Reaction plane correlated triangular flow in BES-II and its connection to the EoS

Cameron Racz
(for STAR Collaboration)
UC Riverside
(cracz001@ucr.edu)
BES-Tea Seminar Series

April 5, 2023

Contents

■ Motivation: Why triangular flow?

- Analysis Methods
- Results of v_{3}
- Model Comparisons and the EOS

star Triangular Flow $\left(v_{3}\right)$ Short Overview

- Often mentioned in heavy-ion collisions above the QCD phase transition when a QGP is present.

■ Develops solely due to event-by-event fluctuations in the participant region geometry [1].

- Sensitive to the viscosity of the medium [2].
- No correlation to the reaction plane [1].

bnl.gov

[1] B. Alver and G. Roland, Phys. Rev. C, 81:054905 (2010)
[2] B. Alver et al., Phys. Rev. C, 82:034913 (2010)

stą Triangular Flow $\left(v_{3}\right)$ Developments

- A hybrid transport + hydrodynamics model suggested that $v_{3} \rightarrow 0$ at low collision energies $(\sim 5 \mathrm{GeV})$ while v_{2} does not due to transport dynamics [3].
- Can't get rid of the elliptic shape of the overlap region.
- The more monotonic v_{3} gives a clearer signal of QGP formation.
- Maybe we should check this out with STAR!

[3] J. Auvinen and H. Petersen,
Phys. Rev. C, 88:064908 (2013)

star Triangular Flow $\left(v_{3}\right)$ Developments

■ Recent studies by HADES at an energy well below the phase transition $(2.4 \mathrm{GeV})$ have shown a clear v_{3} signal calculated using the first-order event plane (Ψ_{1}) [4].

star Triangular Flow $\left(v_{3}\right)$ Developments

■ Recent studies by HADES at an energy well below the phase transition $(2.4 \mathrm{GeV})$ have shown a clear v_{3} signal calculated using the first-order event plane (Ψ_{1}) [4].

- Can't be created by fluctuations!

star Triangular Flow $\left(v_{3}\right)$ Developments

■ Recent studies by HADES at an energy well below the phase transition $(2.4 \mathrm{GeV})$ have shown a clear v_{3} signal calculated using the first-order event plane (Ψ_{1}) [4].

- Can't be created by fluctuations!
- What is the source of this \boldsymbol{v}_{3} ?
- What is the driving force?

star Triangular Flow $\left(v_{3}\right)$ Developments

- Recent studies by HADES at an energy well below the phase transition $(2.4 \mathrm{GeV})$ have shown a clear v_{3} signal calculated using the first-order event plane (Ψ_{1}) [4].
- Can't be created by fluctuations!
- What is the source of this v_{3} ?
- What is the driving force?
- STAR fixed target (FXT) mode in BES-II provides an opportunity to scan all the way down to $\sqrt{S_{N N}}=3.0$ GeV . Developments
- Recent studies by HADES at an energy well below the phase transition $(2.4 \mathrm{GeV})$ have shown a clear v_{3} signal calculated using the first-order event plane (Ψ_{1}) [4].
- Can't be created by fluctuations!
- What is the source of this v_{3} ?
- What is the driving force?
- STAR fixed target (FXT) mode in BES-II provides an opportunity to scan all the way down to $\sqrt{S_{N N}}=$ 3.0 GeV .
- Our analysis pivoted from fluctuation-driven v_{3} to looking for this new v_{3} and answering the questions above utilizing the lowest energy of 3.0 GeV .
- (v_{3} from Ψ_{3} should also be explored but is much more difficult.)

Analysis Methods

STAR

STAR Fixed Target Experimental Setup

- FXT mode utilizes a 1 mm thick gold foil fixed at one end of the TPC.
- One gold beam is circulated to strike the foil in the direction of the TPC.

- $E_{\text {beam }}=3.85 \mathrm{GeV}$
- $y_{\text {mid }}=-1.045$
- This beam direction is normally defined as the negative rapidity direction; in this analysis $y<0$ is forward.

