XXIV International Baldin Seminar on High Energy Physics Problems 2018

Highlights from the STAR experiment

Alexey Aparin For the STAR collaboration

Joint Institute for Nuclear Research

- Introduction
- > Azimuthal anisotropy
- Heavy flavor
- Global polarization
- Femtoscopy
- Fixed target program
- Hypertriton
- STAR future program

Introduction

Picture from QM18 presentation by Chun Shen

RHIC Top Energy p+p, p+Al, p+Au, d+Au, ³He+Au, Cu+Cu, Cu+Au, Ru+Ru, Zr+Zr, Au+Au, U+U 200 GeV QCD at high energy density/temperature Properties of QGP, EoS

Beam Energy Scan

Au+Au 7.7-62 GeV QCD phase transition Search for critical point Turn-off of QGP signatures

Fixed-Target Program Au+Au 3.0-7.7 GeV High baryon density regime with 420-720 MeV

Alexey Aparin

Relativistic Heavy Ion Collider

3.83 km circumference Suitable for p+p, p+A, A+A Max colliding energy: 200 GeV for Au+Au 510 GeV for p+p

In operation since 1999

Tuned for exploring QCD matter and it's phase boundary in different colliding systems (Au+Au, U+U, p+Al, Cu+Au, Zr+Zr, Ru+Ru)

Spin physics on polarized proton-proton beam

Alexey Aparin

STAR detector

Tracking and PID (full 2π) TPC: |η| < 1 TOF: |η| < 1 BEMC: |η| < 1 EEMC: 1 < η < 2 HFT (2014-2016): |η| < 1 MTD (2014+): |η| < 0.5

MB Trigger and event plane reconstruction BBC: 3.3 < |η| < 5 EPD(2018+): 2.1 < |η| < 5.1 FMS: 2.5 < |η| < 4 VPD: 4.2 < |η| < 5 ZDC: 6.5 < |η| < 7.5

• On-going/future upgrades iTPC (2019+): |η| < 1.5 eTOF (2019+): -1.6 < η < -1 FCS (2021+): 2.5 < |η| < 4 FTS (2021+): 2.5 < |η| < 4

Alexey Aparin

Azimuthal anisotropy in heavy ion collisions

Coordinate space anisotropy transforms to momentum space anisotropy

 $v_1 = \langle p_x/p_t \rangle$ describes the sideward collective motion of particles within the reaction plane (x-z)

Voloshin, Zhang. Z. Phys. C 70 (1996) 665 Poskanzer, Voloshin. Phys Rev. C 58 (1998) 1671 Probe of the softening of the EoS

- Strong softening consistent with the 1st order phase transition
- Weak softening is more likely due to crossover

Alexey Aparin

Alexey Aparin

Elliptic flow of **D**⁰

Charm quarks seem to follow NCQ-scaling behavior as light quarks Charm quarks gain significant flow

Phys Rev. Lett. 118, 212301 (2017)

Nuclear modification and heavy flavor in medium

Partons interact with the medium and lose energy through e.g. gluon radiation

Quarks are expected to exhibit different radiative energy loss depending on their mass (D.Kharzeev et al. Phys Letter B. 519:1999)

Nuclear Modification factor:

$$R_{AA}(p_t) = \frac{\sigma_{in}^{pp}}{\langle N_{coll}^{AA} \rangle} \cdot \frac{d^2 N_{AA}/dp_t d\eta}{d^2 \sigma_{pp}/dp_t d\eta}$$

Large collective flow and modification of yields for charm hadrons in A+A collisions

Understand heavy quark production, transport and hadronization in the presence of QGP

Nuclear modification factor for D⁰

• Similar to D-mesons at LHC and high- p_T pions at RHIC

First measurement of centrality dependence of Λ_c production in heavy ion collisions

- Λ_c/D^0 ratio increases from peripheral to central, indicative of hot medium effects
- Ratio for peripheral Au+Au consistent with p+p value at 7 TeV
- Enhancement predicted from coalescence hadronization

Alexey Aparin

Combined results from Y-> e+e- and Y-> μ + μ - improve precision of Y measurements

CMS PLB 04, 031 (2017)

Y(1S) suppression: similar at RHIC and LHC energies!

