


ABSTRACT

Electron-positron pair production in Au+Au collisions at a center-of-mass energy of

27 GeV per nucleon pair as part of the Beam Energy Scan Program at STAR

by

Joseph W. Butterworth

This thesis reports the e+e− pair production in the top 80% most central Au

on Au collisions at
√
sNN = 27 GeV from the STAR experiment. The production

exhibits an excess yield, in the low invariant mass region (Mee . 1.2 GeVc−2), when

compared to a hadronic cocktail without ρ contributions. We show that this excess

yield is successfully described by model calculations that include a broadening of the

ρ spectral function in a hot, dense medium. We also show agreement between the

excess yield and model calculations, once detector acceptances have been corrected.

Our results are a part of a larger systematic study of the e+e− pair production in the

Relativistic Heavy Ion Collider Beam Energy Scan Program and are presented with

data from Au on Au collisions at
√
sNN = 19.6, 39, 62.4, and 200 GeV. Each collision

energy e+e− pair measurement has an excess yield with respect to a hadronic model

without ρ contributions, and each excess yield is described by model calculations that

include a broadening of the ρ spectral function in a hot, dense medium. This suggests

that the ρ meson is modified by the hot, dense medium. We report the acceptance-

corrected excess yields as a function of
√
sNN , charged particle multiplicity, and

predicted lifetimes. We also report that there is no statistically significant dependence

of the excess yield on
√
sNN , charged particle multiplicity, and predicted lifetimes for



iii

Au on Au collisions with a 0−80% centrality.
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Chapter 1

Introduction to heavy ion collisions and

electromagnetic probes

The aim of this thesis is to search for and study modifications to the ρ-meson in-

variant mass spectrum through the reconstruction of electron-positron pairs, e+e−,

that have been produced during the collision of gold (Au) ions at a center-of-mass

energy per nucleon pair of 27 GeV. An introduction to the collisions of heavy ions

and electromagnetic probes is discussed in this chapter. The following chapters cover

the theoretical motivation (Chapter 2), data collection (Chapter 3), data analysis

(Chapter 4), modeling of known hadronic contributions (Chapter 5), and conclusions

(Chapter 6).

1.1 Quantum Chromodynamics

Quantum chromodynamics (QCD) is a theory that describes the strong interaction

(i.e., force) between quarks and gluons, where the strong interaction is carried by

gluons. There are six types (i.e., flavors) of quarks: up (u), down (d), charm (c),

strange (s), truth (t), and beauty (b). Quarks are fermions because they have a

spin of 1/2 and follow Fermi-Dirac statistics. Quarks also possess a fractional baryon

charge of +1/3 (B) and a fractional electric charge such that u, c, and t have a fraction

electric charge of +2/3 elementary charge (e) and d, s, and b have a fractional electric

charge of -1/3 e. Anti-quarks have opposite baryon and electric charges. Gluons have

a spin of 1, like the electromagnetic force carrier, the photon. Gluons carry no electric



2

charge. Both quarks and gluons carry color-charges (referred to simply as “color”).

Color is a property of the particle that explains how quark combinations and gluon

combinations can satisfy the Pauli exclusion principle (e.g., the color property allows

all three u quarks to form a ∆++ baryon – this combination of quarks would violate

the Pauli exclusion principle without the color property to distinguish the u quarks

[46]). Each quark flavor comes in three colors (red, green, and blue). Gluons carry

both color and anti-color, whereas quarks carry color and anti-quarks carry anti-color.

For gluons, there are nine possible combinations of colors and anti-colors, which can

be arranged into a color octet and a color singlet that is color neutral. Since a colorless

gluon has not been observed and a colorless gluon does not carry color between quarks,

there are only eight colored states possible for gluons to carry.

QCD has two defining features: confinement and asymptotic freedom. Confine-

ment is the feature where quarks are not found alone, but found bound together as

colorless particles called hadrons. A hadron with a quark-antiquark pair is known as

a meson (e.g., π, ρ, and a1(1260), and a hadron with a quark-quark-quark triplet is

known as a baryon (e.g., proton, neutron, and ∆++). An example of confinement in

the laboratory setting is a jet, which essentially is a collimated shower of hadrons.

One method to produce a jet is to collide an electron (e−) and positron (e+) head-

on. In some collisions, the electron and positron annihilate into a photon (γ) that

decays into a qq̄ pair (i.e., γ → qq̄). The qq̄ pair then separates and as the distance

between the pair grows, so does the strong interaction between the pair. It becomes

energetically favorable for the color field (gluon) between quarks to snap and, at the

snapping point, a new qq̄ forms in-between the original pair. The new pair ensures

that the overall collision system remains colorless and quarks are not found alone.

