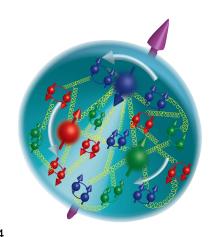
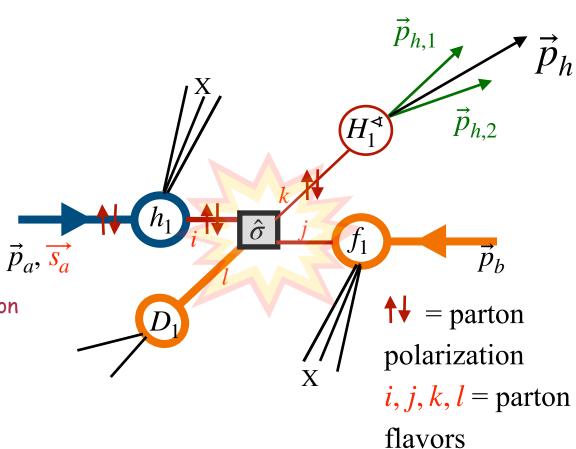
Measurements of Transverse Spin Dependent $\pi^+\pi^-$


Azimuthal Correlation Asymmetry and Unpolarized $\pi^+\pi^-$ Cross Section in p+p Collisions at STAR at RHIC

Bernd Surrow

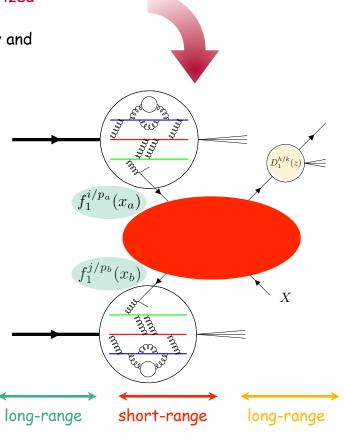
(On behalf of the STAR Collaboration)


Supported in part by

DOE NP contract: DE-SC0013405

Outline

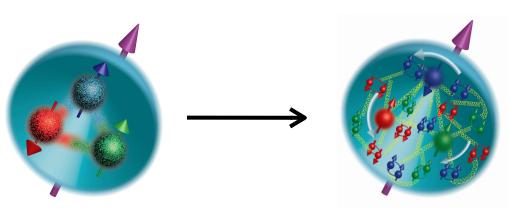
- Theoretical Foundation
- RHIC Collider and STAR experiment
- \square Analysis Details $\pi^+\pi^-$ Asymmetry
- \square $\pi^+\pi^-$ Asymmetry Results
- \square Analysis Details $\pi^+\pi^-$ Cross-Section
- \square $\pi^+\pi^-$ Cross-Section Results
- Summary


- Probe transverse proton spin structure using high-energy polarized p+p collisions
 - Important new insight into the transverse proton spin structure at STAR in polarized p+p collisions at high energies using well established processes both theoretically and experimentally involving jets / hadrons
 - O Transversity-related measurements: Important insight into transverse spin structure Need coupling of transversity (h1) to chiral-odd transverse spin dependent fragmentation function (FF):
 - Collins TMD FFs: Azimuthal single-spin asymmetries of charged pions in jets

$$\sum_{i,j,k} h_1^{i/p_a}(x_a) f_1^{j/p_b}(x_b) H_1^{\perp h/k}(z,k_T)$$

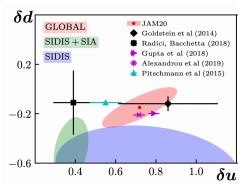
Di-hadron FFs: Azimuthal correlations of charged pion pairs

$$\sum_{i,j,k} h_1^{i/p_a}(x_a) \otimes f_1^{j/p_b}(x_b) \otimes H_1^{\triangleleft h_1 h_2/k}(z, M_h)$$

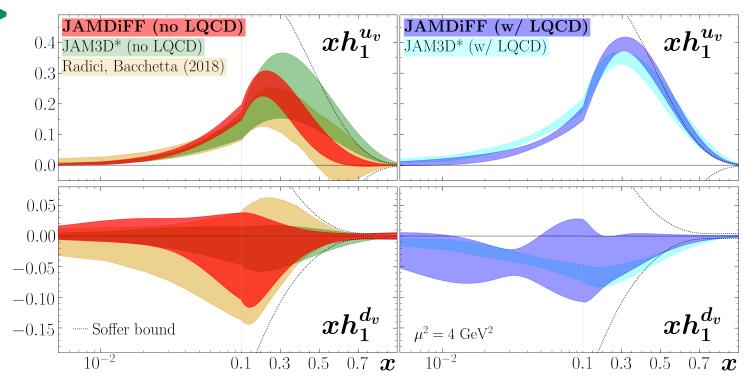

Deepen our understanding concerning universality, factorization and evolution!