Y(2S+3S) is more suppressed than Y(1S) in the most central events

 $\Upsilon(1S) R_{AA}$: 0.50 ± 0.06 (stat.) ± 0.05 (sys.)

 Υ (2S+3S) R_{AA}: 0.17 ± 0.09 (stat.) ± 0.06 (sys.)

Alexey Aparin

Global Λ polarization

$$\frac{dN}{d\cos\theta^*} = \frac{1}{2} \left(1 + \alpha_H \mid P_H \mid \cos\theta^* \right)$$

 P_{H} : Λ /anti- Λ polarization vector in the hyperon rest frame (H denotes Λ /anti- Λ) α_{H} : decay parameter $\alpha_{\Lambda} = -\alpha_{\overline{\Lambda}} = 0.642 \pm 0.013$

Average vorticity points towards the direction of the angular momentum J_{sys} of the collision

Average projection of the polarization on J_{sys} is extracted:

$$\overline{P}_{H} \equiv \left\langle \vec{P}_{H} \hat{J}_{sys} \right\rangle = \frac{8}{\pi \alpha_{H}} \frac{\left\langle \cos(\phi_{p}^{*} - \phi_{\hat{J}_{sys}}) \right\rangle}{R_{EP}^{1}}$$

noted here as global polarization

Alexey Aparin

Global Λ polarization

STAR, Nature, 2017, 1701.06657

First observations of Lambda global polarization

The most vortical fluid

 $\omega = k_B T (\overline{P}_{\Lambda} + \overline{P}_{\overline{\Lambda}}) / \hbar = 10^{22} s^{-1}$

Global Λ polarization

Phys. Rev. C 98 (2018) 014910

Data on polarization from 2010, 2011, 2014

Measurements in Au-Au 200 GeV collisions 20-50 % centrality

 $P_H(\Lambda) \ [\%] = 0.277 \pm 0.040 (\text{stat}) \pm_{0.049}^{0.039} (\text{sys})$ $P_H(\bar{\Lambda}) \ [\%] = 0.240 \pm 0.045 (\text{stat}) \pm_{0.045}^{0.061} (\text{sys})$

5 -7 σ significance, comparable with BES-I results

No significant difference between Λ and anti- Λ polarization at $Vs_{NN} = 200$ GeV within the uncertainties.

Within the uncertainties these results agree with predictions from a hydrodynamic model (UrQMD+vHLLE) and the AMPT (A Multi-Phase Transport) model.

UrQMD+vHILLE: I. Karpenko and F. Becattini, EPJC (2017)77:213 AMPT: H. Li et al., Phys. Rev. C 96, 054908 (2017) Alexey Aparin XXIV ISHEPP, September 17 -22, Dubna, Russia

Polarization dependence on $P_{\rm T}$ and centrality

Phys. Rev. C 98 (2018) 014910

The polarization was also studied as function of the collision centrality, the hyperon's transverse momentum, and pseudorapidity.

No significant dependence on centrality or transverse momentum was observed.

I. Karpenko and F. Becattini PRL 120.012302, (2018)

Alexey Aparin

Femtoscopy

Single- and two- particle distributions:

$$P_1(p) = E \frac{dN}{d^3 p} = \int d^4 x S(x,p)$$

S(x,p) – emission function: the distribution of source density probability of finding particle with given x and p

$$P_2(p_1, p_2) = E_1 E_2 \frac{dN}{d^3 p_1 d^3 p_2} = \int d^4 x_1 S(x_1, p_1) d^4 x_2 S(x_2, p_2) \Phi_2(x_2, p_2/x_1, p_1)$$