STAR

STAR Fixed Target Experimental Setup

- The TPC and TOF are used for particle identification from $\mathrm{dE} / \mathrm{dx}$ and β measurements, respectively.

- The EPD is a circular detector at far forward y made of many scintillating tiles to measure hits of charged particles.
- We can extract the nMIP value and azimuthal angle ϕ from each hit to reconstruct event plane angles Ψ.

STAR

Particle Identification

- $\pi^{ \pm}$and $K^{ \pm}$are identified with $\mathrm{dE} / \mathrm{dx}$ from the TPC and m^{2} info from the TOF.
- Protons are identified with $\mathrm{dE} / \mathrm{dx}$.

$$
m^{2}=|p|^{2}\left(\frac{1}{\beta^{2}}-1\right)
$$

STAR

Particle

 Identification- $\pi^{ \pm}$and $K^{ \pm}$are identified with $\mathrm{dE} / \mathrm{dx}$ from the TPC and m^{2} info from the TOF.
- Protons are identified with $\mathrm{dE} / \mathrm{dx}$.
- Black solid boxes = acceptance for v_{3} vs centrality.
- Black dashed box = acceptance for v_{3} vs rapidity.
- Red solid (dashed) lines = mid (target) rapidity.

star Event Plane Reconstruction

- Flow vectors $\overrightarrow{Q_{m}}$ are used to reconstruct event planes Ψ_{m} [3].

- $m=1$ (event plane harmonic)
- $n=3$ (flow harmonic)
- \sum_{i} are over all tracks/hits in a particular region to get Ψ_{m} from that region.
- TPC tracks: $w_{i}=p_{T, i}$
- EPD hits: $w_{i}=(\text { Truncated nMIP })_{i}$
- nMIP $<0.3 \rightarrow$ nMIP $=0$
$-\mathrm{nMIP}>2.0 \rightarrow \mathrm{nMIP}=2.0$

$$
\begin{gathered}
\overrightarrow{Q_{m}}=\left(\sum_{i} w_{i} \cos \left(m \phi_{i}\right), \sum_{i} w_{i} \sin \left(m \phi_{i}\right)\right) \\
\Psi_{m}=\frac{1}{m} \arctan \left(\frac{Q_{m, y}}{Q_{m, x}}\right)
\end{gathered}
$$

[5] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)

star Event Plane Reconstruction

- To calculate flow, we need the event plane resolution correction terms $R_{n m}$.
- In FXT, there are no two regions in η with equal multiplicity.
- Can't use the 2-subevent method.
- Must use 3-subevent method; one main region, 2 reference regions.

- EPD A: inner 8 rings (>5 hits).
- EPD B: outer 8 rings (>9 hits).
- TPC B: $-1<\eta<0$ (>5 tracks).

staR Event Plane Reconstruction

- Non-uniform detector effects are corrected with two processes [3]:
- Recentering
$-\overrightarrow{Q_{m, R C}}=\overrightarrow{Q_{m}}-\left\langle\overrightarrow{Q_{m}}\right\rangle$
- Produces $\Psi_{m, R C}$
- Fourier shifting
- $\Delta \Psi_{m}=\sum_{j=1}^{\infty} \frac{2}{j m}\left[\left\langle-\sin \left(j m \Psi_{m}\right)\right\rangle \cos \left(j m \Psi_{m}\right)+\right.$ $\left.\left\langle\cos \left(j m \Psi_{m}\right)\right\rangle \sin \left(j m \Psi_{m}\right)\right]$
$-\Psi_{\text {shifted }}=\Psi_{m}+\Delta \Psi_{m}$

Event Plane Resolution

- Final event plane angles are used to calculate the resolution correction factors and the flow is corrected.