This process will continue to repeat and create many hadrons in the directions of
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the original q and q̄. Ultimately, resulting in a pair of jets (i.e., a dijet). Figure 1.1

illustrates a qq̄ pair being separated and the creation of qq̄ pairs as the original pair

is pulled apart.

Figure 1.1 : A quark (q) and anti-quark(q̄) being pulled apart. As the pair is sepa-
rated, the color field snaps and creates a new qq̄ to keep the quarks confined. This
figure was taken from [1].

The other feature of QCD, asymptotic freedom, is a property that describes the

ability of quarks to move around freely at short distances, e.g., inside a hadron.

This feature is confirmed by measuring the strong coupling constant (αs) for diffe-

rent interaction ranges, where the strong coupling constant describes the strength

of the strong force at some distance. Measurements are performed as a function of

momentum transfer (Q2), which corresponds to the interaction range. In Fig. 1.2,

measurements of αs are shown as a function of Q. The coupling constant decreases

as Q increases. The decrease in αs at small interaction distances supports the feature

of asymptotic freedom, where quarks move around freely at short distances. The

behavior of αs (i.e., the slope of αs) is known as “running”. Hence, αs is a running

coupling constant.

The dynamics of QCD is described by the QCD Lagrangian,

LQCD =
∑
q

Ψ̄q

(
i /D −M

)
Ψq −

1

4
F µνFµν , (1.1)
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Figure 1.2 : The measurements of αs as a function of Q. This figure was taken from
[2].

where q is the quark flavor (u, d, . . .) index, Ψq is a Dirac spinor representing the

quark field, i is the imaginary unit, /D = γµDµ, γµ is a Dirac γ-matrix, and Dµ is a

covariant derivative defined as ∂µ − igGµ, Fµν = ∂µGν−∂νGµ+ig[GµGν ] representing

a gluon field tensor, Gν represents a gluon field, µ and ν are space-time indexes, g

is the coupling constant, and M is the mass matrix for the six quark flavors and is

defined as

M =



mu 0 0 0 0 0

0 md 0 0 0 0

0 0 ms 0 0 0

0 0 0 mc 0 0

0 0 0 0 mb 0

0 0 0 0 0 mt


, (1.2)
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where m is the mass and the subscript on m is the quark flavor. Each Ψq represents

three colors (red, green, and blue) for each quark flavor (i.e., Ψc
q, where c = red,

green, blue), and each Gν = Ga
νλ

a/2 represents the eight possible color states such

that a is the color index and λa are the 3× 3 Gell-Mann matrices [47]

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 ,

λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 . (1.3)

QCD is symmetrical when it comes to color, is approximately symmetrical for

flavor transformations, and has a symmetry that distinguishes confinement and de-

confinement. The color symmetry is described the Lie group SU(3) (i.e., special

unitary group of degree 3) and the symmetry (SU(3)color) is invariant under local

color transformations [48]

S(x) = eigΘ
a(x)λa/2, (1.4)

where λa are the Gell-Mann matrices, Θa are arbitrary real numbers, g is the coupling

constant, and a is the gluon color-anticolor index. The Dirac spinor (Ψ) transforms

as

Ψ → S(x)Ψ, (1.5)
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and the gluon field (Gµ) transforms as

Gµ → S(x)

(
Gµ +

i

g
∂xµ

)
S†(x). (1.6)

The approximate flavor symmetry is described by the Lie groups U(3)L × U(3)R

[48] (i.e., unitary groups of degree 3, where L and R correspond to left- and right-

handed) that is made possible by the low mass of the quark flavors u, d, and s. The u

and d quarks have masses of about 2 and 6 MeVc−2, respectively, and the s quark has

a mass of about 100 MeVc−2. Since the masses are low, the masses may be ignored in

a first order approximation of the Lagrangian for u, d, and s. The QCD Lagrangian

becomes

LQCD = Ψ̄i /DΨ− 1

4
F µνFµν , (1.7)

where Ψ is now a collection of the three quark fields (u(x),d(x),s(x)). The Lagrangian

can be manipulated further by splitting Ψ into left- and right-handed components.

Handedness, in the case of massless fermions, refers to the helicity of the particle,

where the helicity operator projects spin onto the momentum direction. There are two

eigenvalues +1/2 and -1/2, which correspond to right and left handed, respectively.

