Recent STAR Jet results of the high-energy spin physics program at RHIC at BNL

Daniel Olvitt & Bernd Surrow



(On behalf of the STAR Collaboration)







### Outline





- Results / Status: Jet production Gluon related studies
  - Cross-section measurements: g
  - Asymmetry measurements:  $\Delta g$

Experimental aspects: RHIC / STAR

Theoretical foundation



Summary and Outlook



#### Theoretical foundation

Probing gluons in ep vs. pp scattering





#### Theoretical foundation

- Proton spin structure using high-energy polarized p+p collisions: Helicity
  - Observable: Gluon polarization (Jet/ Hadron production)
    - □ Double longitudinal single-spinasymmetry A<sub>LL</sub>

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

Colliding beam helicities!





# Experimental aspects - RHIC

#### The world's first polarized proton+proton collider





# Experimental aspects - RHIC

#### Polarized p+p collisions

Production runs at

√s=200 / 500 / 510GeV

(long. polarization) in

2009, 2012, 2013 and

2015: Jet and Hadron

production (Gluon

related studies!)

Jet results will be shown from Run 9 and Run 12



# Experimental aspects - STAR

- Overview
- O Calorimetry system with  $2\pi$  coverage: BEMC (-1< $\eta$ <1) and EEMC (1< $\eta$ <2)
- TPC: Tracking and particle ID  $(|\eta|<1.3)$
- FGT: Forward GEM Tracker (Run 13) (1<η<2)
- ZDC: Relative luminosity and local polarimetry
- BBC: Relativeluminosity andMinimum bias trigger



$$\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$$



#### RHIC Gluon studies: Jet-type measurements











$$x_T = \frac{2p_T}{\sqrt{s}}$$
 (x value at  $\eta = 0$ )



#### □ STAR: Mid-rapidity Inclusive Jet cross-section measurement (Run 9) at 200GeV

O Unfolded inclusive jet cross-section using anti-k<sub>T</sub> algorithm (R=0.6) (Smaller dependence on underlying event (UE) and Pile-up)

$$D_{ij} = \min\left(\frac{1}{k_{T,i}^2}, \frac{1}{k_{T,j}^2}\right) \frac{\Delta R_{ij}^2}{R}$$

$$\Delta R_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2 \qquad D_i = \frac{1}{k_{T,i}^2}$$

$$d = \min\left(\{D_{ij}, D_i\}\right)$$
If  $d = D_{ij}$ : Combine jet i and jet j
If  $d = D_i$ : Define jet i as final jet

corrected to particle level for three different pseudo-rapidity regions of  $|\eta|<1$ ,  $|\eta|<0.5$  and  $0.5<|\eta|<1.0$ 

- Hadronization and UE corrections evaluated using PYTHIA applied to NLO calculations applied to pure NLO calculations for data comparison
- Comparison to NLO calculations for CT10, NNPDF3.0 and MRST-W2008 with a preference for CT10









X. Li et al. (STAR Collaboration), DIS 2015.



#### STAR: Mid-rapidity Inclusive Jet A<sub>LL</sub> measurement (Run 9) at 200GeV



L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 115, (2015) 092002.

- Run 9  $A_{LL}$  measurement between BB10 and DSSV / Clearly above zero at low  $p_T$
- Larger asymmetry at low p<sub>T</sub> suggests larger gluon polarization compared to DSSV
- With global analysis, A<sub>LL</sub> jet result provides
   evidence for positive gluon polarization for
   x > 0.05



#### □ Impact on $\triangle g$ from RHIC data (RHIC Run 9)



D. deFlorian et al., Phys. Rev. Lett. 113 (2014) 012001.



- DSSV: Original global analysis incl. first RHIC results (Run 5/6)
- DSSV\*: New COMPASS inclusive and semi-inclusive results in addition to Run 5/6 RHIC updates
- lacktriangle DSSV NEW FIT: Strong impact on  $\Delta g(x)$  with RHIC run 9 results:  $0.20^{+0.06}_{-0.07}$  90% C.L. for 0.05 < x
- lacktriangle Similar conclusion by independent global analysis of NNPDF:  $0.23^{+0.07}_{-0.07}$  for 0.05 < x < 0.5

E. R. Nocera et al., Nucl. Phys. B887 (2014) 276.

"...better small-x probes are badly needed."



STAR: Mid-rapidity Inclusive Jet All measurement (Run 12) at 510GeV



- Z. Chang et al. (STAR Collaboration), SPIN  $x_T = 2p_T/\sqrt{s}$  2014. (Run 12 / 510GeV)
- O Probing smaller x-values going from 200GeV to 510GeV in Run 12 and Run 13
- $\circ$  Preliminary results of  $A_{LL}$  at 510GeV (Run 12) well described by global fit results including Run 9 constraint
- $\circ$  Additional large data sample in Run 13 at 510GeV will reduce  $A_{LL}$  uncertainties further



- Additional data set at 200GeV taken
   in Run 15
- Projected statistical uncertainties
   of Run 9 and Run 15 combined at
   200GeV in comparison to Run 9
   uncertainties