$$
\begin{gathered}
R_{n m}=\sqrt{\frac{\left.\left.\cos \left(n\left(\Psi_{m}^{E P D, A}-\Psi_{m}^{E P D, B}\right)\right)\right\rangle \cos \left(n\left(\Psi_{m}^{E P D, A}-\Psi_{m}^{T P C, B}\right)\right)\right\rangle}{\left\langle\cos \left(n\left(\Psi_{m}^{E P D, B}-\Psi_{m}^{T P C, B}\right)\right)\right\rangle}} \\
v_{3}\left\{\Psi_{1}\right\}=\frac{\left\langle\cos \left(3\left(\phi-\Psi_{1}\right)\right)\right\rangle}{R_{31}}
\end{gathered}
$$

Results: $v_{3}\left\{\Psi_{1}\right\}$ vs Centrality

Results: $v_{3}\left\{\Psi_{1}\right\}$ vs Centrality

Pions

- No significant $v_{3}\left\{\Psi_{1}\right\}$ signal.

Results: $v_{3}\left\{\Psi_{1}\right\}$ vs Centrality

Pions

- No significant $v_{3}\left\{\Psi_{1}\right\}$ signal.

Protons

- Clear $v_{3}\left\{\Psi_{1}\right\}$ signal at $\sqrt{S_{N N}}=3.0 \mathrm{GeV}$!
- $v_{3}\left\{\Psi_{1}\right\}<0$ in the backward rapidity region.

Results: $v_{3}\left\{\Psi_{1}\right\}$ vs Centrality

Pions

- No significant $v_{3}\left\{\Psi_{1}\right\}$ signal.

Protons

- Clear $v_{3}\left\{\Psi_{1}\right\}$ signal at $\sqrt{S_{N N}}=3.0 \mathrm{GeV}$!
- $v_{3}\left\{\Psi_{1}\right\}<0$ in the backward rapidity region.

Kaons

- (Not shown) No conclusion due to very low statistics.

Results: $v_{3}\left\{\Psi_{1}\right\}$ vs Centrality

Pions

- No significant $v_{3}\left\{\Psi_{1}\right\}$ signal.

Protons

- Clear $v_{3}\left\{\Psi_{1}\right\}$ signal at $\sqrt{S_{N N}}=3.0 \mathrm{GeV}$!
- $v_{3}\left\{\Psi_{1}\right\}<0$ in the backward rapidity region.

Kaons

- (Not shown) No conclusion due to very low statistics.

All systematics at this point include contributions from

- Event/track QA
- R_{31} estimation
- Pion and proton identification

Results: $v_{3}\left\{\Psi_{1}\right\}$ vs Rapidity

- Proton $v_{3}\left\{\Psi_{1}\right\}$ is rapidity odd.
- Negative slope; opposite sign to v_{1} at $3 \mathrm{GeV}[6,7]$.
[6] M. A. et al. (STAR Collaboration), Phys. Lett. B 827, 136941 (2022).
[7] M. A. et al. (STAR Collaboration), Phys. Lett. B 827, 137003 (2022).

STAR

Results: $v_{3}\left\{\Psi_{1}\right\}$ vs Rapidity and p_{T}

- Proton $v_{3}\left\{\Psi_{1}\right\}$ is rapidity odd.
- Negative slope; opposite sign to v_{1} at $3 \mathrm{GeV}[6,7]$.
- Strength increases with y and p_{T}.

[6] M. A. et al. (STAR Collaboration), Phys. Lett. B 827, 136941 (2022).
[7] M. A. et al. (STAR Collaboration), Phys. Lett. B 827, 137003 (2022).

stai Where does $v_{3}\left\{\Psi_{1}\right\}$ come from?

