

Centrality Dependence of Freeze-out Parameters From the Beam Energy Scan at STAR

Sabita Das

(for the STAR collaboration) Institute of Physics, Bhubaneswar, India

- Motivation
- ✤ Introduction
 - Chemical freeze-out
 - Kinetic freeze-out
- Experimental set-up
- Particle Identification method
- Results on freeze-out parameters
- Summary

Motivation

QCD Phase Diagram

STAR BES proposal: arXiv:1007.2613

- The main goals of RHIC BES program
 - To map the QCD phase diagram
 - To search the possible QCD phase boundary
 - To search the possible QCD critical point
- The STAR data from BES are used to extract the freeze-out parameters
 T, μ_B and <β> from identified particle spectra and ratios

Chemical Freeze-out : Inelastic collision ceases Particle ratios get fixed

***THERMUS** : Statistical thermal model Ensemble used – Grand Canonical and Strangeness Canonical

For Grand Canonical: Quantum numbers (B, S, Q) conserved on average

$$n_{i} = \frac{Tm_{i}^{2}g_{i}}{2\pi^{2}} \sum_{k=1}^{\infty} \frac{(\pm 1)^{k+1}}{k} \left(e^{\frac{k\mu_{i}}{T}}\right) K_{2}\left(\frac{km_{i}}{T}\right)$$

To consider incomplete strangeness equilibration:

$$n_i \rightarrow n_i \gamma_S^{|S_i|}$$

For Strangeness Canonical: Strangeness quantum number (S) conserved exactly

Extracted thermodynamic quantities: T_{ch} , μ_{B} , μ_{s} and γ_{s}

•Thermus, S. Wheaton & Cleymans, Comput. Phys. Commun. 180: 84-106, 2009.

Introduction

Kinetic Freeze-out : Elastic collision ceases Transverse momentum spectra get fixed

Blast Wave : Hydrodynamic inspired model

$$\frac{dN}{p_T dp_T} \propto \int_0^R r dr m_T I_0 \left(\frac{p_T \sinh \rho(r)}{T_{kin}}\right) \times K_1 \left(\frac{m_T \cosh \rho(r)}{T_{kin}}\right)$$

E. Schnedermann et al., Phys. Rev. C 48, 2462 (1993)

Particle spectra are fitted simultaneously

Extracted thermodynamic quantities: T_{kin} and $<\beta>$

Full azimuthal particle identification.

Particle Identification

STAR

STAR

Quark Matter 2012, Washington D.C, USA Sabita Das

Particle Spectra

Chemical Freeze-out

Chemical Freeze-out

Au+Au 200 GeV : Phys. Rev. C 83 (2011) 24901

- > Particles used in the fit: π , K, p, Λ , Ξ and K⁰_s
- > Chemical freeze-out temperature increases with increase in collision energy.
- > Baryon chemical potential decreases with increase in collision energy.

Chemical Freeze-out

Au+Au 200 GeV : Phys. Rev. C 83 (2011) 24901

- > Particles used in the fit : π , K, p, Λ , Ξ and K⁰_s
- > Strangeness chemical potential decreases with increase in collision energy
- Strangeness saturation factor increases from peripheral to central collisions for all energies

STATION I

Chemical Freeze-out: T_{ch} vs. μ_B

Kinetic Freeze-out: Blast-Wave

- ✓ Blast-Wave Model is used to fit the spectra
- \checkmark Two main parameters T_{kin} and $<\beta>$

- For central collisions:
 Low temperature and high flow velocity
- For peripheral collisions:
 High temperature and low flow velocity

Kinetic Freeze-out: T_{kin} vs. < β >

Blast-Wave: Higher kinetic temperature corresponds to lower value of average flow velocity and vice-versa.

- ✓ New measurements for BES energies (39, 11.5 and 7.7 GeV) at RHIC extend µ_B range from 20 - 400 MeV of the QCD phase diagram
- ✓ Chemical Freeze-out: Thermus model and particle ratios

First observation of centrality dependence of chemical freeze-out parameters at lower energies

- Central collisions: GCE and SCE ~ T_{ch}
- Peripheral collisions: T_{ch} (SCE) > T_{ch} (GCE) and χ^2 /ndf (SCE) > χ^2 /ndf (GCE) at low energies
- ✓ Kinetic Freeze-out: Blast-Wave model and Particle p_T spectra
 - Central collisions: Low T_{kin} and high < β >
 - Peripheral collisions: High T_{kin} and low $<\beta>$

Back up

