Measurement of the longitudinal spin asymmetries for weak boson production in polarized proton-proton collisions at $\sqrt{s} = 510$ GeV at RHIC

(On behalf of the STAR Collaboration)

DNP 2019 - Fall Meeting of the APS Division of Nuclear Physics Arlington, VA, October 14-17, 2019

DOE NP contract: DE-SC0013405

Outline

Measurement of:
 W[±] single / double spin asymmetry A_L / A_{LL}
 Z⁰ single asymmetry A_L

- Analysis details
- Results

How do we probe the structure and dynamics of matter in ep vs. pp scattering?

- Proton spin structure using high-energy polarized p+p collisions W production
 - Observable: Quark/Anti-quark polarization (W production)
 - Longitudinal single-spin
 asymmetry A_L

 $A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$

- Parity (Spatial inversion) violating for W production!
- Features of W boson production probing parton distributions:
 - Direct sensitivity to quark (u/d) / antiquark (ubar/dbar) distributions
 - □ Large scale defined by W mass (~80GeV)
 - $\hfill\square$ Simple final state of charged leptons: No

dependency on fragmentation functions

DNP 2019 - Fall Meeting of the APS Division of Nuclear Physics Arlington, VA, October 14-17, 2019

 Polarized and unpolarized partonic cross-sections known at NLO - W A_L asymmetry results powerful input for global analyses such as DSSV and NNPDF at NLO level! The world's first polarized proton-proton collider

Experimental aspects - RHIC

Polarized p-p collisions

 Production runs at \$\subset s=500/510GeV\$ (long. polarization) in 2009, 2011, 2012, 2013: W production (Quark polarization) / Jet and Hadron production (Gluon polarization)

Run	L (pb-1)	P (%)	FOM (P ² L) (pb ⁻¹)
Run 9	12	0.38	1.7
Run 11	9	0.49	2.2
Run 12	77	0.56	24
Run 13	250	0.56	78

Experimental aspects - STAR

Overview

- Calorimetry system with
 2π coverage: BEMC
 (-1<η<1) and EEMC (1<η<2)
- TPC: Tracking and particle ID

- ZDC: Relative luminosity and local polarimetry (500GeV)
- BBC: Relative
 luminosity and
 Minimum bias trigger

 $\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$

Bernd Surrow

Results / Status - W reconstruction

DNP 2019 - Fall Meeting of the APS Division of Nuclear Physics Arlington, VA, October 14-17, 2019

Results / Status - W reconstruction

DNP 2019 - Fall Meeting of the APS Division of Nuclear Physics Arlington, VA, October 14-17, 2019

Results / Status - W reconstruction

□ Mid-rapidity W⁺ / W⁻ signal distributions / Background determination

STAR E_T distributions for W-/W⁺ candidate events well described by $W \rightarrow e + v$ (W-e decay) signal events and datadriven QCD background estimation plus electroweak background events in four mid-rapidity n bins

• QCD background:

J. Adam et al. (STAR Collaboration), Phys. Rev. D 99 (2019) 51102.

- Data-driven QCD background estimate: Background which satisfy e[±] candidate isolation cuts
- Second EEMC QCD background estimate: Background ("Jet") at non-existing calorimetric coverage for -2 < η < 1.1 based on instrumented calorimetric coverage with STAR EEMC for 1.1 < η < 2</p>
- Electro-Weak background: $Z \rightarrow e^+ + e^-$ (Z decay) and $W \rightarrow \tau + v$ (W-Tau decay) / PYTHIA-MC estimation!

RHIC Probing the quark flavor structure using W boson production

W A_L measurements at STAR 2013 and 2011+2012 and PHENIX

• STAR 2013 W AL results is the most precise

measurement of $W A_L$ up to date.

- STAR 2013 W A_L results consistent with published
 2011+2012 results
- Statistical uncertainties (Dominant uncertainties) were reduced by 40-50% compared to published

2011+2012 results / Similar systematic uncertainties.

• Results consistent with published PHENIX mid-

rapidity measurements.