- Due to the correlation to Ψ_{1} this triangular flow is not from event-by-event fluctuations, so:
- Question 1: Where does the triangular geometry (that also preserves the Ψ_{1} correlation) come from?
- Question 2: What drives the flow?
- 3 GeV is likely below the phase transition, but $v_{3}\left\{\Psi_{1}\right\}$ could give us another way to understand how QCD manifests itself and what degrees of freedom are important.
- Known at 3 GeV :
- Passing time is important ($\sim 10 \mathrm{fm} / \mathrm{c}$). Particle formation, interactions, etc. $<$ passing time.
- Stopping is important.
- For an initial check of our ideas, we found two models to use with options for potentials.
- SMASH [8] - Cascade, Skyrme potential that is non-relativistic and good at ~ 3 GeV. Vector density functional can be used at higher energies.
- JAM1 [9] - Cascade, Relativistic mean field with sigma-omega potential. This does well in a recent 3 GeV STAR paper.
[8] J. Weil et al., Phys. Rev. C 94, 054905 (2016)
[9] Y. Nara and H. Stoecker, Phys. Rev. C 100, 054902 (2019)

Where does the triangular geometry come from?

SIDE VIEW

Where does the triangular geometry come from?

SIDE VIEW

Where does the triangular geometry come from?

SIDE VIEW

Where does the triangular geometry come from?

Where does the triangular geometry come from?

stan Check Geometry idea

- Plot x vs y from JAM (+ potential) avoiding spectators ($y_{\text {beam }, C M}=1.05$):
- $\quad t=50 \mathrm{fm} / \mathrm{c}$
- $0.6<y<0.85$
- $0<p_{T}<2 \mathrm{GeV} / \mathrm{c}$

Check Geometry idea

- Plot x vs y from JAM (+ potential) avoiding spectators $\left(y_{\text {beam, }, C M}=1.05\right)$:
- $\quad t=50 \mathrm{fm} / \mathrm{c}$
- $0.6<y<0.85$
- $0<p_{T}<2 \mathrm{GeV} / \mathrm{c}$

JAM: Triangle shape
SMASH gives similar picture
Simillar also at $t=20 \mathrm{fm} / c$

star Looking at

 Momentum of "cells"

Despite being right of the center, the flow is left due to v_{3} overcoming v_{1}.

What drives $v_{3}\left\{\Psi_{1}\right\}$? Checking cascade

In JAM, both v_{1} and v_{2}

What drives $v_{3}\left\{\Psi_{1}\right\}$? Checking cascade

In JAM, both v_{1} and v_{2} develop
$\left(\sqrt{S_{N N}}=3 \mathrm{GeV}\right.$ Minimum bias $\left.\mathrm{Au}+\mathrm{Au}\right)$
$v_{3}\left\{\Psi_{1}\right\}$ does NOT develop!
(JAM (left) \& SMASH (right))

What drives $v_{3}\left\{\Psi_{1}\right\}$? Checking Potentials

■ JAM1

- Relativistic Mean Field (RQMD.RMF).
- σ - and ω-meson-baryon interactions.
- Momentum-dependent potentials.
- Parameter set MD2; consistent with $\sqrt{S_{N N}}=3 \mathrm{GeV}$ proton $v_{1}, v_{2}[10,11]$.
- SMASH
- Non-relativistic Skyrme + Symmetry Potential with Fermi motion \& Pauli blocking.
- $U=A\left(\frac{\rho}{\rho_{0}}\right)+B\left(\frac{\rho}{\rho_{0}}\right)^{\tau} \pm 2 S_{p o t}\left(\frac{\rho_{I_{3}}}{\rho_{0}}\right)$
- $\rho_{0}=0.1681 \mathrm{fm}^{-3}$
- $A=-124 \mathrm{MeV}, B=71 \mathrm{MeV}, \tau=2$
- $S_{\text {pot }}=18 \mathrm{MeV}$
- Parameters used to fit HADES data [12].

$\rho=$ Baryon Density
$\rho_{I_{3}}=$ Baryon isospin density of the relative isospin projection I_{3} / I.
[10] M. A. et al. (STAR Collaboration), Phys. Lett. B 827, 137003 (2022).
[11] J. Weil et al., Phys. Rev. C 94, 054905 (2016).
[12] P. Hillmann et al., J. Phys. G 45, 085101 (2018).