The handedness is shown in Fig. 1.3. The left-handed Ψ is denoted as ΨL and the

right-handed Ψ is denoted as ΨR, where ΨL + ΨR = Ψ, ΨL = 0.5(1-γ5)Ψ, and ΨR =

0.5(1+γ5)Ψ. The γ5 is a product of the Dirac γ-matrices and is defined as

γ5 ≡ iγ0γ1γ2γ3 =

0 1

1 0

 . (1.8)

The splitting of Ψ into left- and right-handed components allows the Lagrangian

to be rewritten as

LQCD = Ψ̄Li /DΨL + Ψ̄Ri /DΨR − 1

4
F µνFµν . (1.9)
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Figure 1.3 : An illustration of handedness. The massless fermion spin (s) is projected
onto the direction of the momentum (p̂). (Left) The direction of momentum and spin
point in the same direction, which is a helicity of +1/2, or right-handed. (Right) The
direction of momentum and spin point in the opposite directions, which is a helicity
of -1/2, or left-handed.

By splitting LQCD, it becomes apparent that the gluons interact with the quarks

irrespective of their handedness (i.e., the same coupling constant for both cases) and

the handedness of the quark does not change through the QCD interaction. And since

the mass of the quark flavors are ignored, each handed quark field may be replaced

with another handed quark field of a different flavor and same handedness. By being

able to mix quark flavors within their set of handedness, this suggests that there is a

U(3)L×U(3)R symmetry present [48]. The U(3)L×U(3)R symmetry can be rewritten

as

U(3)L × U(3)R = UV (1)× UA(1)× SUV (3)× SUA(3), (1.10)

where the subscripts A and V correspond to the type of currents the fields couple

to and that is axial (γµγ5) and vector (γµ), respectively. Each symmetry group

(i.e., UV (1), UA(1), SUV (3), and UA(3)) has a different physical consequence and is

discussed in the immediately proceeding text.

The UV (1) symmetry is the result of the Lagrangian being invariant to a global
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phase transformation to all quark flavors, where Ψ transforms as

Ψ → eiΘ⃗Ψ (1.11)

and Θ⃗ is an arbitrary constant vector. The invariance holds true in both cases of the

quarks being massless and having mass, and the physical consequence of the UV (1)

symmetry is baryon number conservation.

The UA(1) symmetry is the result of the Lagrangian being invariant to a global

axial phase transformation to all quark flavors, where Ψ transforms as

Ψ → eiΘ⃗γ5

Ψ. (1.12)

In the massless quark scenario, this transformation is invariant when applied to the

classical Lagrangian. However, when applied in a full quantum approach, the trans-

formation is no longer invariant and the associated current diverges. The divergence

arises from quantum corrections and is referred to as the axial anomaly. The quan-

tum anomaly is responsible for intrinsic parity violation [49], where intrinsic parity

(P × (−1)s) is the parity quantum number (P ) with the spatial configuration consi-

dered through its spin (s). Parity violation occurs when the initial and final intrinsic

parities do not equate. Examples of the intrinsic parity violation includes ω → πππ

and K∗ → Kππ [48, 49]. In the process ω → πππ, ω has an intrinsic parity of +1

and 3π has an intrinsic parity of -1. In the process K∗ → Kππ, K∗ has an intrinsic

parity of +1, and Kππ has an intrinsic parity of -1. In both cases, the intrinsic parity

is not conserved.

The SUV (3)×SUA(3) symmetries are present in the massless QCD Lagrangian, as

the Lagrangian is invariant to both vector and axial transformations in the massless

scenario. The vector transformation rotates Ψ as

Ψ → eiΘ⃗·λ
2Ψ, (1.13)
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where λ are the Gell-Mann matrices and Θ are the components of an arbitrary vector.

The vector transformation is also invariant in the scenario where quarks have masses.

The physical consequences of the SUV (3) symmetry are the multiplets of hadrons

with constituent light quarks (e.g., the mesons: π0, π+, π−, K+, K−, K0, K̄0, and η

and the baryons: p, n, Λ, Σ+, Σ0, Σ−, Ξ0, and Ξ−). The axial transformation of Ψ

follows

Ψ → eiΘ⃗·λ
2
γ5

Ψ. (1.14)

When the transformation is applied to the QCD Lagrangian with mass, Eq. 1.1,

the invariance is broken and is an explicit breaking of the symmetry. There is also a

spontaneous breaking of the symmetry, too. The physical consequences of the SUA(3)

symmetry breaking are the absence of degenerate states with opposite parity and the

creation of the π, K, and η. The degenerate states of opposite parity, also known as

chiral partners, would be between pairs of pseudoscalar & scalar mesons (e.g., π and

σ, respectively) and vector & axial-vector mesons (e.g., ρ and a1(1260), respectively).