- RHIC Gluon polarization Correlation Measurements
- Correlation measurements provide access to LO partonic kinematics through Di-Jet/Hadron production and Photon-Jet production:

$$x_{1(2)} = \frac{1}{\sqrt{s}} \left( p_{T_3} e^{\eta_3(-\eta_3)} + p_{T_4} e^{\eta_4(-\eta_4)} \right)$$

Bjorken x-coverage:





Di-Jet production

$$\eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$$
$$M = \sqrt{s}\sqrt{x_1 x_2}$$



#### $\square$ STAR: Mid-rapidity Di-Jet cross-section and $A_{LL}$ measurement (Run 9) at 200GeV



L. Adamczyk et al. (STAR Collaboration), arXiv:1610.06616. (Submitted for publication, PRD)



# ALL measurements consistent with

DSSV2014 and NNPDF1.1 constrained by

Run 9 data

$$M = \sqrt{s}\sqrt{x_1x_2} \qquad \eta_3 + \eta_4 = \ln\frac{x_1}{x_2}$$



□ STAR: Mid-rapidity Di-Jet A<sub>LL</sub> measurement (Run 12) at 510GeV



S. Ramachandran et al. (STAR Collaboration), DIS 2016. (Run 12 / 510GeV)



#### □ STAR: Forward rapidity Di-Jet All measurement (Run 9) at 200GeV









- Forward rapidity STAR Di-Jet A<sub>LL</sub> measurement based on three topological combinations in η:
  - Barrel East (-0.8<n<0) EEMC (-0.8<n<0)
  - Barrel West (0<n<0.8)- EEMC (-0.8<n<0)</li>
  - O EEMC (-0.8<η<0) EEMC (-0.8<η<0)
- $\circ$  2009 forward  $A_{LL}$  measurement consistent with global fit results constrained by Run 9  $A_{LL}$  data



- Status of Run 13 jet analysis: Inclusive Jet and Di-Jet ALL analysis at 510GeV
  - O Run 13 data sample:  $\sim 250 \text{pb}^{-1}$  (Run 12:  $\sim 80 \text{pb}^{-1}$ )
  - Run 13 average beam polarization: ~55% (Run 12: ~55%)
  - Run 13 FOM relevant for double-spin asymmetry  $A_{LL}$ :  $P^4L = 23pb^{-1}$  (Run 12: 7.3pb<sup>-1</sup>)
    - → FOM Factor ~3 improvement compared to Run 12!
  - STAR TPC and BEMC calibration (W Run 13 analyses released!): Completed
  - Extensive test of both tracking software and jet triggers: Completed
  - QA of jet analyses: Finalizing
  - MC / Embedding samples Run 13: Initial testing



## Future - $g / \Delta g(x)$ related studies

- Impact of new RHIC data and future EIC facility
  - Integral of  $\Delta g$  (Q<sup>2</sup>=10GeV<sup>2</sup>) (Running integral) from  $x_{min}$  to 1 as a function of  $x_{min}$

$$\Delta G(Q^2 = 10 \,\text{GeV}^2) = \int_{x_{min}}^1 \Delta g(x, Q^2 = 10 \,\text{GeV}^2) \, dx$$

- Uncertainties shown on running integral!
- Important constraint from high-statistics 200GeV data (Run 9 / Published and Run 15) together with 500GeV data (Run 12 and Run 13) and forward rapidity measurements at RHIC prior to EIC - critical for low-x coverage (Di-Jet results not included!)



## Future - $g / \Delta g(x)$ related studies

Forward di-jet production at RHIC

B. Surrow et al. (STAR Collaboration), DIS 2014.



10 -3 10 -2

10

10

10











10 11 12 13 14 15 16 17 18 19 20

M (GeV)

- Probing smaller x-values 'badly needed' (DSSV 2014) Extend di-jet measurements at forward rapidity
- Forward di-jet measurements allow to probe  $\Delta q$  at very low x values ~10<sup>-3</sup>
- Forward hadronic calorimeter upgrade required Upgrade plans at STAR and sPHENIX

 $X_1(X_2)$ 



# Summary / Outlook

- Recently published / preliminary results:  $q / \Delta q$ 
  - Precise Run 9  $A_{LL}$  inclusive jet measurement: Non-zero  $\Delta g$  of similar magnitude as quark polarization (Published!)
  - Run 9 ALL Di-jet measurements open path to constrain the shape of  $\Delta q$
  - Run 12 Inclusive jet and di-jet Run 12 preliminary  $A_{LL}$  measurement at 510GeV probe  $\Delta q$  at lower x
  - Run 9 Inclusive jet cross-section measurement: Important constraint for unpol. gluon distribution at high x 0
- Upcoming results:  $g / \Delta g$ 
  - Large Run 13 data sample: Measurement of Inclusive jet and di-jet  $A_{LL}$  at 510GeV probing  $\Delta g$  lower x 0
  - Additional data sample at 200GeV from Run 15 combined with Run 9 0
- **Future** 
  - Long 510GeV run in 2017 (Run 17) at transverse spin polarization of about 400pb<sup>-1</sup>: W A<sub>N</sub> / Unpol. QCD sea
  - Exciting long-term prospects beyond 2020 requiring forward detector upgrade (Cold QCD plan) / Potential of probing gluons at low-x ~10<sup>-3</sup> using forward di-jet measurements!