

Reaction plane correlated triangular flow in BES-II and its connection to the EoS

Cameron Racz (for STAR Collaboration)

UC Riverside (cracz001@ucr.edu)

BES-Tea Seminar Series

April 5, 2023

Supported in part by the

Contents

■ Motivation: Why triangular flow?

Analysis Methods

• Results of v_3

Model Comparisons and the EOS

Triangular Flow (v_3) – Short Overview

- Often mentioned in heavy-ion collisions above the QCD phase transition when a QGP is present.
- Develops solely due to event-by-event fluctuations in the participant region geometry [1].
 - Sensitive to the viscosity of the medium [2].
 - No correlation to the reaction plane [1].

bnl.gov

[1] B. Alver and G. Roland, Phys. Rev. C, 81:054905 (2010)
[2] B. Alver *et al.*, Phys. Rev. C, 82:034913 (2010)

Triangular Flow $(v_3) -$ Developments

- A hybrid transport + hydrodynamics model suggested that $v_3 \rightarrow 0$ at low collision energies (~ 5 GeV) while v_2 does not due to transport dynamics [3].
 - Can't get rid of the elliptic shape of the overlap region.
 - The more monotonic v_3 gives a clearer signal of QGP formation.
 - Maybe we should check this out with STAR!

STAR

Triangular Flow (v_3) – Developments

 Recent studies by HADES at an energy well below the phase transition (2.4 GeV) have shown a clear v₃ signal calculated using the first-order event plane (Ψ₁) [4].

[4] HADES, Phys. Rev. Lett., 125:262301 (2020)

STAR

Triangular Flow (v_3) – Developments

- Recent studies by HADES at an energy well below the phase transition (2.4 GeV) have shown a clear v₃ signal calculated using the first-order event plane (Ψ₁) [4].
 - Can't be created by fluctuations!

[4] HADES, Phys. Rev. Lett., 125:262301 (2020)

STAR

Triangular Flow (v_3) – Developments

- Recent studies by HADES at an energy well below the phase transition (2.4 GeV) have shown a clear v₃ signal calculated using the first-order event plane (Ψ₁) [4].
 - Can't be created by fluctuations!
- What is the source of this v_3 ?
- What is the driving force?

[4] HADES, Phys. Rev. Lett., 125:262301 (2020)

Triangular Flow (v_3) – Developments

- Recent studies by HADES at an energy well below the phase transition (2.4 GeV) have shown a clear v₃ signal calculated using the first-order event plane (Ψ₁) [4].
 - Can't be created by fluctuations!
- What is the source of this v_3 ?
- What is the driving force?
- STAR fixed target (FXT) mode in BES-II provides an opportunity to scan all the way down to $\sqrt{s_{NN}} = 3.0$ GeV.

[4] HADES, Phys. Rev. Lett., 125:262301 (2020)Image: K. Meehan, Nuclear Phys. A, 967:808811 (2017)

Triangular Flow (v_3) – Developments

- Recent studies by HADES at an energy well below the phase transition (2.4 GeV) have shown a clear v₃ signal calculated using the first-order event plane (Ψ₁) [4].
 - Can't be created by fluctuations!
- What is the source of this v_3 ?
- What is the driving force?
- STAR fixed target (FXT) mode in BES-II provides an opportunity to scan all the way down to $\sqrt{s_{NN}} =$ 3.0 GeV.
- Our analysis pivoted from fluctuation-driven v_3 to looking for this new v_3 and answering the questions above utilizing the lowest energy of 3.0 GeV.
- $(v_3 \text{ from } \Psi_3 \text{ should also be explored but is much more difficult.})$

[4] HADES, Phys. Rev. Lett., 125:262301 (2020)Image: K. Meehan, Nuclear Phys. A, 967:808811 (2017)

Analysis Methods

STAR Fixed Target Experimental Setup

- FXT mode utilizes a 1 mm thick gold foil fixed at one end of the TPC.
- One gold beam is circulated to strike the foil in the direction of the TPC.
 - $E_{beam} = 3.85 \ GeV$
 - $y_{mid} = -1.045$
- This beam direction is normally defined as the negative rapidity direction; in this analysis y < 0 is forward.

STAR Fixed Target Experimental Setup

 The TPC and TOF are used for particle identification from dE/dx and β measurements, respectively.