FF Review: A. Metz and A. Vossen, Prog. Part. Nucl. Phys. 91 (2016) 136.

Proton spin structure


		Quark Polarization						
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)				
Nucleon Polarization	U	f ₁ = •		$h_1^{\perp} = $				
	L		g _{1L} =	$h_{1L}^{\perp} = \longrightarrow$				
	т	$f_{1T}^{\perp} = \underbrace{\bullet}_{\text{Sivers}} - \underbrace{\bullet}_{\text{Sivers}}$	$g_{1T}^{\perp} = \begin{array}{c} \uparrow \\ - \end{array}$	$h_{1} = \begin{array}{c} \uparrow \\ - \\ \uparrow \\ - \\ \uparrow \\ - \\ \end{array}$ Transversity $h_{1T}^{\perp} = \begin{array}{c} - \\ - \\ - \\ \end{array}$				

- Proton spin structure in terms of parton distribution functions (PDFs)
- $^{f O}$ Three leading twist collinear PDFs, integrated over parton transverse momentum k_T :
 - \Box $f_1(x) = Unpolarized PDF$
 - \Box $g_1(x) = Helicity PDF$
 - $\Box h_1^q(x) = \text{Transversity PDF}$
- Motivation: Measurement of observable to constrain $h_1^q(x)$ in collinear framework in polarized p+p collisions employing chiral-odd di-hadron fragmentation function (DiFF)!

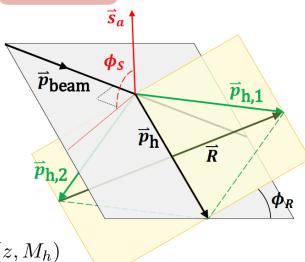


Transversity

Correlation between nucleon transverse polarization and transverse polarization of quarks - no gluon transversity!

- First transversity global analysis by M. Radici and A. Bacchetta (Phys. Rev. Lett. 120, 192001 (2018))
- New global analysis by JAM global analysis (C. Cocuzza et al. (JAM Collaboration), Phys.Rev.D 109 (2024) 3, 034024)!
- Important connection to Lattice QCD!

- Observables for transversity Theoretical formulation
- \circ Di-hadron channel: $p \uparrow + p \rightarrow h^+h^- + X$
- lacktriangledown Asymmetry: $A_{UT}^{pp} = rac{\mathcal{H}(M_h,P_{hT},\eta)}{\mathcal{D}(M_h,P_{hT},\eta)}$

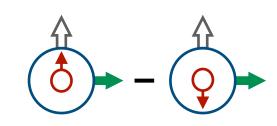

$$\mathcal{H}(M_h, P_{hT}, \eta) = 2P_{hT} \sum_{i} \sum_{a,b,c,d} \int_{x_a^{\min}}^{1} \mathrm{d}x_a \int_{x_b^{\min}}^{1} \frac{\mathrm{d}x_b}{z} h_1^a(x_a) f_1^b(x_b) \frac{\mathrm{d}\Delta \hat{\sigma}_{a^{\uparrow}b \to c^{\uparrow}d}}{\mathrm{d}\hat{t}} H_1^{\triangleleft,c}(z, M_h)$$
 parton flavors

Transversity:

$$h_1 \leftrightarrow f_1, \ H_1^{\blacktriangleleft} \leftrightarrow D_1$$

Unpolarized cross-section:

$$\mathcal{D}(M_h, P_{hT}, \eta) = 2P_{hT} \sum_{i} \sum_{a,b,c,d} \int_{x_a^{\min}}^{1} dx_a \int_{x_b^{\min}}^{1} \frac{dx_b}{z} f_1^a(x_a) f_1^b(x_b) \frac{d\hat{\sigma}_{ab \to cd}}{d\hat{t}} D_1^c(z, M_h)$$


polarization

- Observables for transversity Experimental measurement
 - lacktriangle Di-hadron azimuthal correlation asymmetry, A_{UT} , for $p\uparrow +p
 ightarrow h^+h^- +X$:

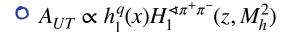
$$A_{UT} = \frac{d\sigma_{UT}}{d\sigma_{UU}} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \frac{\sum_{i,j,k} h_{1}^{i/p_{a}}(x_{a}) f_{1}^{j/p_{b}}(x_{b}) H_{1}^{\triangleleft h_{1}h_{2}/k}(z, M_{h})}{\sum_{i,j,k} f_{1}^{i/p_{a}}(x_{a}) f_{1}^{j/p_{b}}(x_{b}) D_{1}^{h_{1}h_{2}/k}(z, M_{h})}$$