However, there are no observed degenerate states and an invariant mass difference

is observed between the partners. For example, ρ has a mass of 775 MeVc−2 and

a1(1260) has a mass of 1230 MeVc−2. A mass difference, or splitting, of 455 MeVc−2.

Finally, the massless LQCD is scale invariant [49]. Scale invariance is when the

action (S) is invariant under a scale transformation, where the quark fields (ψ(x)),

and gluon fields (Gµ), and space-time (x) variables transform as

x→ x′ = e−λx, ψ(x) → ψ′(x′) = e3λ/(2x)ψ(x), Gµ(x) → G′
µ = eλGµ(x). (1.15)

The new action (S ′) follows:

S ′ =

∫
d4xL′(x) =

∫
d4λ4L(λx) = S. (1.16)
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Hence, it is scale invariant. However, there is a “trace anomaly”. QCD must be

renormalized, and the scale defined for QCD (ΛQCD) is set making the full QCD not

scale invariant. There is an associated order parameter with the anomaly and that is

the expectation value of the energy-momentum tensor (⟨Θµ
µ⟩) given by

⟨Θµ
µ⟩ =

βQCD

2g3
⟨TrFµνF

µν⟩+
∑

q=u,d,s

mq (1 + γ) ⟨ψ̄ψ⟩, (1.17)

where βQCD is the beta function of QCD, g3 is the SU(3) gauge coupling constant,

mq is the quark flavor (q) mass, and γ is the anomalous dimension. The first term is

the dominate contribution and contains the gluon condensate

Chiral Partners

Chiral partners are pairs of hadrons that rotate into one another under a chiral

rotation. One such pair is the axial-vector meson a1(1260) and the vector meson

ρ. To demonstrate that these two mesons are partners, ρ and a1-like states can be

constructed out of quark fields and then rotated into one another [3]. This is done in

the scenario where only two quark flavors, the u and d flavors, are considered. Since

the s quark is not considered, the SU(3)V ×SU(3)A symmetry is no longer applicable,

but SU(2)V × SU(2)A symmetry is applicable in a similar fashion. Instead of the

Gell-Mann matrices and Ψ being a collection of three quark fields, the LQCD may

be approximated with a two quark flavor version that contains the three 2× 2 Pauli

matrices (τ⃗)

τ1 =

 0 1

1 0

 , τ2 =

 0 −i

i 0

 , τ3 =

 1 0

0 −1

 , (1.18)

and Ψ is a collection quark fields u(x) and d(x), respectively. The vector and axial-

vector transformations (RV and RA) are analogous to their three quark flavor coun-
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terparts, where Eqs. 1.13 and 1.14 now transform as

Ψ → eiθ⃗·
τ⃗
2Ψ,

Ψ → eiθ⃗·
τ⃗
2
γ5

Ψ, (1.19)

respectively.

The ρ-like state (ρ⃗µ) can be described by ρ⃗µ = 1√
2
ψ̄γµτ⃗ψ, where µ is a space-time

index, ψ and ψ̄ represent quark and anti-quark fields (i.e., a meson), respectively,

and γµτ⃗ means that the state transforms like a vector particle (i.e., vector meson).

The a1(1260)-like state (a⃗1µ) is described by a⃗1µ = 1√
2
ψ̄γµτ⃗ γ5ψ, where the where µ

is a space-time index, ψ and ψ̄ represent quark and anti-quark fields (i.e., a meson),

respectively, and γµτ⃗ γ
5 means that the state transforms like an axial-vector particle

(i.e., axial-vector meson).

Rotating ρ⃗µ with RV is as follows:

RV ρ⃗µ =
1√
2
RV ψ̄γµτ⃗RV ψ

=
1√
2
ψ̄eiθ

τ⃗
2 γµτ⃗ e

−iθ τ⃗
2ψ =

1√
2
ψ†
(
1 + iθj

τ j

2

)
γ0γµτ

i

(
1− iθj

τ j

2

)
ψ

=
1√
2
ψ̄γµτ

iψ − 1√
2

1

2
ψ̄γµτ

iiτ jθjψ +
1√
2

1

2
ψ̄γµiτ

jθjτ iψ (1.20)

