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Jets and Hadronization
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Time

• Jets are proxies for hard-scattered 
partons

• Clustered from final state particles 
using a jet finding algorithm 

• Interesting to follow time evolution of 
jet
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Energy Energy Correlators (EEC)

3

ΔR

φ

η

● Use all final state charged particles, and examine how energy is distributed as a function of 
their separation

● Allows for study of jet evolution using final state jet constituents as they are, no 
additional clustering after jet-finding

𝐸𝑖

𝐸𝑗

Andrew Tamis – Hard Probes 2023 – March 29th

ΔR



Energy Energy Correlators (EEC)

4

ΔR

φ

η

● Use all final state charged particles, and examine how energy is distributed as a function of 
their separation

● Allows for study of jet evolution using final state jet constituents as they are, no 
additional clustering after jet-finding

𝐸𝑖

𝐸𝑗

Andrew Tamis – Hard Probes 2023 – March 29th

Komiske et al. 2023, 
PRL 130, 051901

Theoretical 
Calculation of N-
Point Correlator

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.051901
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.051901
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Normalized EEC = 
1

σ𝐽𝑒𝑡𝑠 σ𝑖≠𝑗
𝐸𝑖𝐸𝑗

𝑝𝑇,𝐽𝑒𝑡
2

𝑑 σ𝐽𝑒𝑡𝑠 σ𝑖≠𝑗
𝐸𝑖𝐸𝑗

𝑝𝑇,𝐽𝑒𝑡
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𝑑 (∆𝑅)

Experimental 
Construction of 
Two-Point
Correlator

Note: Energy assumes pion mass



ΔR

= ∆𝑅

Komiske et al. 2023, 
PRL 130, 051901

• Behavior at low ∆𝑅 corresponds to a random distribution of hadrons, while behavior at 
high ∆𝑅 is influenced by parton shower– Study Transition Region
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Turnover ∝
𝚲𝐐𝐂𝐃

𝐩𝐓
𝐉𝐞𝐭

Relate This to Jet Evolution

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.051901
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.051901
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Studying the Transition Region
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• Transition region corresponds to 
onset of hadronization

• Transition region moves to smaller 
opening angle with higher Jet 
transverse momentum

Hadronization happens later in 
time!

Note: Curve normalized to integrate to unity in ∆𝑅
in order to compare different momentum ranges 
accurately

Turnover ∝
𝚲𝐐𝐂𝐃

𝐩𝐓
𝐉𝐞𝐭
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15 < Jet pT < 20 GeV/c

Jet pT20 < Jet pT < 30 GeV/c

Komiske et al. 
2023, 
PRL 130, 051901

30 < Jet pT < 50 GeV/c

PYTHIA 6 STAR Tune
𝑠 = 200 GeV

Jet R = 0.4 η𝐽𝑒𝑡 < 0.6

Constituent 𝑝𝑇 > 0.2 GeV/c

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.051901
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.051901
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.051901
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15 < Jet pT < 20 GeV/c

20 < Jet pT < 30 GeV/c

30 < Jet pT < 50 GeV/c
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𝑝𝑇
𝑗𝑒𝑡

𝐿𝑜𝑤*∆𝑅𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟 ~ 2 to 3 GeV

We see this 
behavior in 
PYTHIA!
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• Transition region corresponds to 
onset of hadronization

• Transition region moves to smaller 
opening angle with higher jet 
transverse momentum

Hadronization happens later in 
time!

(Where the linear 
behavior breaks)

Studying the Transition Region

Turnover ∝
𝚲𝐐𝐂𝐃

𝐩𝐓
𝐉𝐞𝐭



STAR Detector
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• STAR Time Projection Chamber (TPC) 
provides excellent charged track 
resolution

• Barrel Electromagnetic Calorimeter 
(BEMC) provides energy measurement 
for neutral components of jets, and 
provides jet trigger

• Must correct for detector effects to 
reconstruct correct jet 𝒑𝑻

• Learn what to correct by simulating 
detector effects with PYTHIA + Geant
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𝑝𝑇
𝐽𝑒𝑡

Correction Method

● Fill in response matrix for jet 𝑝𝑇 for each matched correlation
● Reconstruct the distribution for a truth jet 𝑝𝑇 bin out of measured distributions according to 

the response matrix
● Add in misses from PYTHIA distribution
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Match jets between PYTHIA and PYTHIA + Geant distributions within a 
∆𝑅 of 0.4 and then match constituents inside of jets within a ∆𝑅 of 0.02
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𝑠 = 200 GeV
R = 0.4

η𝐽𝑒𝑡 < 0.6

Constituent 𝑝𝑇 > 0.2 GeV/c

PYTHIA 6 + GEANT

Measured Jet 𝑝𝑇 (GeV/c) Truth Jet 𝑝𝑇 (GeV/c)

Matched Correlations

Method performed previously at STAR,
Robotkov ƴa, DIS 2022

https://indico.bnl.gov/event/9726/contributions/46219/


13

Impact of detector effects on EEC 
o𝐭𝐡𝐞𝐫 𝐭𝐡𝐚𝐧 𝒑𝑻

𝑱𝒆𝒕 correction 

- Approximates detector effects after 
jet 𝑝𝑇 has been corrected

- Hovers around unity in hadron, 
quark/gluon and transition regions, 
do not apply any additional 
corrections