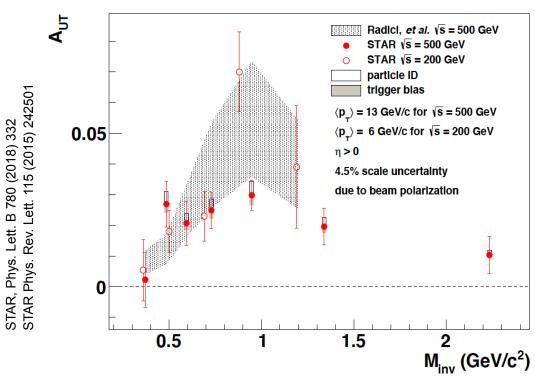
- \square Independent measurement of H_1^{\triangleleft} is required from e^+e^- experiments (e.g. BELLE!)
- \square $D_1^{h_1h_2}$ is least known, specifically for gluon fragmentation (New constrain from STAR!)
- lacktriangle Unpolarized di-hadron cross-section, $d\sigma_{UU}$, for $p\uparrow +p
 ightarrow h^+h^- +X$:
 - $\ \square \ d\sigma_{UU}$ is crucial for $D_1^{h_1h_2}$ providing access to quarks and gluons
- $^{\rm O}$ $d\sigma_{UU}$ and A_{UT} allow model-independent extraction of transversity, $h_1^q(x)!$

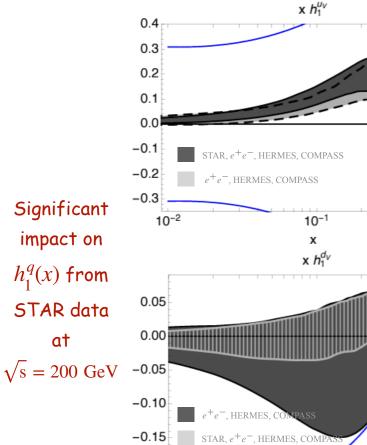
Radici et. al. Phys. Rev. Lett. 120

(2018), 19 192001

 10^{-1}

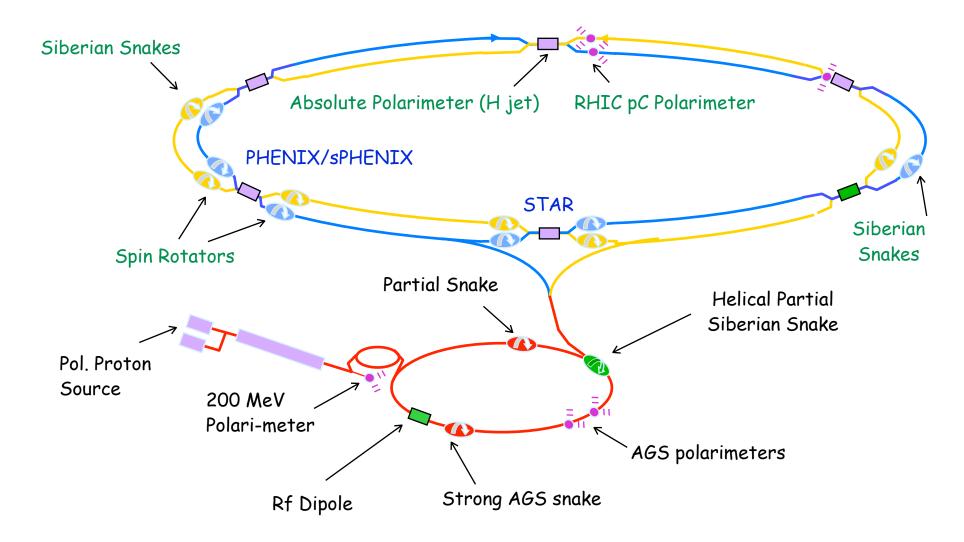

Bernd Surrow


Theoretical Foundation

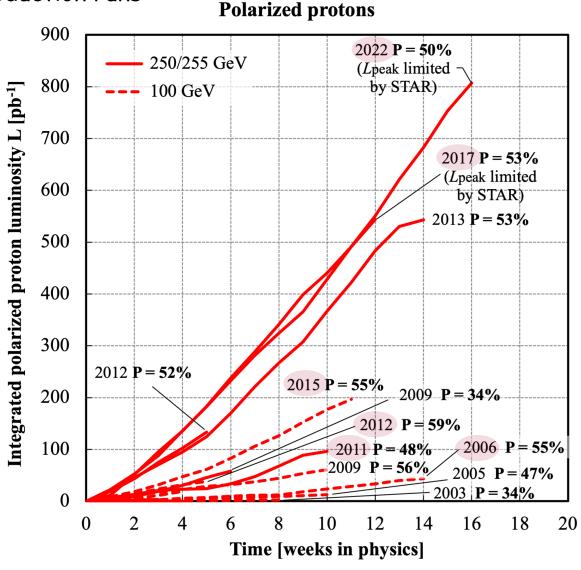

- First proof-of-principle measurements at 200GeV and 510GeV
 - STAR observed significant $\pi^+\pi^-$ correlation asymmetry, A_{UT} , using 200 GeV and

