

The STAR W Physics Program - Status and Future Plans -

(On behalf of the STAR Collaboration)

Workshop on Progress in High- p_T Physics at RHIC BNL, Upton, NY, March 17, 2010

Outline

 $\bar{\nu}_{e}$

Run 9 Lessons and Expectations:
STAR W Results

- Future Plans STAR W Program
 - O Plans
 - Projections of future mid-rapidity measurements
 - Projections of future forward/ backward rapidity measurements

- The STAR Forward GEM Tracker
 - Layout
 - O Technical realization
 - Schedule

Introduction

Workshop on Progress in High- p_T Physics at RHIC BNL, Upton, NY, March 17, 2010

 Summary and Outlook

2

STAR W program in e-decay mode at mid-rapidity and forward/backward rapidity

Workshop on Progress in High- p_T Physics at RHIC BNL, Upton, NY, March 17, 2010

STAR Overview

- Calorimetry system with 2π coverage: BEMC (-1<η<1) and EEMC (1<η<2)
- TPC: Tracking and particle ID

- ZDC: Relative luminosity and local polarimetry (500GeV)
- BBC: Relative luminosity and Minimum bias trigger

Workshop on Progress in High- p_T Physics at RHIC BNL, Upton, NY, March 17, 2010

First collisions of polarized proton beams at STAR at $\int s = 500 \text{GeV}$: Run 9 (P~40% / L~14pb⁻¹)

- STAR Mid-rapidity W program ($|\eta|<1$): BEMC and TPC
- STAR Forward/Backward W program (1<|n|<2): EEMC and TPC / FGT (Installation in summer 2011)

- W boson kinematics relevant for STAR rapidity acceptance
 - Leptonic rapidity inherits relation to mean x
 - Forward rapidity:
 - **η>** 0
 - $\Box \quad \langle x_1 \rangle \text{ larger than } \langle x_2 \rangle$
 - Backward rapidity:
 - Π η< 0</p>
 - $\Box \quad \langle x_1 \rangle \text{ less than } \langle x_2 \rangle$
 - Mid-rapidity:
 - **η~**0
 - $\Box \quad \langle x_1 \rangle \text{ similar to } \langle x_2 \rangle$

A_L behavior for STAR mid-rapidity and forward/backward rapidity region

Workshop on Progress in High- p_T Physics at RHIC BNL, Upton, NY, March 17, 2010

G FGT layout

FGT Quarter

Section

- FGT: 6 light-weight triple-GEM disks using industrially produced GEM foils (Tech-Etch Inc.)
- New mechanical support structure
- Expected installation: Summer 2011

APV chip

7

GEM technology

• Example: Triple-GEM application at COMPASS

• Advantages:

- Reliable (COMPASS, multi-year experience)
- □ High gas amplification (Multiple GEMs: up to ~10⁶)
- \Box Fast (< 20 ns FWHM, rate capability up to 10⁵ Hz/mm)
- Low mass (50μm Kapton + 10μm Cu; Thin low Z read-out plane)
- \Box Good spacial resolution (1D and 2D) (~60 μm)
- Simple construction and in-expensive

F. Sauli, Nucl Instr. and Meth. A386 (1997) 531.

C. Altunbas et al., Nucl Instr. and Meth. A490 (2002) 177.

Workshop on Progress in High- p_T Physics at RHIC BNL, Upton, NY, March 17, 2010

Ρ

Standard GEM foil hole layout:

- D Pitch (P) 140 μm
- \Box Outer diameter (D) 70 μ m
- $\Box~$ Inner diameter (d) 50 μm

Source tests

- Two identical detectors, one with CERN foils, one using Tech-Etch foils
- Both detectors give reasonable X-Ray spectrum using ⁵⁵Fe source with comparable energy resolution (~20%)

Workshop on Progress in High- p_T Physics at RHIC BNL, Upton, NY, March 17, 2010

Testbeam results - Results

BNL, Upton, NY, March 17, 2010

F. Simon et al., NIM A598 (2009) 432.

Conclusion:

Charge sign reconstruction impossible beyond η = ~1.3

6 triple-GEM disks, assumed spatial resolution 60µm in x and y (Fairly insensitive for 60-100µm) Charge sign reconstruction probability above 90% for 30 GeV p_T over the full acceptance of the EEMC for the full vertex spread

Overview

BNL, Upton, NY, March 17, 2010

• W measurement:

□ Total efficiency: 0.56

Efficiency Component	$W^- \to e^- + \bar{\nu}_e$	$W^+ \rightarrow e^+ + \nu_e$
Trigger: ϵ_{trig}	0.86 ± 0.04	0.88 ± 0.04
Vertex: ϵ_{vertex}	0.91 ± 0.03	0.91 ± 0.03
Reconstruction: ϵ_{reco}	$0.72 \ ^{+0.13}_{-0.11}$	$0.71 \begin{array}{c} +0.14 \\ -0.11 \end{array}$
Total: ϵ_{total}	$0.56 \ ^{+0.11}_{-0.09}$	$0.56 \begin{array}{c} +0.12 \\ -0.09 \end{array}$