- Treat percentage difference 
between truth and detector level 
for MATCHED jets as an uncertainty

Simulating Detector Effects
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Jet R=0.4, η𝐽𝑒𝑡 < 0.6

p+p Run 12, 𝑠 = 200 𝐺𝑒𝑉
Constituent 𝑝𝑇 > 0.2 GeV/c
15 < Jet pT < 20 GeV/c

∆𝑅
1



Systematic Uncertainties 

• As shape correction needed is 
small, systematic uncertainties 
determined for the correction 
procedure are small.
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Hadronic Correction
-Varied from 100% to 50%

Tower Scale Variation

- Varied ± 3.8%

Tracking Efficiency

- 4% uncertainty

Maximum Detector Variation

- Previous slide

10% =

Jet R=0.4, η𝐽𝑒𝑡 < 0.6

20 < Jet pT < 30 GeV/c
p+p Run 12, 𝑠 = 200 𝐺𝑒𝑉



First EEC Measurement at RHIC
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Average of the distribution moves to smaller angles with increasing 𝒑𝑻
𝑱𝒆𝒕

∆𝑅
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15 < 𝐉𝐞𝐭 𝐩𝐓 < 20 GeV/c 30 < 𝐉𝐞𝐭 𝐩𝐓 < 50 GeV/c



10−0.75 ∗ (15GeV/c) =  2.7  ~   2.4 = 10−1.1 ∗ (30GeV/c)

16

Andrew Tamis – Hard Probes 2023 – March 29th

Recover expected behavior, transition region moves as 
𝟏

𝒑𝑻
𝑱𝒆𝒕

First Corrected EEC Measurement
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15 < 𝐉𝐞𝐭 𝐩𝐓 < 20 GeV/c 30 < 𝐉𝐞𝐭 𝐩𝐓 < 50 GeV/c

30 < Jet 𝑝𝑇 < 50 GeV/c15 < Jet 𝑝𝑇 < 20 GeV/c



10−0.75 ∗ (15GeV/c) =  2.7GeV   ~   2.5GeV = 10−2.3 ∗ (500GeV/c)
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Comparison With Result from CMS Open Data

Komiske et al. 2023, 
Physical Review Letters 130, 
051901

Consistent scale implies universality for varying jet 𝐩𝐓!Note: proportionality may 
depend on quark/gluon fraction
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https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.051901
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.051901
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.130.051901


Effects of Larger Radius

• As we move to larger jet radius, onset of transition region remains relatively 
constant, but quark/gluon region continues longer before geometric cutoff 
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• Increasing R increases phase space for radiation – Scaling Behavior Persists
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Monte-Carlo Comparison
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• PYTHIA 8 Detroit Tune describes behavior well
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STAR Preliminary STAR Preliminary
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15 < 𝐉𝐞𝐭 𝐩𝐓 < 20 GeV/c 30 < 𝐉𝐞𝐭 𝐩𝐓 < 50 GeV/c

Data Data



Theoretical Comparison (R = 0.4)
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• Theoretical comparison calculated in the Perturbative Region (
3GeV

pT
Jet

Low

< ∆𝑅 < Jet R) 

received directly from Kyle Lee, MIT.
• Behavior agrees well with directly calculable theoretical expectations!
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Theoretical Comparison (R = 0.6)
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• Theoretical comparison calculated in the Perturbative Region (
3GeV

pT
Jet

Low

< ∆𝑅 < Jet R) 

received directly from Kyle Lee, MIT.
• Behavior agrees well with directly calculable theoretical expectations!

15 < 𝐉𝐞𝐭 𝐩𝐓 < 20 GeV/c 30 < 𝐉𝐞𝐭 𝐩𝐓 < 50 GeV/c



Summary

Jet R = 0.4, η𝐽𝑒𝑡 < 0.6

p+p, 𝑠 = 200 𝐺𝑒𝑉
Constituent 𝑝𝑇 > 0.2 GeV/c

STAR Preliminary

STAR Preliminary
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∆𝑅
• Effect of 𝑝𝑇

𝐽𝑒𝑡 selection persists in larger Jet radius

• First measurement of EEC at STAR across various kinematic regions!
22
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15 < Jet pT < 20 GeV/c

20 < Jet pT < 30 GeV/c

30 < Jet pT < 50 GeV/c

∆𝑅

Jet R = 0.6, η𝐽𝑒𝑡 < 0.4

p+p, 𝑠 = 200 𝐺𝑒𝑉
Constituent 𝑝𝑇 > 0.2 GeV/c



Conclusions

● EEC is an exciting observable that probes jet evolution across both 
perturbative and non-perturbative regions

● Dependence on jet 𝑝𝑇 provides insight into hadronization via the 
transition region

○ Universality expected in theory observed

● First measurement of EEC at RHIC

● Future applications in heavy ions and higher order correlation functions
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