- The EPD is a circular detector at far forward y made of many scintillating tiles to measure hits of charged particles.
- We can extract the nMIP value and azimuthal angle ϕ from each hit to reconstruct event plane angles Ψ .

Particle Identification

- π^{\pm} and K^{\pm} are identified with dE/dx from the TPC and m^2 info from the TOF.
- Protons are identified with dE/dx.

$$m^2 = |p|^2 \left(\frac{1}{\beta^2} - 1\right)$$

Particle Identification

- π^{\pm} and K^{\pm} are identified with dE/dx from the TPC and m^2 info from the TOF.
- Protons are identified with dE/dx.
- Black solid boxes = acceptance for v_3 vs centrality.
- Black dashed box = acceptance for v_3 vs rapidity.
- Red solid (dashed) lines = mid (target) rapidity.

Event Plane Reconstruction

- Flow vectors $\overrightarrow{Q_m}$ are used to reconstruct event planes Ψ_m [3].
 - m = 1 (event plane harmonic)
 - n = 3 (flow harmonic)
- \sum_{i} are over all tracks/hits in a particular region to get Ψ_m from that region.
- TPC tracks: $w_i = p_{T,i}$
- EPD hits: $w_i = (\text{Truncated nMIP})_i$
 - $nMIP < 0.3 \rightarrow nMIP = 0$
 - $nMIP > 2.0 \rightarrow nMIP = 2.0$

$$\overrightarrow{Q_m} = \left(\sum_i w_i \cos(m\phi_i), \sum_i w_i \sin(m\phi_i)\right)$$

 $\Psi_m = \frac{1}{m} \arctan\left(\frac{Q_{m,y}}{Q_{m,x}}\right)$

[5] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)

Event Plane Reconstruction

- To calculate flow, we need the event plane resolution correction terms R_{nm} .
- In FXT, there are no two regions in η with equal multiplicity.
 - Can't use the 2-subevent method.
 - *Must use 3-subevent method; one main region, 2 reference regions.*

EPD

Α

-5.6

×10⁶ Tracks 600 500 400 300 200 100 -3 -2 -5 _4 -1 TPC TPC **EPD** B Β Α -1.1 -1 -3.5 -2.4 -2

EPD A: inner 8 rings (> 5 hits).

STAR

- EPD B: outer 8 rings (> 9 hits).
- TPC B: $-1 < \eta < 0$ (> 5 tracks).

Event Plane Reconstruction

[5] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)

- Non-uniform detector effects are corrected with two processes [3]:
- Recentering

STAR

- $\overrightarrow{Q_{m,RC}} = \overrightarrow{Q_m} \langle \overrightarrow{Q_m} \rangle$
- Produces $\Psi_{m,RC}$

- Fourier shifting
 - $\Delta \Psi_m = \sum_{j=1}^{\infty} \frac{2}{jm} [\langle -\sin(jm\Psi_m) \rangle \cos(jm\Psi_m) + \langle \cos(jm\Psi_m) \rangle \sin(jm\Psi_m)]$

-
$$\Psi_{shifted} = \Psi_m + \Delta \Psi_m$$

Event Plane Resolution

■ Final event plane angles are used to calculate the resolution correction factors and the flow is corrected.

$$R_{nm} = \sqrt{\frac{\left(\cos\left(n\left(\Psi_{m}^{EPD,A} - \Psi_{m}^{EPD,B}\right)\right)\right)\left(\cos\left(n\left(\Psi_{m}^{EPD,A} - \Psi_{m}^{TPC,B}\right)\right)\right)}{\left(\cos\left(n\left(\Psi_{m}^{EPD,B} - \Psi_{m}^{TPC,B}\right)\right)\right)}}$$
$$v_{3}\{\Psi_{1}\} = \frac{\left(\cos\left(3\left(\phi - \Psi_{1}\right)\right)\right)}{R_{31}}$$

<u>Pions</u>

• No significant $v_3{\Psi_1}$ signal.

<u>Pions</u>

- No significant $v_3 \{\Psi_1\}$ signal. <u>Protons</u>
- Clear $v_3 \{\Psi_1\}$ signal at $\sqrt{s_{NN}} = 3.0 \text{ GeV}!$
- $v_3{\{\Psi_1\}} < 0$ in the backward rapidity region.