500 GeV

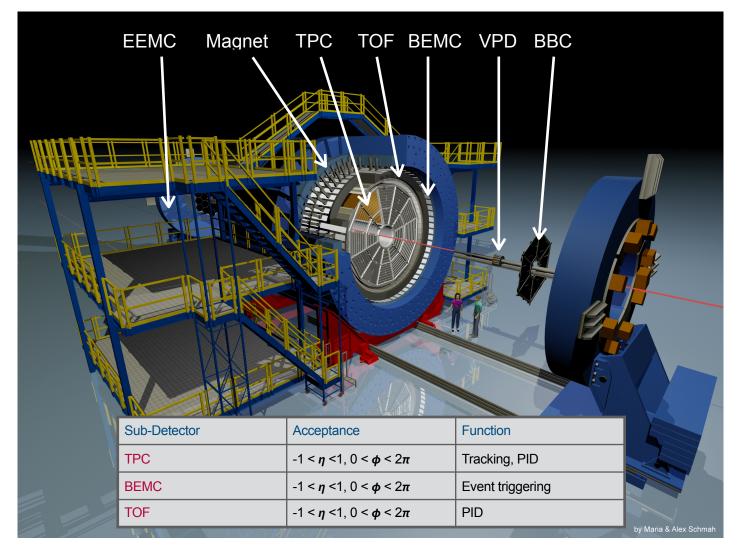
 $lacktriangleq A_{UT}$ enhanced around ho-mass region.



 10^{-2}



Polarized p+p collider facility at BNL



- Transverse spin-polarized p+p production runs
 - O Di-hadron FFs: 2006 at 200GeV and 2011 at 500GeV measurements and updates presented here!
 - TMD Collins FFs: 2012 / 2015 at 200GeV and 2011 at 500GeV measurements
 - Charge data samples in 2015 at 200GeV and 2017 / 2022 at 510GeV!

Overview of STAR experiment

Polarized p+p data samples and kinematic coverage

Collision mode	proton-proton							
Polarization type	transverse							
Year	2006	2011	2012	2015	2017	2022	2024	
\sqrt{s} (GeV)	200	500	200	200	510	508	200	
$L_{int} (pb^{-1})$	~ 1.8	~ 25	~ 22	~52	~ 320	~400	~ 190	
$\langle P_{\text{beam}} \rangle (\%)$	~ 60	~ 53	~ 57	~ 57	~55	~52		

STAR, Phys. Lett.

B 780 (2018) 332

STAR, Phys. Rev. Lett.

115 (2015) 242501

STAR Preliminaries

$$@\sqrt{s} = 200 \text{ GeV}$$

Unpolarized $\pi^+\pi^-$

Cross Section

(2012)

IFF Asymmetry

STAR IFF

Preliminary @

$$\sqrt{s} = 510 \text{ GeV}$$

Planned IFF and

Cross Section

Measurements

Kinematic coverage

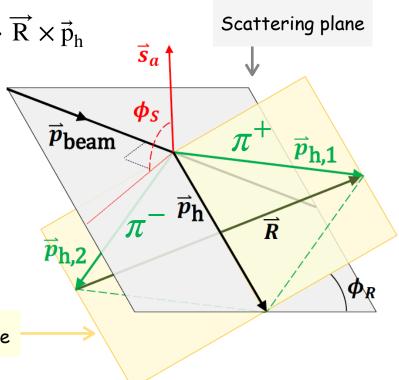
Collision mode	proton-proton							
Polarization type	transverse							
Year	2006	2011	2012	2015	2017	2022	2024	
\sqrt{s} (GeV)	200	500	200	200	510	508	200	
$L_{int} (pb^{-1})$	~ 1.8	~ 25	~ 22	~ 52	~ 320	~ 400	~ 190	
$\langle P_{\text{beam}} \rangle (\%)$	~ 60	~53	~57	~57	~55	~52		

STAR Kinematic Coverage:

- Covers larger Q^2 values compared to HERMES and COMPASS.
- Intermediate x coverage, probing predominantly valence quark region.

Analysis details - $\pi^+\pi^-$ Asymmetry

Kinematic variables and selection cuts

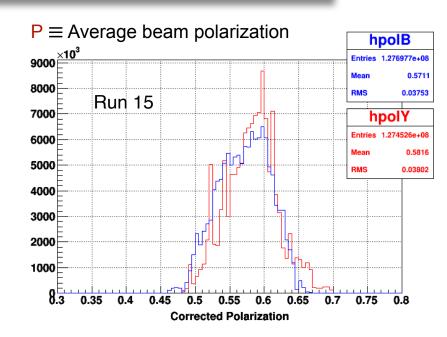

Polarized parton fragments to $\pi^+\pi^-$:

