Supported in part by

Office of Science BENC (Barrel Electromagnetic Calorimeter)

RHIC/AGS User Meeting 2024, BNL, NY

Calibration for STAR Run 2022 Charles Clark

Temple University, College of Science and Technology, Philadelphia, PA

Run22 BEMC Calibration

During STAR Run 2022, proton beams were collided at a center-of-mass energy, $\sqrt{s} = 508 \ GeV$.

College of Science and Technology

TEMPLE UNIVERSITY®

- Data set: Run22 pp508 physics preview production that contains 20% of st physics stream from all runs.
- This sample contains a suboptimal (Pass03) Space Charge calibration (see TPC Calibration poster).

• The BEMC is used for measurements of

MIP Peak Fit Study

- Gaussian* Landau distribution was used to fit each MIP peak in all good towers. However, there is no physical motivation to use the product fit. Gaussian & Landau (Gaussian convoluted by a Landau) distribution can be used alternatively to check the stability of resolution to the fit and relative gains.
- In this study, good towers were fitted with the two types of distributions mentioned above. This study used 5 fixed fitting ranges to analyze the fit-range dependence on the resulting MIP peak mean ADC, starting with the nominal range [7,30]. The upper bound stayed fixed for two ranges, [8,30] and [6,30]. The lower stayed fixed for the last two ranges, [7,25] and [7,40].
- As the upper bound increase, the convolution fit showed significant improvement based on the

Fit Distributions (Product [Red], Convolution [Blue]) in Tower Histogram (left) and Reduced χ^2 Distribution for each Fit for Nominal Range

- The ideal candidates for this calibration are e^{\pm} tracks. However, STAR's kinematics doesn't give us enough e^{\pm} tracks to cover all towers in the BEMC.
- Because of this reason, the BEMC calibration is split into two parts:
 - 1. Relative variations of tower gain are studied based on minimum-ionizing particles (MIPs). They are abundant in STAR kinematics. The tower gain can be extracted from the expected energy deposit in each tower via the following expression: $0.264(1+0.056\eta^2)$

- electrons and photons and to trigger on high p_T processes such as jet/di-jets and W/Z events.
- Precise understanding of the performance of BEMC is critical to reduce systematic uncertainties in these analyses.

Example of good (left) and bad (right) towers during MIP analysis

- During the MIP analysis, MIP spectra is analyzed by plotting the ADC signal for each tower. Each distribution is fitted with a Gaussian*Landau fit and the mean from the fit is used as the ADC_{MIP} value for the relative gain equation.
- Each tower is given a status of good, bad, and empty based on the quality of the distribution and how well the fit quality is to that distribution.

Fit Distributions (Product [Red], Convolution [Blue]) in Tower Histogram(left) and Reduced χ^2 Distribution for each Fit for [8,30] Range

Fit Distributions (Product [Red], Convolution [Blue]) in Tower Histogram(left) and Reduced χ^2 Distribution for each Fit for [6,30] Range

 $C_{rel} = ADC_{MIP} \sin(\theta)$ where $C_{rel} * ADC_{MIP}$ (ADC: Analog-to Digital Conversion signal) is the expected energy deposit in a tower at η due to MIPs. (θ = polar angel, η = pseudorapidity)

2. Electron candidates in the towers at the same η -ring are used to obtain ring-wise absolute gain:

 $C_{abs} = \overline{\langle E/p \rangle_{ring}}$

- Triggering: Barrel High Tower (BHT) and Jet-Path (JP) triggers.
- Selection Cuts:
- Vertex: Vertex Rank > 10⁶, $|z_{vtx}| < 30$ cm
- Track: Only one track per tower per event, tracks must enter and exit the same tower, $p_{trk} > 1 \text{ GeV}$
- Tower: $x_{ADC} x_{ped} > 1.5\sigma(x_{ped}), x_{ADC}$ $x_{ped} < 2\sigma(x_{ped})$ for surrounding towers.

Initial MIP Study

- Initial MIP study for Run22 was performed on the preview sample based on parameters optimized for Run17.
- Run22's plot shows low track counts and no sign of MIPs for towers in $\eta < 0$ and $-1.91 < \phi < 0$
 - 1.44 that region that passes all selection criteria.
- The cause of the low MIP yield in this region is currently under investigation.

Tower from Crate 8 that shows low track count and no MIP peak (left) compared to tower outside of Crate 8 (right)

Comparing 4 regions/samples for Selection Cut Efficiency in MIP Selection Criteria : Run17, All Space (Black) Run22, All Space (Red) Run22, Crate 7 Space (Green) Run22, Crate 8 Space (Blue)

> Run17 Run22: All space Run22: Crate 7 Space Run22: Crate 8 Space

Trigger Selection Vertex Selection Track Selection Tower Selection • In the plot above, the efficiency in the MIP analysis selection cuts shows that the track output from Crate 8 is significantly less at the tower selection compared to the 3 other samples.

- **Summary and Next Steps** This calibration aims to find the relative and absolute gains for each tower in the calorimeter through analyzing MIPs and electron tracks, respectively.
- The MIP analysis was done using a suboptimal value of space charge provided from the TPC calibration. The behavior of the Crate 8 towers could be related to the pedestal values and pedestal width values from the database, or some selection cut in the source code.
- The fit study showed no significant lower-limit dependence from both convolution and product fits. However, a significant improvement was observed with the convolution fit when increasing the upper limit up to 40 ADC.
- Further study will be performed with ADC_{MIP} obtained from the convolution fits.
- Next steps include:
 - Repeat the MIP study on a small sample using the latest space charge correction to investigate improvements with better tracking.
 - Study the corrected space charge from the TPC calibration by plotting N+/N- vs. p_T for any charged particles (pions, electrons, and tracks without any PID selection, for example, were used for the Run17 analysis). This is done as a cross-check to see if the TPC calibration corrected the fill-by-fill dependence.
 - Perform electron analysis and analyze the systematic uncertainties.