<u>Pions</u>

- No significant $v_3 \{\Psi_1\}$ signal. <u>Protons</u>
- Clear $v_3 \{\Psi_1\}$ signal at $\sqrt{s_{NN}} = 3.0 \text{ GeV}!$
- $v_3{\{\Psi_1\}} < 0$ in the backward rapidity region.

<u>Kaons</u>

(Not shown)
 No conclusion
 due to very low
 statistics.

<u>Pions</u>

- No significant $v_3 \{\Psi_1\}$ signal. <u>Protons</u>
- Clear $v_3 \{\Psi_1\}$ signal at $\sqrt{s_{NN}} = 3.0 \text{ GeV}!$
- $v_3{\{\Psi_1\}} < 0$ in the backward rapidity region.

<u>Kaons</u>

(Not shown)
 No conclusion
 due to very low
 statistics.

All systematics at this point include contributions from

- Event/track QA
- *R*₃₁estimation
- Pion and proton identification

<u>Results</u>: $v_3{\Psi_1}$ vs Rapidity

- Proton $v_3{\{\Psi_1\}}$ is rapidity odd.
- Negative slope; opposite sign to v_1 at 3 GeV [6,7].

[6] M. A. *et al.* (STAR Collaboration), Phys. Lett. B 827, 136941 (2022).
[7] M. A. *et al.* (STAR Collaboration), Phys. Lett. B 827, 137003 (2022).

<u>Results</u>: $v_3{\Psi_1}$ vs Rapidity and p_T

[6] M. A. *et al.* (STAR Collaboration), Phys. Lett. B 827, 136941 (2022).
[7] M. A. *et al.* (STAR Collaboration), Phys. Lett. B 827, 137003 (2022).

Where does $v_3{\{\Psi_1\}}$ come from?

- Due to the correlation to Ψ_1 this triangular flow is not from event-by-event fluctuations, so:
 - <u>Question 1</u>: Where does the triangular geometry (that also preserves the Ψ_1 correlation) come from?
 - <u>Question 2</u>: What drives the flow?
- 3 GeV is likely below the phase transition, but $v_3{\Psi_1}$ could give us another way to understand how QCD manifests itself and what degrees of freedom are important.
- Known at 3 GeV:

STAR

- Passing time is important ($\sim 10 \text{ fm/c}$). Particle formation, interactions, etc. < passing time.
- Stopping is important.
- For an initial check of our ideas, we found two models to use with options for potentials.
 - SMASH [8] Cascade, Skyrme potential that is non-relativistic and good at ~ 3 GeV. Vector density functional can be used at higher energies.
 - JAM1 [9] Cascade, Relativistic mean field with sigma-omega potential. This does well in a recent 3 GeV STAR paper.
 [8] J. Weil et al., Phys. Rev. C 94, 054905 (2016)

[8] J. Weil *et al.*, Phys. Rev. C 94, 054905 (2016)
[9] Y. Nara and H. Stoecker, Phys. Rev. C 100, 054902 (2019)

SIDE VIEW

SIDE VIEW

SIDE VIEW

STAR

STAR

Check Geometry idea

- Plot x vs y from JAM (+ potential) avoiding spectators ($y_{beam,CM} = 1.05$):
 - $t = 50 \, fm/c$
 - 0.6 < y < 0.85
 - $0 < p_T < 2 \ GeV/c$

Check Geometry idea

- Plot x vs y from JAM (+ potential) avoiding spectators ($y_{beam,CM} = 1.05$):
 - $t = 50 \, fm/c$
 - 0.6 < y < 0.85
 - $0 < p_T < 2 \ GeV/c$

JAM: Triangle shape

SMASH gives similar picture Simillar also at t = 20 fm/c

What drives $v_3{\Psi_1}$? Checking cascade

In JAM, both v_1 and v_2 develop

 $(\sqrt{s_{NN}} = 3 \text{ GeV Minimum bias Au+Au})$

What drives $v_3{\{\Psi_1\}}$? Checking cascade

In JAM, both v_1 and v_2 develop $(\sqrt{s_{NN}} = 3 \text{ GeV Minimum bias Au+Au})$

 $v_3{\Psi_1}$ does NOT develop! (JAM (left) & SMASH (right))