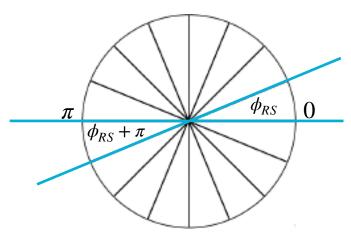
$$\vec{p}_{h_1}$$
 \vec{p}_{h_2}
 \vec{p}_{h_2}
 \vec{p}_{h_2}
 \vec{p}_{h_2}

Two crucial vectors:
$$\vec{p}_h = \vec{p}_{h_1} + \vec{p}_{h_2}$$
 and $\overrightarrow{R} = \frac{1}{2}(\vec{p}_{h_1} - \vec{p}_{h_2})$

- $^{\mbox{O}}$ Access to the quark polarization via correlation: $\overrightarrow{S}\cdot\overrightarrow{R}\times\vec{p}_h$
- O Pion identification by measuring the ionization energy loss (dE/dx) with $p_T^\pi > 1.5$ GeV/c and $|\eta| < 1$
- Oppositely charged pion pairs, $\pi^+\pi^-$
- ${}^{\hspace{-0.1cm} \bullet}$ Direction of \overrightarrow{R} always points from π^- to π^+ A_{UT} gets otherwise diluted

 $\pi^+\pi^-$ reaction plane

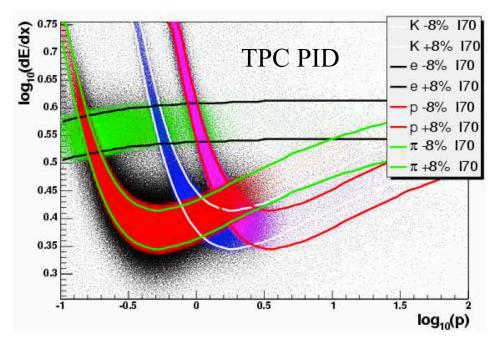


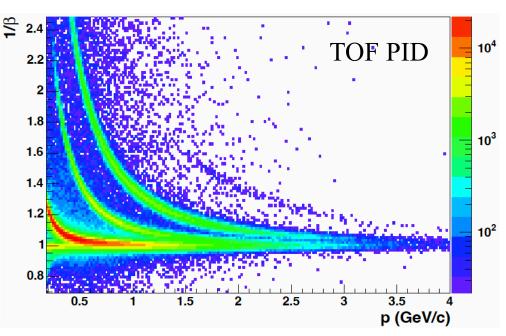

Analysis details - $\pi^+\pi^-$ Asymmetry

- Asymmetry determination
 - ullet Cross-ratio formula: ϕ_{RS} binning in A_{UT} extraction

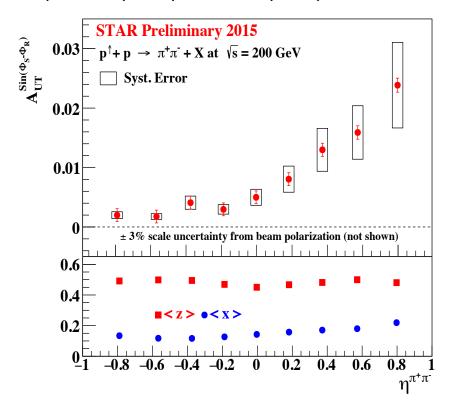
$$A_{UT}\sin(\phi_{RS}) = \frac{1}{P} \frac{\sqrt{N^{\uparrow}(\phi_{RS})N^{\downarrow}(\phi_{RS} + \pi)} - \sqrt{N^{\downarrow}(\phi_{RS})N^{\uparrow}(\phi_{RS} + \pi)}}{\sqrt{N^{\uparrow}(\phi_{RS})N^{\downarrow}(\phi_{RS} + \pi)} + \sqrt{N^{\downarrow}(\phi_{RS})N^{\uparrow}(\phi_{RS} + \pi)}}$$

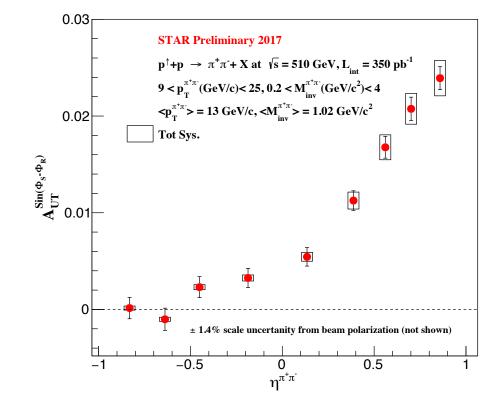
- Free from relative luminosity terms (cancels out in symmetric detector system!)
- Two transverse polarization states: \(\bar{\pi}\), \(\bar{\pi}\)
- 16 ϕ_{RS} bins of uniform widths over $[-\pi, \pi]$.
- Symmetry between $[-\pi, 0]$ and $[0, \pi]$ hemispheres.
- Count $\pi^+\pi^-$ yields in each 16 ϕ_{RS} bins for each polarization states: $N^\uparrow(\phi_{RS})$, $N^\downarrow(\phi_{RS})$.