Correlation function

$$C(p_1, p_2) = \frac{P_2(p_1, p_2)}{P_1(p_1)P_1(p_2)}$$

Alexey Aparin

centrality	$R_{inv}p-p$ [fm]	${\it R}_{inv} \overline{p} - \overline{p}$ [fm]	$R_{inv}p-\overline{p}$ [fm]
0-10%	${\bf 4.00} \pm 0.15 \pm 0.02$	$\textbf{3.83} \pm \textbf{0.20} \pm \textbf{0.03}$	$\textbf{3.39} \pm 0.12 \pm 0.14$
10-30%	$\textbf{3.61} \pm \textbf{0.13} \pm \textbf{0.17}$	$\textbf{3.68} \pm \textbf{0.15} \pm \textbf{0.11}$	$\textbf{2.69} \pm \textbf{0.10} \pm \textbf{0.12}$
30-70%	$2.72 \pm 0.07 \pm 0.07$	$\textbf{2.95} \pm \textbf{0.11} \pm \textbf{0.08}$	2.56 ± 0.09 ± 0.12

- R_{inv} smaller for less central collisions as expected
- No significant difference between p p and p-bar p-bar correlation functions
- Systematically R_{inv} (p-bar p) < R_{inv} (p p, p-bar p-bar) which indicates a need to refine low energy p-bar p measurements

Baryon Chemical Potential μ_{B}

BES-I main goals:

Search for 1st order phase transition Search for existence of the Critical Point Search for turn-off of QGP signatures **Finished** data taking

Originally BES-I program planed to go down to $Vs_{NN} = 5$ GeV

Collider mode

Can not cover energy region $Vs_{NN} < 7.7$ GeV

Fixed target mode Can cover energy region 3 Gev < √s_{NN} < 7.7 GeV

Fixed target program at STAR

BES Phase II to probe phase diagram of QCD matter, lowest energy is $\sqrt{s_{NN}} = 3$ GeV and cover region lack of experimental data.

BES-II can extend μ_{B} range from 400 MeV to about 720 MeV

A 1 mm thick (4% inter. prob.) gold target

Spectra consistent with AGS results

Statistical errors only

Spectra consistent with AGS results

Alexey Aparin

Directed flow v_1 in Au-Au at 4.5 GeV

Alexey Aparin

XXIV ISHEPP, September 17 -22, Dubna, Russia

Proton v₁ agrees with E895; Λ is close to proton

Alexey Aparin

Hypertriton lifetime

 R. O. Gomes, V. Dexheimer, S. Schramm, and C. A. Z. Vasconsellos, The Astrophys. J. 808, 8 (2015).

[2] L. L. Lopes and D. P. Menezes, Phys. Rev. C 89, 025805 (2014).
 [3] J. Antoniadis et al., Science 340, 448 (2013).

- [4] László P. Csernai, Joseph I. Kapusta, Phys. Reps. 131, 223 (1986).
- [5] A. Z. Mekjian, Phys. Rev. C 17, 1051 (1978).
- [6] Kaijia Sun et al., Phys. Lett. B 774, 103 (2017).

Hyperon-Nucleon interactions play an important role in theory of neutron stars and QCD

 measurements of masses of hypertriton and anti-hypertriton provide insight into H-N interactions and the CPT symmetry

- measurements sensitive to the temperature and nucleon phase-space of the system freezout

Phys. Rev. C 97 (2018) 54909

Alexey Aparin

High spatial resolution of HFT (< 30 μ m) allows precise determination of the decay vertex

Alexey Aparin

3 H and anti- 3 H mass reconstruction

Energy loss corrections applied

Alexey Aparin

Hypertriton and CPT symmetry

Hypertriton binding energy definition: $m_{\Lambda} + m_{d} - m_{\frac{3}{\Lambda}H} = 0.44 \pm 0.10(\text{stat.}) \pm 0.15(\text{syst}) \text{MeV}$

