loss... - > Wang et al.; PRL 77, 231 (1996) - An admixture of prompt, thermal, and fragmentation photons is measured - Collectively referred to as **direct photons** (γ_{dir}) - Thermal contribution is negligible (at sufficiently large energies) - Background dominated by hadronic decays Campbell; PRC 92, 014907 (2015) # Neutral Triggers - Comparing γ_{dir} to π^0 triggers: - a) Production of π^0 biased towards surface while γ_{dir} have no such bias - > T. Renk, Phys. Rev. C 88, 054902 (2013) - b) Production of γ_{dir} dominated by quarkgluon Compton scattering - \Rightarrow On average, jets recoiling from γ_{dir} should be less suppressed than those from π^0 - \circ I_{AA} : quantifies level of suppression $$I_{AA} \equiv \frac{D^{AuAu}}{D^{pp}}$$ - Where D^{AuAu} and D^{pp} are the per-trigger yields in Au+Au and p+p collisions - \circ Now measuring charged jet spectra for γ_{dir} and π^0 triggers as a baseline for I_{AA} T. Renk; arXiv:1212.0646 #### STAR Detector - Relevant subsystems: - a) Time Projection Chamber (TPC): - \rightarrow Measure charged particle (track) p_T , η , φ , etc. - b) Barrel Electromagnetic Calorimeter (BEMC): - > Used to trigger on p+p collision containing energetic γ_{dir} or π^0 - Triggers satisfy $E_T^{trg} \in (9, 20)$ GeV and $|\eta^{trg}| < 0.9$ - Triggers then split into bins of E_T^{trg} with $(9,11),\,(11,15),\,$ and (15,20) GeV - Barrel Shower Maximum Detector (BSMD): - Located inside BEMC - Distinguishes γ_{dir} and π^0 based on shower shape STAR; PRD 86, 032006 (2012) #### TSP Transverse Shower Profile (TSP): quantifies shower shape $$TSP \equiv \frac{E_{cluster}}{\sum_{i} e_{i} r_{i}^{1.5}}$$ - $E_{cluster}$ is total energy of 1 2 tower cluster - e_i and r_i are the energy and distance from cluster centroid of the ith strip - > STAR, Phys. Rev. C 82, 034909 (2010) - O TSP used to split data into two samples: - i. A 95% pure sample of identified π^0 satisfying TSP < 0.08 - ii. A sample with an enhanced fraction of γ_{dir} (labeled γ_{rich}) satisfying TSP \in (0.2, 0.6) - o Background level of γ_{rich} signal in p+p for $E_T^{trg} \in (9,11)$ GeV is measured to be: $$B \approx 0.57 \pm 0.05$$ #### Jet Reconstruction - \circ Jets are reconstructed using the anti- k_T algorithm from - TPC tracks with $p_T^{trk} \in (0.2,\!30)$ GeV/c and $\left|\eta^{trk}\right| < 1$ - Clustered using Fastjet 3.0.6 for $R_{jet} = 0.2$ (0.5 and others in progress) - M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J. C72, 1896 (2012) - \circ Jet p_T adjusted for background energy density via $$p_T^{reco} = p_T^{jet,raw} - \rho \cdot A_{jet}$$ - Where $\rho \equiv \mathrm{median}\{p_{T,i}^{jet,raw}/A_{jet,i}\}$ excluding the hardest jet in the event - Some definitions: - Recoil jet: any jet satisfying $\Delta \varphi^{jet} \in (3\pi/4, 5\pi/4)$ - Charged jet: a jet consisting only of TPC tracks Jets shown here satisfy $$-A_{jet} > 0.05$$ $$-p_T^{jet,raw} > 0.2 \text{ GeV/}c$$ $$- \left| \eta^{jet} \right| < 1 - R_{jet}$$ # Corrected Spectra - \circ Correction scheme follows recent h^{\pm} -jet measurement by the STAR collaboration - STAR, Phys. Rev. C **96**, 024905 (2017) - Corrected data are compared against Pythia 8.185 - T. Sjöstrand, S. Mrenna, and P. Z. Skands, Comput. Phys. Commun. 178, 852 (2008) - Darker bands indicate statistical uncertainty - Dominant uncertainties: - > Unfolding (prior, algorithm, etc.) - Tracking efficiency - γ_{rich} background subtraction scheme (γ_{dir} only) - Corrected data Consistent with Pythia8! ### Conclusions and Future Work - \circ Charged $R_{jet}=0.2$ recoil jets have been reconstructed in p+p collisions for π^0 and γ_{dir} triggers with $E_T^{trg}\in (9,11)$ GeV - Spectra corrected for detector effects are consistent with Pythia 8 #### o Future work: - Correct charged jet spectra for γ_{dir} and π^0 triggers with $E_T^{trg} \in (11,15)$ and (15,20) GeV for $R_{iet}=0.2-0.5$ - Extend analysis to full jets (consisting of TPC tracks and BEMC towers) # Thank You!