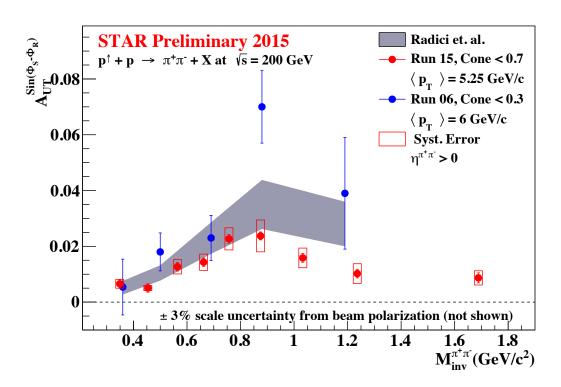

 $\phi_{
m RS}$ binning scheme

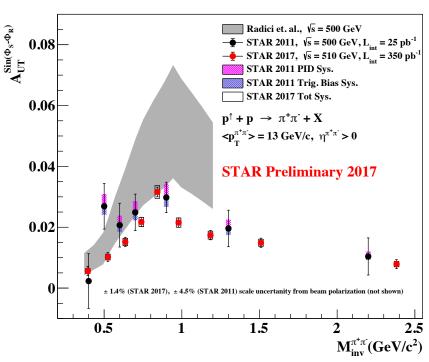
Analysis details - $\pi^+\pi^-$ Asymmetry


- Systematic uncertainties
 - \circ STAR PID relies on the measured ionization energy loss (dE/dx) by the TPC at low p_T .
 - Time of Flight (TOF) helps to improve the STAR PID, in conjunction with the TPC via dE/dx
 - The fraction of proton, kaon, and electron (backgrounds) in the pion signal region estimates the PID systematic uncertainty



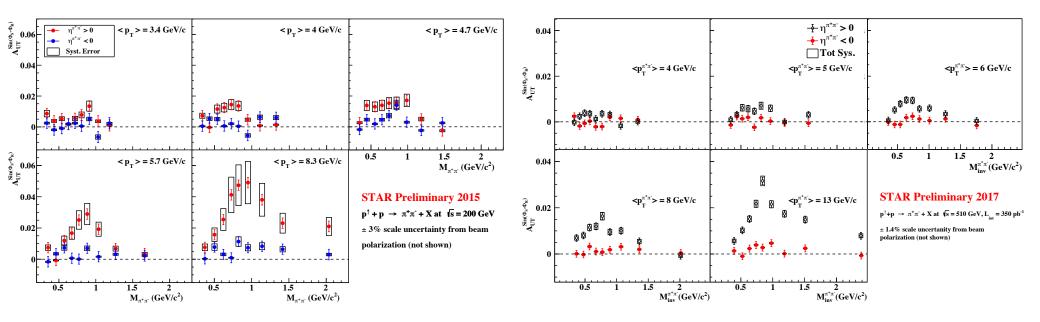
Asymmetry vs. pseudo-rapidity $\eta^{\pi^+\pi^-}$ at 200GeV and 510GeV



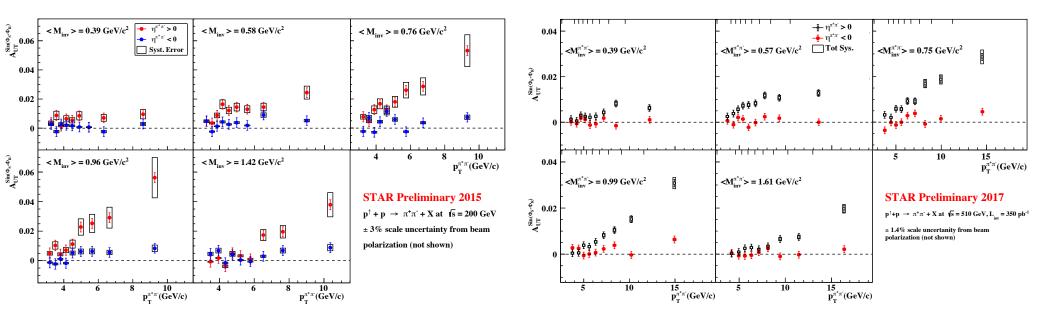


- $^{f Q}$ A_{UT} increases with η at 200GeV (Run 15) and 510GeV (Run 17) Sizable $h_1^q(x)$ expected for $\eta>0$, i.e., large x!
- Improved PID treatment for 510GeV (Run 17) using TPC/TOF, whereas 200GeV (Run 15) based on TPC PID only so far, TOF PID incl. for final result for 200GeV (Run 15)
- Systematic uncertainties: PID and Trigger bias

lacktriangle Asymmetry vs. invariant mass $M_{
m inv}^{\pi^+\pi^-}$ integrated in p_T at 200GeV and highest p_T bin at 510GeV