What drives $v_{3}\left\{\Psi_{1}\right\}$? Results with JAM

- Note: JAM centralities defined with impact parameter, not multiplicity.
- $v_{3}\left\{\Psi_{1}\right\}$ can indeed be reproduced with the inclusion of a potential!
- $v_{3}\left\{\Psi_{1}\right\}$ could be a useful observable to determine the proper EoS below the phase transition!
- More work for models is necessary, but it is apparent that a proper EoS should be capable of reproducing $v_{3}\left\{\Psi_{1}\right\}$ alongside other observables.

STAR

What drives $v_{3}\left\{\Psi_{1}\right\}$? Results with SMASH

- SMASH also works fairly well here!
- SMASH does very well in mid-central p_{T} dependence.
- Like JAM, SMASH has difficulty with peripheral collisions.

STAR
 Quantify the triangle geometry - Eccentricity

Eccentricity + potential drives $v_{3}\left\{\Psi_{1}\right\}$.

$$
\epsilon_{3}=\frac{\left\langle r^{2} \cos (3 \phi)\right\rangle}{\left\langle r^{2}\right\rangle}
$$

(Sin term ignored to get correct sign)

[^0]
Conclusions and Plans

- Measurements of $v_{3}\left\{\Psi_{1}\right\}$ at $\sqrt{S_{N N}}=3.0 \mathrm{GeV}$ have been presented.

■ Protons show a strong $v_{3}\left\{\Psi_{1}\right\}$ signal.

- Rapidity odd.
- Opposite slope to v_{1} at 3 GeV .
- Increases with centrality, rapidity, and p_{T}.
- Similar observations as HADES at 2.4 GeV .

■ Idea for geometric origins of $v_{3}\left\{\Psi_{1}\right\}$ presented and supported by JAM simulations.

- Requirement of a driving force tested with models using cascade mode vs potentials.
- Potential in the EoS is required to develop $v_{3}\left\{\Psi_{1}\right\}$.
- Baryon density dependent potentials perform fairly well at reproducing the data.
- Future Plans:
- Incorporate larger STAR 3 GeV dataset when it is available (necessary for π and K).
- Investigations of A scaling for $v_{3}\left\{\Psi_{1}\right\}$ are underway - Ding Chen (UCR).
- Scan higher energies to complete the picture of $v_{3}\left\{\Psi_{1}\right\}(3.2,3.5,3.9,4.5 \mathrm{GeV})$.

Thank you!

Backup

Particle Identification

- Alternate acceptance made for proton, deuteron, and triton comparisons.
- Rather than p_{T}, we used $m_{T}-m_{0}$ scaled by mass number A.
- Black solid boxes = acceptance for v_{3} vs centrality.
- Red solid (dashed) lines $=$ mid (target) rapidity.

- d and t identification:
- $\mathrm{dE} / \mathrm{dx}$ cuts vary for $|\vec{p}|$ bins of $0.1 \mathrm{GeV} / c$ when
- $|\vec{p}| \in[0.4,3.0)$ for deuterons.
- $|\vec{p}| \in[1.0,4.0)$ for tritons.
- For other $|\vec{p}|$, constant $\mathrm{dE} / \mathrm{dx}$ and m^{2} cuts are both used.

Nuclear Mass Number Scaling (A)

- A-scaling supports that nuclei are formed via coalescence.
- Significant non-zero $v_{3}\left\{\Psi_{1}\right\}$ observed for deuterons and tritons.
- In this acceptance region, deuterons scale with mass number, tritons do not.
- Triton results are currently under investigation for the following effects:
- Fragmentation effects
- Other unexpected effects

- All three species include TPC reconstruction efficiency corrections.
- $A=N_{\text {proton }}+N_{\text {neutron }}$
- 2 for deuterons.
- 3 for tritons.

[^0]: Cameron Racz - BES-Tea Seminar Series