DNP 2019 - Fall Meeting of the APS Division of Nuclear Physics Arlington, VA, October 14-17, 2019 11

W A_L measurements: Combination of 2011+2012+2013

• STAR 2013 W AL results is the most precise

measurement of W A_L up to date.

- STAR 2013 W A_L results consistent with published
 2011+2012 results
- Statistical uncertainties (Dominant uncertainties) were reduced by 40-50% compared to published

2011+2012 results / Similar systematic uncertainties.

• Results consistent with published PHENIX mid-

rapidity measurements.

DNP 2019 - Fall Meeting of the APS Division of Nuclear Physics Arlington, VA, October 14-17, 2019 12

Bernd Surrow

^I Impact of STAR W A_L measurements on $\Delta \bar{u}$ and $\Delta \bar{d}$:

Significant constraint for $\Delta \bar{u}$ and $\Delta \bar{d} : \Delta \bar{u} > \Delta \bar{d}$ at intermediate Bjorken-x $(M_W/\sqrt{s} \simeq 0.16)$

• Polarized flavor asymmetry $\Delta \bar{u} - \Delta \bar{d}$ of similar size, but opposite sign compared to unpolarized asymmetry $\bar{u} - \bar{d}$

DNP 2019 - Fall Meeting of the APS Division of Nuclear Physics Arlington, VA, October 14-17, 2019 13

W A_{LL} measurements

- New published measurement of longitudinal double-spin asymmetry A_{LL} based on STAR
 2013 results compared to 2011+2012 results
- Results are consistent within uncertainties as a function of leptonic rapidity

 Probe W⁺/W⁻ initial light quark polarized flavor combinations:

$$A_{LL}^{W^+} \propto rac{\Delta u}{u} rac{\Delta d}{\bar{d}}$$
 and $A_{LL}^{W^-} \propto rac{\Delta d}{d} rac{\Delta \bar{u}}{\bar{u}}$

J. Adam et al. (STAR Collaboration), Phys. Rev. D 99 (2019) 51102.

Positivity constraints involving A_L and A_{LL}:

$$\pm A_{LL}^{W^{\pm}}(y_W) > A_L^{W^{\pm}}(y_W) \pm A_L^{W^{\pm}}(-y_W)$$

Z.Kang and J.Soffer, Phys. Rev. D83 (2011) 114020.

Results / Status - Z⁰ reconstruction

Z boson

 ${\rm A_L}$ is sensitive to the combination of light quark flavor $Z/\gamma^*\,A_L$ – 0 polarizations: $u, \bar{u}, \bar{d}, \text{ and } \bar{d}$ d u ū d

J. Adam et al. (STAR Collaboration), Phys. Rev. D 99 (2019) 51102.

DNP 2019 - Fall Meeting of the APS Division of Nuclear Physics Arlington, VA, October 14-17, 2019

60

Ξ

80

100

m_{e*e} (GeV/c²)

120

15

Bernd Surrow

16

Summary / Outlook

- Summary
 - Mid-rapidity: Published W asymmetry (results suggest large anti-u quark polarization along with broken QCD sea.
 - New published result of STAR 2013 W AL is the most precise measurement to date: Further constrain anti-quark helicity distributions
 - New STAR 2013 W A_L results consistent with published STAR 2011+2012 results and published
 PHENIX mid-rapidity results
- Outlook
 - Long 510GeV run in 2017 (Run 17) at transverse spin polarization of about 350pb⁻¹: W A_N / Unpol.
 QCD sea
 - Unpolarized program for Run 17: Cross-section ratio measurements of W⁺/W⁻ Unpolarized dbar / ubar probe
 - Exciting long-term polarized pp/pA program beyond 2020 requiring forward detector upgrade

(NSF grant)

DNP 2019 - Fall Meeting of the APS Division of Nuclear Physics Arlington, VA, October 14-17, 2019

51102.

DOE NP contract: DE-SC0013405

J. Adam et al. (STAR Collaboration), Phys.

Rev. D 99 (2019)