Reconstruction of neutral-triggered charged recoil jets in $\sqrt{s} = 200$ GeV p+p collisions at the STAR experiment

Derek Anderson Texas A&M University for the STAR Collaboration

Abstract

Jets – collimated sprays of hadrons – are produced by the hard-scattering of partons during the early stages of heavy-ion collisions. Hence, they provide a valuable probe of the complex, multi-particle dynamics within the hot, dense medium produced in such collisions. In particular, the study of jets recoiling from direct photons (γ_{dir} +jet) and those recoiling from energetic π^0 (π^0 +jet) may shed light on the path-length and initial flavor (quark vs. gluon) dependence of the energy-loss experienced by a parton as it traverses the medium. We present here the measurement of the yields of charged recoil jets tagged by γ_{dir} and π^0 in p+p collisions at $\sqrt{s} = 200$ GeV recorded during the running year 2009 which will serve as a vacuum fragmentation reference for an upcoming measurement in Au+Au collisions.

Motivation

• **Prompt Photons (** γ_{prompt}): photons

Jet Reconstruction

XLIX

International Symposium

on Multiparticle Dynamics

 \circ Jets reconstructed using anti- k_T algorithm

- produced by the hard scatter of partons
 - $\Rightarrow E_T^{\gamma} \approx E_T^{parton}(t_0)$
- ∴ Recoiling partons are well calibrated probes of energy loss [1]
- Experimentally measure direct photons (γ_{dir}) :
 - Mixture of prompt, thermal, and fragmentation photons
- Comparing γ_{dir} +jet to π^0 +jet:
 - a) Production of π^0 biased towards surface; γ_{dir} have no such bias [2]
 - b) Production of γ_{dir} dominated by q-gCompton Scattering
 - \Rightarrow Recoil jets from γ_{dir} should be less suppressed on average
- \circ **I**_{AA}: quantifies level of suppression $I_{AA} \equiv D^{AuAu}/D^{pp}$
 - D^{AuAu} and D^{pp} are per-trigger yields in Au+Au and p+p collisions
 - For recent measurement by STAR see [3]
- Measuring γ_{dir}/π^0 -triggered charged jet spectra in p+p for I_{AA} baseline

- w/ $R_{iet} = 0.2$ using
- TPC tracks w/ $p_T^{trk} \in (0.2,30)$ GeV/c and $\left|\eta^{trk}\right| < 1$
- Clustered using Fastjet 3.0.6 [5]
- Reconstructed Jets satisfy
 - $A_{jet} > 0.05, p_T^{jet,raw} > 0.2, \text{ and } |\eta^{jet}| <$ $1 - R_{jet}$
- $\circ p_T^{jet,raw}$ adjusted for background energy density via
 - $p_T^{reco} = p_T^{jet,raw} \rho \cdot A_{jet}$ - Where $\rho \equiv \text{median}\{p_{T,i}^{\text{jet,raw}}/A_{\text{jet,i}}\}$ (excluding hardest jet in event)

- **Recoil jet:** any jet satisfying $\Delta \varphi^{jet} \in (3\pi/4, 5\pi/4)$
- Charged jet: a jet consisting only of TPC tracks

STAR and Neutral Triggers

- Relevant subsystems:
 - a) Time Projection Chamber (TPC):
 - Measure charged particle (track) p_T , η , φ , etc.
 - **b** Barrel Electromagnetic Calorimeter (BEMC):
 - Trigger on p+p collision w/ energetic γ_{dir}/π^0
- Triggers satisfy $E_T^{trg} \in (9, 20)$ GeV and $|\eta^{trg}| < 0.9$
- Split into bins of E_T^{trg} w/ 9 11, 11 15, and 15 – 20 GeV
- **Barrel Shower Maximum Detector (BSMD):**
 - Grid of readout wires inside BEMC
 - Distinguishes γ_{dir}/π^0 via shower shape
- **Transverse Shower Profile (TSP):** quantifies
 - shower shape [4]
 - $TSP \equiv E_{cluster} / \Sigma_i e_i r_i^{1.5}$
 - $E_{cluster}$ is total energy of 1 2 tower cluster
 - e_i , r_i are energy, distance from cluster

- Correction scheme follows recent h^{\pm} jet measurement by STAR [6]
 - Jets corrected for detector effects and background fluctuations via iterative unfolding procedure
 - Bayesian algorithm w/ $n_{iter} =$ 4 via RooUnfold [7]
 - Jet reconstruction efficiency then corrected bin-by-bin
- Corrected data are compared against Ο Pythia 8 [8]
 - Darker bands indicate statistical uncertainty
 - Dominant uncertainties:
 - Unfolding (prior, algorithm, etc.)
 - Tracking efficiency
 - γ_{rich} background subtraction scheme (γ_{dir} only)

Conclusions and Future Work

- Charged recoil jets have been reconstructed in Ο p+p collisions for γ_{dir}/π^0 triggers w/ $E_T^{trg} \in$ (9,11) GeV
 - Corrected spectra are consistent with Pythia
- Future work:
 - Correct charged jet spectra for γ_{dir} and π^0 triggers with $E_T^{trg} \in (11, 15)$ and (15, 20)(1/N) 10 GeV for $R_{iet} = 0.2, 0.5$

centroid of ith BSMD strip

- TSP used to split data into two samples:
 - i. Sample of identified π^0 satisfying TSP < 80.0
 - ii. Sample with enhanced fraction of γ_{dir} (labeled γ_{rich}) satisfying TSP $\in (0.2, 0.6)$
- Background level of γ_{rich} signal in p+p for
 - $E_T^{trg} \in (9,11)$ GeV measured to be:
 - $B \approx 0.57 \pm 0.05$

Au+Au 200 GeV

≥0.08

<u>a</u> 0.06

≣ 0.04⊢

0.02

 $\Pi \pi^{0}_{rich}$

 $\gamma_{\rm rich}$

STAR Preliminary

Extend analysis to full jets (consisting of TPC) tracks and BEMC towers)

References

[1] X.-N. Wang, Z. Huang, and I. Sarcevic, Phys. Rev. Lett. 77, 231 (1996) [5] M. Cacciari, G. P. Salam, and G. Soyez, Eur. Phys. J. C72, 1896 (2012) [2] T. Renk, Phys. Rev. C 88, 054902 (2013) [6] STAR, Phys. Rev. C 96, 024905 (2017) [3] STAR, Phys. Lett. B 760, 689 (2016) **[7]** T. Adye, arXiv:1105.1160 [4] STAR, Phys. Rev. C 82, 034909 (2010)

[8] T. Sjöstrand, S. Mrenna, and P. Z. Skands, Comput. Phys. Commun. 178, 852 (2008)

The STAR Collaboration drupal.star.bnl.gov/STAR/presentations