G Signal (S) / Background (B):

 \Box S/B = 6 for W⁻

 \Box S/B = 11 for W⁺

- \Box Charge sign separation demonstrated to high-p_ $\sim 50 GeV/c$
- Global variables:
 - □ Luminosity: ~14pb⁻¹ (Large sys. uncertainty: ~23%)
 - Polarization: ~40%
 - Polarization uncertainty (Sum of Y+B beams): 9.2%

Run 9 Lessons and Expectations: STAR W Results

Background (1): W signal (S) vs. QCD background (B)

Run 9 serves as benchmark for mid-rapidity QCD background treatment: S/B=11 for W⁺ and S/B=6 for W⁻ (Integrated for E_T > 25GeV)

• Future projections: Assume Run 9 background performance

13

Background (2): W signal (S) vs. QCD background (B)

- QCD MC simulations used for forward rapidity QCD background treatment
- Future projections: Assume S/B (W⁺=W⁻) = ~1.1 as shown above (Same as for 2008 DOE RHIC Spin Report)

Workshop on Progress in High- p_T Physics at RHIC BNL, Upton, NY, March 17, 2010

TPC Run 9 Lessons and Expectations: STAR W Results

TPC performance: Mid-rapidity high $p_T e^{\pm}$ charge separation (1)

positron $p_T = 5 GeV$

- electron $p_T = 5 GeV$
 - +/- distance D: $\sim 1/P_T$ $p_T = 5 \text{ GeV}$: D $\sim 15 \text{ cm}$ $p_T = 40 \text{ GeV}$: D $\sim 2 \text{ cm}$

Successful separation of different charge states!

Assign: $Q/p_T > 0$ positrons $Q/p_T < 0$ to be electrons

Run 9 Lessons and Expectations: STAR W Results

- TPC performance: Mid-rapidity high $p_T e^{\pm}$ charge separation (2)
 - O TPC Running experience:
 - TPC currents in Run 9 / 500GeV higher than previously observed
 - $\hfill\square$ Frequent HV trips resulted in lowering TPC inner-sector HV

 \Rightarrow Stable running

- □ New TPC electronics with S/N~30 compared to old electronics S/N~20 can handle lower TPC gains due to lower HV of inner sectors ⇒ Efficiency not affected
- TPC calibration: Extensive effort following Run 9 resulting in successful charge-sign separation at high-p_T (~50GeV/c)
- TPC long-term performance:
 - Careful monitoring required in particular at higher luminosity operations
 - $\square W program (\Rightarrow Low W trigger rate) expected not to be$

affected!

Workshop on Progress in High- p_T Physics at RHIC BNL, Upton, NY, March 17, 2010

Future plans: Projections

A_L projections

lepton |η|<1: 2 beams, eff=0.65 w/ 9MHz RF, Run9 QCD bckg, rhicbos σW*,W '=82, 19 pb lepton [η]∈[1,2]: 1 beam, eff=0.60 w/ 9MHz RF, M-C QCD bckg, rhicbos σW^{*},W ^{*}=5.3, 4.7 pb

lepton n

- Assumptions:
 - □ Efficiency:
 - Mid-rapidity: 0.65 0
 - Forward rapidity: 0.60
 - Assume availability of 9MHz RF
 - Background:
 - Mid-rapidity: Run 9 0
 - O Forward rapidity: QCD MC simulations

□ Full charge-sign discrimination at high-

рт

• Conclusions:

- **W** Program at RHIC is a multi-year program -Initial sample of ~100pb⁻¹ / ~50% is only a step along the way!
- Critical:
 - 0 Design polarization performance of 70% to collect at least 300pb⁻¹
 - 0 Polarization
 - uncertainty ~5%

Workshop on Progress in High-pT Physics a BNL, Upton, NY, March 17, 2010

17

Summary

□ STAR W program

- First Run 9 STAR W result (Cross-section and A_L for W⁺/W⁻ at mid-rapidity) important milestone!
- O Mid-rapidity:
 - □ Charge sign discrimination: Demonstrated at high-p_T (~50GeV/c)
 - □ Signal (S) / Background (B): S/B = 6 for W⁻ and S/B = 11 for W⁺ (Integrated for E_T >25GeV)
- Forward rapidity: Complete FGT construction in ~fall 2010 followed by full system test and subsequent full installation in ~summer 2011
 - \Rightarrow Ready for anticipated long 500GeV polarized pp run in FY12 (Run 12)
- Critical: Design polarization performance of 70% with ~5% absolute polarization uncertainty (⇒ Required by eRHIC program!) to collect at least 300pb⁻¹!
- Future measurements of A_L at STAR at mid-rapidity and forward rapidity (Wide rapidity coverage!) are expected to play an important role in our understanding of the polarized QCD sea!