What drives $v_3{\Psi_1}$? Checking Potentials

JAM1

- Relativistic Mean Field (RQMD.RMF).
- σ and ω -meson-baryon interactions.
- Momentum-dependent potentials.
- Parameter set MD2; consistent with $\sqrt{s_{NN}} = 3 \text{ GeV proton } v_1, v_2 [10, 11].$

■ SMASH

4/5/23

- Non-relativistic Skyrme + Symmetry Potential with Fermi motion & Pauli blocking.

$$- U = A\left(\frac{\rho}{\rho_0}\right) + B\left(\frac{\rho}{\rho_0}\right)^{\tau} \pm 2S_{pot}\left(\frac{\rho_{I_3}}{\rho_0}\right)$$

- $\rho_0 = 0.1681 \, \mathrm{fm}^{-3}$
- A = -124 MeV, B = 71 MeV, $\tau = 2$
- $S_{pot} = 18 MeV$
- Parameters used to fit HADES data [12].

[10] M. A. *et al.* (STAR Collaboration), Phys. Lett. B 827, 137003 (2022).
[11] J. Weil *et al.*, Phys. Rev. C 94, 054905 (2016).
[12] P. Hillmann *et al.*, J. Phys. G 45, 085101 (2018).

What drives $v_3{\Psi_1}$? Results with JAM

- Note: JAM centralities defined with impact parameter, not multiplicity.
- $v_3{\Psi_1}$ can indeed be reproduced with the inclusion of a potential!
- $v_3{\Psi_1}$ could be a useful observable to determine the proper EoS below the phase transition!
- More work for models is necessary, but it is apparent that a proper EoS should be capable of reproducing $v_3{\{\Psi_1\}}$ alongside other observables.

STAR

What drives $v_3{\Psi_1}$? Results with SMASH

- SMASH also works fairly well here!
- SMASH does very well in mid-central p_T dependence.
- Like JAM, SMASH has difficulty with peripheral collisions.

STAR

Quantify the triangle geometry – Eccentricity

4/5/23

STAR

Cameron Racz - BES-Tea Seminar Series

Conclusions and Plans

- Measurements of $v_3{\Psi_1}$ at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$ have been presented.
- Protons show a strong $v_3{\Psi_1}$ signal.
 - Rapidity odd.
 - Opposite slope to v_1 at 3 GeV.
 - Increases with centrality, rapidity, and p_T .
 - Similar observations as HADES at 2.4 GeV.

- Idea for geometric origins of $v_3{\Psi_1}$ presented and supported by JAM simulations.
- Requirement of a driving force tested with models using cascade mode vs potentials.
 - Potential in the EoS is required to develop $v_3{\Psi_1}$.
 - Baryon density dependent potentials perform fairly well at reproducing the data.
- Future Plans:
 - Incorporate larger STAR 3 GeV dataset when it is available (necessary for π and K).
 - Investigations of A scaling for $v_3{\Psi_1}$ are underway Ding Chen (UCR).
 - Scan higher energies to complete the picture of $v_3{\Psi_1}$ (3.2, 3.5, 3.9, 4.5 GeV).

Thank you!

Backup

<u>JAM</u> 20fm

Scale: x,y = -40 to 40

Particle Identification

- Alternate acceptance made for proton, deuteron, and triton comparisons.
- Rather than p_T , we used $m_T m_0$ scaled by mass number *A*.
- Black solid boxes =
 acceptance for v_3 vs
 centrality.
- Red solid (dashed) lines = mid (target) rapidity.

- *d* and *t* identification:
 - dE/dx cuts vary for $|\vec{p}|$ bins of 0.1 GeV/*c* when
 - $|\vec{p}| \in [0.4, 3.0)$ for deuterons.
 - $|\vec{p}| \in [1.0, 4.0)$ for tritons.
 - For other $|\vec{p}|$, constant dE/dx and m^2 cuts are both used.

Nuclear Mass Number Scaling (A)

- A-scaling supports that nuclei are formed via coalescence.
- Significant non-zero $v_3{\{\Psi_1\}}$ observed for deuterons and tritons.
- In this acceptance region, deuterons scale with mass number, tritons do not.
- Triton results are currently under investigation for the following effects:
 - Fragmentation effects
 - Other unexpected effects

- All three species
 include TPC
 reconstruction
 efficiency corrections.
- $A = N_{proton} + N_{neutron}$
 - 2 for deuterons.
 - 3 for tritons.