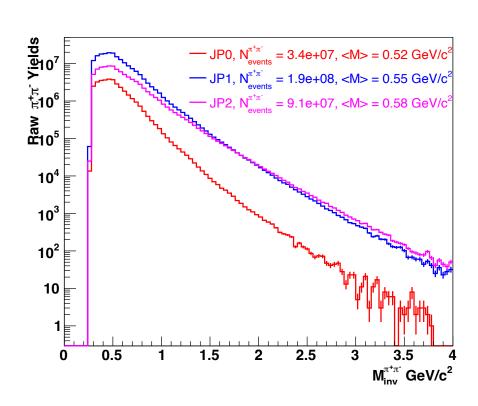
- $^{\circ}$ A_{UT} asymmetry is enhanced around $M_{inv}^{\pi^+\pi^-}\sim 0.8\,{
 m GeV/c^2}$, consistent with the previous measurement and theory prediction
- ullet Theory calculations overshoots the new measurement beyond the ho resonance peak
- Statistical precision is significantly improved by the new result


lacktriangle Asymmetry vs. invariant mass $M_{
m inv}^{\pi^+\pi^-}$ in p_T bins at 200GeV and 510GeV

- lacksquare $A_{UT}^{\sin(\phi_{RS})}$ vs $M_{inv}^{\pi^+\pi^-}$ in different p_T and $\eta^{\pi^+\pi^-}$ bins
- Signal grows stronger at higher p_T in forward $\eta^{\pi^+\pi^-}$ region / Resonance peak around $M_{inv}^{\pi^+\pi^-}\sim 0.8~{
 m GeV/c^2}\sim M_{\varrho}$.
- \circ Backward $\eta^{\pi^+\pi^-}$ signal is small, mainly from low x quarks from polarized beam

 $extstyle extstyle extstyle Asymmetry vs. transverse momentum <math>p_T$ in $M_{
m inv}^{\pi^+\pi^-}$ bins at 200GeV and 510GeV

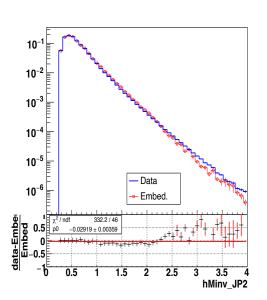
- ullet Large asymmetry signal at higher p_T in forward $\eta^{\pi^+\pi^-}$ region. Stronger signal when $\langle {
 m M}_{
 m inv}
 angle\sim {
 m M}_
 ho$.
- Description Backward $\eta^{\pi^+\pi^-}$ signal $(\eta^{\pi^+\pi^-} < 0)$ is small, mainly from low x quarks from polarized beam.

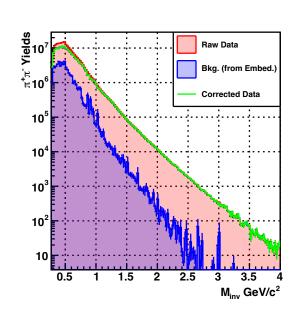


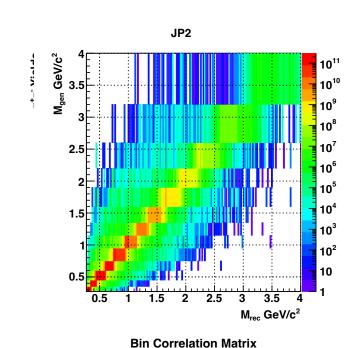
Analysis details - $\pi^+\pi^-$ Cross-Section

Selection criteria

- \circ Di-hadron channel, $p + p \to \pi^+\pi^- + X$:
- Inclusive $\pi^+\pi^-$ differential cross section:
 - \Box As a function of invariant mass, $M_{inv}^{\pi^+\pi^-}$, in $|\eta|$ <1.
 - \square Much needed for the $D_1^{h_1h_2}$ extraction.
 - \Box Access to $D_1^{h_1h_2/g}$.
- \circ STAR Run 2012 dataset @ $\sqrt{s}=200~{\rm GeV}$
- O Triggers: JPO, JP1, JP2
- Lower trigger threshold provides better gluon sensitivity than Run 2015.
- $^{\rm O}$ $\pi^+\pi^-$ construction is same as in the IFF analysis, except for the track $p_T>0.5$ GeV/c.







