

Observation of the Antimatter Helium-4 Nucleus (Anti-α)

QIU Hao^{1,2} for the STAR Collaboration

Institute of Modern Physics, Chinese Academy of Sciences
 Brookhaven National Laboratory

Outline

- History and motivation
- Identification and Anti-⁴He counts
- Event display
- ⁴He and anti-⁴He yields

- DOI: 10.1038/nature10079
- arXiv: 1103.3312v2

History of Anti Matter Search

APS April Meeting, 2011

STAR 🖈

BROOKHAVEN **STAR ☆** Anti-⁴He in IMP **High Energy Nuclear Collisions**

- Controlled, repeatable "little bangs".
- Prove the existence (if any), providing a point of reference for future possible observations in cosmic radiation.

Sato, H. & Yazaki, K. Phys. Lett. B 98, 153-157 (1981) Butler, S. T. & Perarson, C. A. Phys. Rev. Lett. 7, 69-71 $N_i = V g_i \int \frac{d^3 p}{(2\pi)^3} \exp\left(-\frac{E_i}{T} + \frac{\mu_i}{T}\right)$ (1961)

- Study production mechanism.

STAR Detector & Dataset

STAR 🖈

High Level Trigger

- Sector Level 3 (SL3) machines:
 - attached to 24 TPC sectors
 - data acquisition and hit reconstruction
 - tracking for HLT

- Global Level 3 (GL3)
 - event reconstruction
 - selecting events with charge 2 tracks
- ~70 % efficiency for charge 2 events within the selected ~1 % of all events Ke, Hongwei J7.00007

STAR ☆ Particle Identification by TPC dE/dx vs. p

2 anti-⁴He's can be identified by dE/dx vs. p alone in 2007 and 2010 data respectively. At higher momentum anti-⁴He and anti-³He dE/dx merge together.

STAR ☆ TOF and TPC WE BROOKHAVEN Combined Particle Identification

 $n_{\sigma dE/dx} = \ln((dE/dx^{measured})/(dE/dx^{bichsel}))/\sigma$ Path length (L)
Time of flight
Momentum p
Momentum p

- 18 counts in total
- 15 from 200 GeV collisions in 2010
 - Background ~ 1.4
 - Probability of all misidentification ~ 10⁻¹¹
 - Significance > 6
- 1 from 62 GeV collisions in 2010
 - 2 from 200 GeV collisions in 2007

APS April Meeting, 2011

Event Display

run ID	event ID	vertexZ	Ref Mult	nHits	nHitsdEdx	Rigidity (primary)	eta	phi	dca	path length	chi2	nσ4 _{He}	EMC Energy	tofLocalZ	tofLocalY	tot	tof	β	Mass
11073003	164108	-4.207	478	41	20	2.319	0.791	2.835	0.789	250.747	1.616	2.11		-0.916	-1.489	25.915	12.135	0.780	3.726

All 18 candidates are visually inspected

Invariant Yields

• 200 GeV Central (head on) collisions

STAR 🖈

- transverse momentum (p_T)/A: 0.75 ~ 1 GeV/c
- The exponential fit of the yields can be described by both coalescence and thermal models.
- Production rate reduces by a factor of 1.6x10³ (1.1x10³) for each additional antinucleon (nucleon) added to the antinucleus (nucleus).

• Next stable antinuclei are anti-⁶Li and anti-⁶He, with 10⁻⁶ yield of anti-⁴He, thus anti-⁴He may remain the heaviest stable antimatter in the foreseeable future.

APS April Meeting, 2011

Summary and Outlook

- Anti-⁴He is produced in high energy nuclear collisions and STAR is able to identify them by dE/dx vs. p and mass from Time Of Flight.
- A total of 18 counts are observed in three data sets, with 6σ significance in 200 GeV Au+Au collisions in 2010 alone.
- ⁴He and anti-⁴He yields approximately follow the exponential trend, which is expected by both coalescence and thermal models.

STAR 🖈

Thank you!

Anti-⁴He counts in different data sets

• 18 counts in total

- 15 from Run 10 200 GeV Au+Au collisions
 - 5 minbias + 5 central with 1 tagged by both triggers
 - 6 from other triggers
- 1 from Run 10 62 GeV Au+Au collisions
 - 2 from Run 7 200 GeV Au+Au collisions

• In Run 10 200 GeV Au+Au collisions

	Counts	Background	Significance
⁴ He	26	3.5	7.6
Anti- ⁴ He	15	1.4	6.5

⁴He and anti-⁴He yields

- Measure (anti-)⁴He/(anti-)³He ratio from Run 10 200 GeV Au+Au central HLT selected events
- Use (anti-)³He dN/(2πpTdpTdη) from old measurements to get (anti-)⁴He yield
- pт/A: 0.75 ~ 1 GeV/c
- α: 5 Anti α: 2
- He3: 953 Anti He3: 352
- α /primary He3 : 3.0 +- 1.3 (stat) + 0.5 0.3 (sys) e-3
- anti α/primary anti He3 : 3.2 +- 2.3 (stat) + 0.7 0.2 (sys) e-3
- $\alpha : 8.6 + 3.8 \text{ (stat)} + 0.9 2.8 \text{ (sys)} = 9 \text{ (GeV/c)} 2$
- anti α : 3.3 +- 2.4 (stat) + 0.5 0.9 (sys) e-9 (GeV/c)-2

α and anti-α yields- systematic errors

- background (-6%)
- knock outs (-5%)
- absorption (+4%)
- TPC tracking efficiency for He3 old measurement(+- 10 %)
- a slight p_T difference between the (anti-)He3 yield data points we use (~2.47 GeV/c) and 2.625 GeV/c (-12 %)
- (anti) He3 feed down from (anti) hypertriton (+18%)

ssev 5 W 4.5

4 3.5 2.5 2.5 1.5

0.5

-14 -12

Wed Dec 15 14:16:51 2010

-10

History

- In 1928, Dirac predicted the existence of negative energy states of electrons.
- In 1932, Anderson discovered positron in cosmic radiation.
- In 1955, antiproton and antineutron were observed at Bevatron, Berkly.
- In 1970 and 1974, anti-He3 and antitriton were discovered at Institute of High Energy Physics, Russia.
- In 1995, antihydrogen is produced at LEAR, CERN. PS210 collaboration.

• 简并度 Degeneracy

Anti- α in the Sky

AMS

