

Anisotropic Flow Measurements from STAR at RHIC BES operation and Fixed Target

Shusu Shi for the STAR collaboration

Central China Normal University

Workshop on analysis techniques for centrality determination and flow measurements at FAIR and NICA, 24-28 August 2020

> Introduction

- > Anisotropic Flow
- Results and Discussions
- Summary and Outlook

RHIC-STAR

Heavy ion collisions (colliding mode): 7.7-200 GeV

STAR Detectors

QCD Phase Diagram

Anisotropic Flow

 $\frac{dN}{d\phi} \propto 1 + 2 \sum_{n=1} v_n \cos \left[n(\phi - \Psi_n) \right]$ Anisotropic flow v_1 : directed flow; v_2 : elliptic flow; v_3 : triangular flow

Beam Energy Scan

√S _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	Weeks	μ _B (MeV)	T _{CH} (MeV)
200	350	2010		25	166
62.4	67	2010		73	165
54.4	1000	2017			165
39	130	2010		112	164
27	70 (<mark>1000</mark>)	2011(2018)		156	162
19.6	580 / 36	2019 / 2011	3	206	160
14.5	325 / 20	2019 / 2014	2.5	264	156
11.5	235 / 12	2020 / 2010	5	315	152
9.2	160 / 0.3	2020 / 2008	9.5	355	140
7.7	100 / 4	2021 / 2010	14	420	140

Fixed target program: 4.5, 3.9, 3.6, 3.0 GeV

extends STAR's physics reach to region of compressed baryonic matter

Partonic Collectivity

Radial Flow and v_2: Softest Point (

A non-monotonic variation could be observed around the so- \geq called "softest point of EOS"

P. F. Kolb, J. Sollfrank and U. Heinz, Phys. Rev. C 62, 054909 (2000). H. Sorge, Phys. Rev. Lett. 82, 2048 (1999).

v₁: Softest Point

BESII : centrality dependence

dv₁/dy: the slope of directed flow versus rapidity near mid-rapidity

Hydrodynamic calculation with the 1st-order phase transition motivates the study

Net-proton slope changes sign twice

EOS softest point?

UrQMD fails to reproduce the data

The slope of net-p is based on expressing the y dependence of v_1 for all protons as:

 $[v_1(y)]_p = r(y)[v_1(y)]_{\bar{p}} + [1 - r(y)][v_1(y)]_{\text{net-}p}$

r: the ratio of anti-p to p.

STAR: Phys. Rev. Lett. 112, 162301(2014) H. Stoecker, Nucl. Phys. A 750, 121(2005)

v₁: ϕ Mesons

Mesons and all anti-baryons show negative slope except φ mesons when collisions energy < 14.5 GeV</p>

Change of medium property? High precision data needed: BESII

STAR: Phys. Rev. Lett. 120, 062301(2018)

- Av₁/dy shows large divergence between net-kaon and net-proton (net-Λ)
 below $√s_{NN} < 20$ GeV
- Particle and anti-particle v₂ differences increase dramatically below √s_{NN} < 20 GeV</p>
 STAR: Phys. Rev. Lett. 120, 062301(2018)

STAR: Phys. Rev. Lett. **120**, 062301(2018) Phys. Rev. Lett. **110**, 142301(2013)

Particle vs. Anti-particle v₂

Baryonic Chemical Potential µ_B (MeV) BESII : multi-strange hadrons

The difference between particles and anti-particles increases with decreasing beam energy – NCQ scaling breaks

Model comparison

- Hydro + Transport (UrQMD): consistent with baryon data
- Nambu-Jona-Lasino (NJL) model (partonic + hadronic potential): hadron splitting consistent
- > Analytical hydrodynamic solution: $\Delta v_2^p > \Delta v_2^\Lambda > \Delta v_2^\Omega$

J. Steinheimer et al., PRC86, 44903(2012); J. Xu et al., PRL112, 012301(2014), H. Liu et al., PLB798, 135002(2019).;

Y. Hatta et al., PRD92, 114010(2015)

Multi-strange Hadron and ϕ Meson v₂

- \succ BESI: v₂ of multi-strange hadrons and ϕ mesons seems dropping when collision energy < 20 GeV
- > BESII: precise measurements will offer information on partonic vs. hadronic degree of freedom: **QCD** phase structure

BESII : multi-strange hadrons and ϕ meson

BESII : v₃ of low energies

Better NCQ scaling achieved at 39 GeV (up to 0.8 GeV/c²) and 200 GeV (up to 0.8 GeV/c²) by using scaling factor $n_q^{3/2}$

STAR: QM2014 R. Lacey, J. Phys. G 38 (2011) 124048

New Results from 54.4 and 27 GeV

FXT: Au+Au at $\sqrt{s_{NN}} = 4.5 \text{ GeV}$

STAR: arXiv:2007.14005

Follows energy trend

The Λv_1 results fit into the trend of STAR

- > Top Energy Collisions
 - > Partonic collectivity: *light flavor to charm*
- Beam Energy Scan II
 - v₁ slope of net-baryon: non-monotonic as energy
 - \blacktriangleright ϕ meson and multi-strange v_n : *partonic vs. hadronic*

BESII: RHIC 2019 – 2021

BESIII: RHIC FAIR/NICA/HIAF 2022 –

Explore QCD phase structure!

Electron cooling + longer beam bunches for BES-II factor 4-15 improvement in luminosity compared with BES-I

Detector upgrade

Event Plane Detector

forward EP and centrality definition: important for flow and fluctuation analyses

iTPC upgrade

increases TPC acceptance to ~1.7 in η ; improves dE/dx resolution

ETOF upgrade

New charged hadron PID capabilities for $1.1 < |\eta| < 1.6$

Fixed target program

extends STAR's physics reach to region of compressed baryonic matter 4.5, 3.9, 3.6, 3.0 GeV RHIC BES-II: 2019-2021

19.6 (580 M), 14.5 (325 M), 11.5 (235 M), 9.2 (135M ongoing) and 7.7 GeV Focus on $\sqrt{s_{NN}} \le 20$ GeV region

