LXX International conference "NUCLEUS – 2020. Nuclear physics and elementary particle physics. Nuclear physics technologies"

recent results on heavy-ion collisions.

Alexey Aparin for the STAR collaboration

Joint Institute for Nuclear Research

Relativistic Heavy Ion Collider

Suitable for p+p, p+A, A+A

Max. colliding energy: 200 GeV for Au+Au 510 GeV for p+p

Tuned for exploring QCD matter and its phase boundary in different colliding systems (Au+Au, U+U, p+Al, p+Au, d+Au, ³He+Au, Cu+Au, Cu+Cu, Al+Au, Zr+Zr, Ru+Ru)

Spin physics on polarized proton-proton beam

• Tracking and PID (full 2π) TPC: $|\eta| < 1$ iTPC (2019+): $|\eta| < 1.5$ TOF: $|\eta| < 1$ eTOF (2019+): -1.6 < η < -1 BEMC: $|\eta| < 1$ EEMC: $1 < \eta < 2$ HFT (2014-2016): $|\eta| < 1$ MTD (2014+): $|\eta| < 0.5$

• MB trigger and event plane reconstruction BBC (before 2018): $3.3 < |\eta| < 5$ EPD (2018+): $2.1 < |\eta| < 5.1$ FMS (before 2017): $2.5 < |\eta| < 4$ VPD: $4.2 < |\eta| < 5$ ZDC: $6.5 < |\eta| < 7.5$

• Future upgrades (2022+) FCS: $2.5 < |\eta| < 4$ FTS: $2.5 < |\eta| < 4$ ECAL & HCAL: $2.5 < |\eta| < 4$

Phys. Rev. C 102 (2020) 34909

Alexey Aparin

Momentum spectra of strange particles at BES-I

 K_{s}^{0} , Λ, anti-Λ, Ξ⁻ transverse momentum spectra at midrapidity |y| < 0.5

Levy fit

 $\frac{d^2 N}{2\pi p_T dp_T dy} \propto \left(1 + \frac{m_T - m_0}{nT}\right)^{-n}$

Blast-wave fit

$$\frac{d^2 N}{2\pi p_T dp_T dy} \propto \int_0^R r dr m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T}\right) \times K_1 \left(\frac{m_T \cosh \rho(r)}{T}\right)$$

Momentum spectra of strange particles at BES-I

 $Ξ^+$, $Ω^-$, $Ω^+$, φ transverse momentum spectra at midrapidity |y| < 0.5

Exponential fit

$$\frac{d^2 N}{2\pi p_T dp_T dy} \propto e^{-\frac{m_T}{T}}$$

Boltzmann fit

Data are consistent with results previously obtained by NA49 and STAR with better precision

Anti-baryon to baryon ratio follows the hierarchy for all energies

$$\overline{\Omega}^+/\Omega^- > \overline{\Xi}^+/\Xi^- > \overline{\Lambda}/\Lambda$$

which is consistent with the predictions from the statistical thermal model

Data are consistent with previous measurements Maximum in production of Λ , Ξ^{-} at energies ~ 10 GeV $R_{\rm CP}$

2

3

5

Possible hints of the onset of deconfinement

0-5%

40-60%

2

3

1

 $p_{_{\rm T}}$ (GeV/c)

 $\circ \Omega^{\dagger} + \overline{\Omega}^{\dagger}$

Net-kaon cumulants measurements

High order cumulants of conserved number distributions are sensitive to critical phenomena, related to the correlation length and susceptibilities.

Susceptibility ratios fluctuations near the CP

Phys. Lett. B 785 (2018) 551

Alexey Aparin

Cumulants

$$C_{1} = \langle N \rangle$$

$$C_{2} = \langle (\delta N)^{2} \rangle$$

$$C_{3} = \langle (\delta N)^{3} \rangle$$

$$C_{4} = \langle (\delta N)^{4} \rangle - 3 \langle (\delta N)^{2} \rangle^{2}$$

Moments

$$M = C_1, \sigma^2 = C_2, S = \frac{C_3}{(C_2)^{\frac{3}{2}}}, \kappa = \frac{C_4}{(C_2)^2}$$

 $\frac{C_2}{C_1} = \frac{\sigma^2}{M} \qquad \qquad \frac{C_3}{C_2} = S\sigma$

 $\frac{C_4}{C_2} = \kappa \sigma^2$

Non-monotonic behavior for higher order cumulants.

Large values of C_3 and C_4 for central events show that distributions have non-Gaussian shape. It may suggest for the enhanced fluctuations arising from a possible critical point.

arXiv:2001.02852v2

Alexey Aparin

Λ cumulants measurements

 Λ cumulants are measured for energy range from 19.6 to 200 GeV

Phys. Rev. C 102 (2020) 24903

Alexey Aparin

NUCLEUS 2020 - online conference 11 - 17 0

Net-proton and net-A cumulants ratios are similar for central collisions at all energies.