Analysis details - $\pi^+\pi^-$ Cross-Section

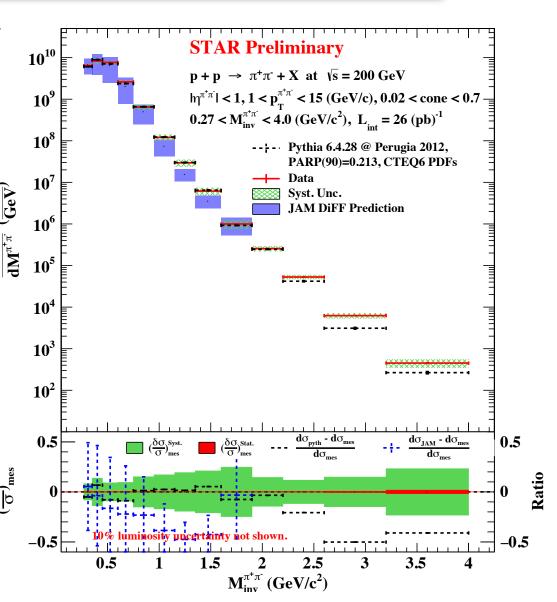
Cross-section determination and systematic uncertainties

- O PYTHIA simulated events, reconstructed through GEANT package embedded with real collision events to effectively reconstruct STAR detector responses (Embedding)
- Unfolding accounts for the bin migration effect and backgrounds
- O Unfolding is performed for each trigger, allowing independent measurement of triggered cross-

section

1.5 0.2

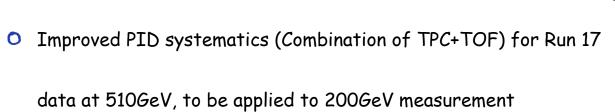
1 0
Bernd Surrow
0.5 -0.2

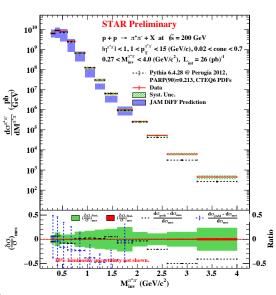

0.6

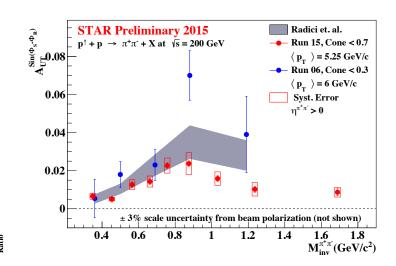
Analysis details - $\pi^+\pi^-$ Cross-Section

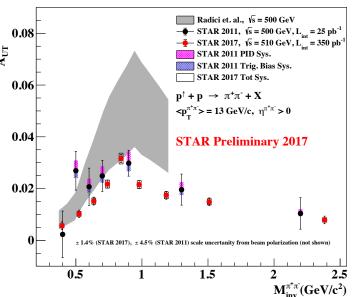
- Preliminary di-hadron cross-section result
 - O Top Panel:
 - \Box First unpolarized $\pi^+\pi^-$ cross-section measurement
 - Good agreement in comparison to PYTHIA simulation and JAMDiFF preduction
 - Bottom Panel:
 - Systematic uncertainties (Green band!)
 - ☐ Statistical uncertainties (Red band!)
 - ☐ Relative difference to PYTHIA /

 JAMDiFF shown in black/blue
 - Access to $D_1^{h_1h_2}$ for gluons
 - Path to model-independent extraction of $h_1(x)$

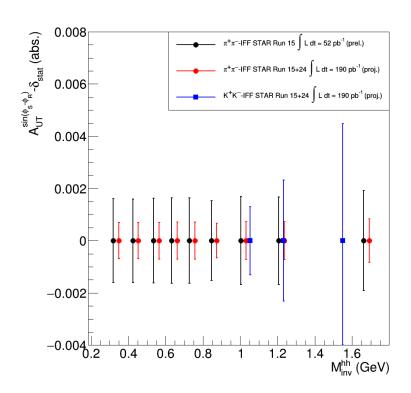


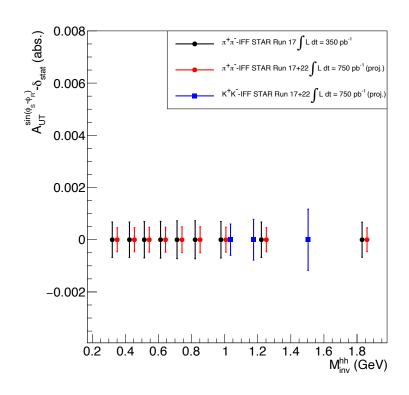

Summary and Outlook


Summary


- New measurements of IFF dipion asymmetries at 200GeV
 (2015) and 510GeV (2017)
- First di-pion cross-section
 measurement at 200GeV (2012)

Publication of 200GeV and 510 di-pion measurements: Input to global analysis for transversity extraction!





Summary and Outlook

Outlook

- Precision measurement of IFF asymmetries for pions / kaons from 2015+2024 at 200GeV and 2017+2022 at 510GeV
- Planned cross-section measurements for pions at 510GeV and Kaons at 200/510GeV