Mass difference between ³H and anti-³H was measured for the first time

First test of CPT symmetry in light

Alexey Aparin

XXIV ISHEPP, September 17 -22, Dubna, Russia

Future detector upgrades

EPD installed

- 2.1 < |η| < 5.1
- Improves EP resolution
- Independent trigger

Alexey Aparin

iTPC upgrade 2019

- p_T > 60 MeV/c
- |ŋ| < 1.5
- Improvement of dE/dx resolution

eTOF upgrade 2019

- -1.6 < η < -1.1
- Extends forward PID capability

Event Plane Detector

\checkmark 2 wheels

- East and West EPD (2.1 < |η| < 5.1)

✓ 12 supersectors

- Scintilator wedges, milled to form 31 tiles
- Optically separated by epoxy
- ✓ Fiber optics
 - Wavelength shifting fibers
- ✓ Sensors
 - Silicon Photon Multipliers (SiMP)
- All 744 tiles are good
- Timing resolution about 0.75 ns with fastest TAC method
- The 2nd order event plane resolution is 0.37 in 20-30% central events in isobar collisions

STAR Note 0666: An Event Plane Detector for STAR

Alexey Aparin

iTPC upgrade

✓ Inner sectors

- Increase readout pad rows (13 to 40)
- New wire frames
- New designed strongback

✓ New electronics for inner sectors

- Doubled readout channels. Use ALICE SAMPA chip

\checkmark New designed insertion tooling

✓ Replace all 24 inner sectors

- One sector has been installed and used

- in the data taking 2018
 - Full installation in fall 2018
- Maximum hits per track 45 -> 72
- Lower transverse momentum threshold of 60 MeV/c
- Extends |η| coverage 1.1 -> 1.5

STAR Note 0644: Technical Design Report for the iTPC UpgradeAlexey AparinXXIV ISHEPP, September 17 -22, Dubna, Russia

eTOF upgrade

✓ Install, commission and use 10% of the CBM TOF modules in STAR

✓ Design concept

- 3 layers, 12 sectors, 36 modules, 108 MRPCs
 ✓ PID in the forward direction
 ✓ One sector with three modules has been
 installed and used in the data taking 2018
 ✓ Full installation in fall 2018

3 eTOF modules have been installed

arXiv:1609.05102v1 Alexey Aparin

STAR future program

Collision Energy (GeV)	7.7	9.1	11.5	14.5	19.6	
μ_B (MeV) in 0-5% central collisions	420	370	315	260	205	
Observables						
R_{CP} up to $p_T = 5 \text{ GeV}/c$	-		160	125	92	S
Elliptic Flow (ϕ mesons)	80	120	160	160	320	
Chiral Magnetic Effect	50	50	50	50	50	
Directed Flow (protons)	20	30	35	45	50	
Azimuthal Femtoscopy (protons)	35	40	50	65	80	
Net-Proton Kurtosis	70	85	100	170	340	
Dileptons	100	160	230	300	400	
${>}5\sigma$ Magnetic Field Significance		80	110	150	200	
Required Number of Events	100	160	230	300	400	

STAR BES-II and FXT programs will cover broad range of interest

FXT

•Data rate is DAQ limited

- •iTPC & eTOF will be available
- •Will have an overlap with the collider data for 7.7 GeV

Alexey Aparin

Single Beam Energy (GeV/nucleon)	$\sqrt{s_{ m NN}}$ (GeV)	Run Year	Run Time	Species	Min-Bias Events Number
5.75	3.5 (FXT)	2020	2 days	Au+Au	100M
7.3	3.9 (FXT)	2019	2 days	Au+Au	100M
9.8	4.5 (FXT)	2019	2 days	Au+Au	100M
13.5	5.2 (FXT)	2020	2 days	Au+Au	100M
19.5	6.2 (FXT)	2020	2 days	Au+Au	100M
31.2	7.7 (FXT)	2019	2 days	Au+Au	100M

Thank you for the attention!

Baryon chemical potential

Backup slides

Alexey Aparin

Results from BES-I

 $R_{\rm CP}$ of charged hadrons

- Becomes smaller than 1 at 39 GeV and higher
- Reaches plateau at 19.6 GeV and 27 GeV

STAR, Phys. Rev. Lett. 121 (2018) 32301

Alexey Aparin

Alexey Aparin