0

Alexey Aparin

200

100

30

40 50

 $\sqrt{s_{_{NN}}}$ (GeV)

Hypertriton and anti-hypertriton measurements

 ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi$ ${}^{3}_{\Lambda}H \rightarrow d + p + \pi$ $S/\sqrt{(S+B)} = 11.4 \left({}^{3}_{\Lambda}H\right)$ $S/\sqrt{(S+B)} = 6.4 \left({}^{3}_{\Lambda}\overline{H}\right)$

 $m_{_{\Lambda}^{3}H} = 2990.95 \pm 0.13(stat.) \pm 0.11(syst)$ $m_{_{\Lambda}^{3}\overline{H}} = 2990.60 \pm 0.28(stat.) \pm 0.11(syst)$

Nature Physics 16 (2020) 409

Alexey Aparin

NUCLEUS 2020 – online conference 11 – 17 October 2020

$$\frac{m_{_{\Lambda}^{3}H} - m_{_{\Lambda}^{3}\overline{H}}}{m} = (0.1 \pm 2.0(\text{stat.}) \pm 1.0(\text{syst.})) \times 10^{-4}$$

$$B_{\Lambda} = 0.41 \pm 0.12(stat.) \pm 0.11(syst.)MeV$$

Analysis of ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He is ongoing More results are coming!

First measurement of inclusive jet $R_{\mbox{\tiny CP}}\,$ at RHIC

Significant suppression in central collisions with respect to peripheral collisions

Results are consistent with those for hadrons (RHIC&LHC) and jets (LHC) data. Possibly different p_T dependence for charged hadrons and jets

New data on dielectron production for 27, 39 and 62.4 GeV confirm a significant excess in the yields of dielectrons in the low mass region previously observed.

Data are consistent with model calculations

arXiv:1810.10159v1

Alexey Aparin

A hint of excess in the intermediate mass region can be observed in both $\sqrt{s_{NN}} = 27$ and 54.4 GeV measurements

- New data from BES-II have enough statistics for differential measurements vs. centrality, p_T, etc.
- Reduced charm cross section enhances sensitivity to thermal radiation in the intermediate mass region
- Systematically study energy dependence of low mass region excess at $\sqrt{s_{\rm NN}}=7.7$ and 19.6 GeV

Isobar Blind Analysis : Procedure

From the talk by James Dunlop

115/A
AR

	STAR	Beam U	se Req	uest for	Run20	
	Beam Energy	$\sqrt{s_{NN}}$ (GeV)	$\mu_{\rm B} \ ({\rm MeV})$	Run Time	"Good" Number Events	
	(GeV/nucleon) 9.8	19.6	205	4.5 weeks	requested /collected 400M 582N	d 1
	7.3	14.5	260	5.5 weeks	300M 324N	
n20	$5.75 \\ 4.55$	11.5 9.1	$315 \\ 370$	9.5 weeks 9.5 weeks	230M 160M	
	3.85	7.7	420	12 weeks	100M	
20	31.2 19.5 13.5 9.8	7.7 (FXT) 6.2 (FXT) 5.2 (FXT) 4.5 (FXT)	$420 \\ 487 \\ 541 \\ 589$	2 days 2 days 2 days 2 days 2 days	100M 51N 100M 100M 100M	
	7.3 5.75	3.9 (FXT) 3.5 (FXT)	633 666	2 days 2 days 2 days	100M 53N 100M 100M	
	4.55	3.2 (FXT) 3.0 (FXT)	099 721	2 days 2 days	100M 201W	+300M

Despite the unprecedented situation with COVID-19 limitations STAR continues to collect data.

> All plans for Run 20 were achieved/exceeded Final data for BES-II will be taken in Run 21

Forward-rapidity 2.5< η <4

pp, pA

<u>Beam:</u> 500 GeV: p+p 200 GeV: p+p and p+A

Physics Topics:

- TMD measurements at high x transversity → tensor charge
- Improve statistical precision for Sivers through Drell-Yan
- Δg(x, Q²) at low x through Dijets
- Gluon PDFs for nuclei
- R_{pA} for direct photons & DY
- Test of Saturation predictions through di-hadrons, g-Jets

Au+Au

Beam: 200 GeV: Au+Au

Physics Topics:

- Temperature dependence of viscosity through flow harmonics up to h~4
- Longitudinal decorrelation up to h~4
- Global Lambda polarization
 → Test for strong
- rapidity dependence

Observables:

- Inclusive jets and di-jets
- Hadrons in jets
- Direct photons
- Drell-Yan e+e-
- Lambda's
- Mid-forward & forward-forward
- rapidity correlations
 Requirements:
- Good *e*/*h* separation
- Hadrons, photons, π^0 identification

2021/22: 500 GeV polarized pp run

Additional pp, pA, and AA data taking in parallel to the sPHENIX campaign

3 layers of silicon microstrip detectors4 layers of Small-strip Thin Gap Chamberscombined with forward ECAL and HCAL

Alexey Aparin

Backup slides

Jet probes

Vary:

- quark vs. gluon of recoil jets
- <path length>

$$I_{AA}(p_{T,jet}^{ch}) = \frac{Y(p_{T,jet}^{ch})^{Au+Au}}{Y(p_{T,jet}^{ch})^{p+p}}$$

STAR Beyond BES-II

- Detectors from BES-II upgrade (iTPC and EPD) will keep going
- The forward ($2.5 < \eta < 4$) upgrade includes Trackers (silicon microstrip tracker & small-strip Thin Gap Chamber) and Calorimeters (ECAL & HCAL) dedicated to study nuclear structure, QGP.