= ρ⃗+ θjϵijk
1√
2
ψ̄γµτ

kψ

= ρ⃗+ θ⃗ × ρ⃗,

where ψ̄ = ψ†γ0, e
−iθ τ⃗

2 ≃ 1 − iτ⃗ θ
2
, γ0γ5 = −γ5γ0, and [τ i, τ j] = 2iϵijkτ

k. The vector

transformation rotates the ρ into itself. However, when rotating ρ⃗µ with RA as follows:
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RAρ⃗µ =
1√
2
RAψ̄γµτ⃗RAψ

=
1√
2
ψ†(1 + iγ5θ

j τ
j

2
)γ0γµτ

i(1− iγ5θ
j τ

j

2
)ψ

=
1√
2
[ψ̄γµτ

iψ + ψ†(i
1

2
τ jθjτ iγ0γµγ5 − i

1

2
γ0γµγ5τ

iτ jθj)ψ] (1.21)

= ρ⃗µ +
i√
2
ψ̄γµγ5θ

j 1

2
(τ jτ i − τ iτ j)ψ = ρ⃗µ +

i√
2
θj(−iεijk)ψ̄γµγ5τ kψ

= ρ⃗µ + θ⃗ × a⃗1µ,

the ρ no longer rotates into itself, but the axial rotation causes the ρ to rotate into

the a1. Similar transformations can be performed on a⃗1µ and the a1 will rotate into

the ρ, too. This relationship (i.e., symmetry) between the ρ and a1 also implies

that the two mesons should share the same eigenvalues, or mass values. This is also

referred to as degeneracy. However, the ρ and a1 have not been observed to have the

same mass. This example has shown that the ρ(770) and a1(1260) are indeed chiral

partners and, yet, exhibit different masses than the symmetry suggests. This mass

difference (i.e., no degeneracy) is a result of the spontaneous breaking of the chiral

symmetry. For more information about the axial and vector operators with respect

to chiral symmetry, see [3].

Spontaneous Symmetry Breaking

Spontaneous symmetry breaking occurs when a symmetry is not realized in the ground

state of the Hamiltonian, but in an excited state. This symmetry when broken is

also referred to as hidden symmetry and, with respect to SU(3)A, is responsible for

the non-degenerate chiral partners (e.g., ρ & a1(1260) and the mesons σ & π) and

creation of the π, K, and η mesons. The creation of π, K, and η are a result of the
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phenomena called Goldstone modes. Goldstone modes are the massless states in an

excited spectrum when a continuous symmetry spontaneously breaks. This is the

Goldstone theorem. An example of this theorem can be shown with a Lagrangian

(L) [1]

L = T − V =
1

2
(∂µϕ)

2 − V (x) ,

V (x) =
1

2
µ2ϕ2 +

1

4
λϕ4, (1.22)

that describes scalar fields (ϕ), where T is the kinetic term, V is the potential term,

and λ > 0. The Lagrangian is invariant under the transformation ϕ → −ϕ. The

µ2 term can either be > 0 or < 0, where µ is the mass term. Both cases affect the

potential differently as shown in Fig. 1.4, where the potential on the left represent

the µ2 > 0 case and the potential on the right represents the µ2 < 0 case. While the

Figure 1.4 : The different potentials (V ) based on the sign of µ2. The potential on the
left represents the µ2 > 0 case and the potential on the right represents the µ2 < 0

case, where ν =
√

−µ2

λ
. This figure was taken from [1].

µ2 > 0 case has a minimum at ϕ = 0, this does not correspond to an energy minimum

(i.e., ground state/vacuum). The µ2 < 0 case has minima at ϕ = ±
√

−µ2

λ
and both
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are ground states. However, by selecting one of the minima, or ground states, one

would break the symmetry even though V would remain symmetric. It should also

be noted that a mass term < 0 is not physical.

To obtain a physical mass term, expand ϕ at
√

−µ2

λ
with a χ(x) field, which

represents quantum fluctuations around the minimum, and gives

ϕ(x) =

√
−µ2

λ
+ χ(x). (1.23)

Plugging the ϕ back into L (Eq. 1.22) gives

L′ =
1

2
(∂µχ)

2 − λ

(√
−µ2

λ

)2

χ2 − λ

√
−µ2

λ
χ3 − 1

4
λχ4 +

1

4

µ4

λ
. (1.24)

Now, the χ field has a physical mass term

m =
√
−2µ2, (1.25)

which allows the χ2 term to has the form

− 1

2
m2χ2. (1.26)

The higher-ordered χ terms represent self-interacting terms, like how gluons are able

to self-interact.

By expanding around the minimum, a physical mass term was generated–this

revealing of a physical mass term is spontaneous symmetry breaking. To rephrase

and relate to the original Lagrangian, µ2 is a broken symmetry phase that has mass,

but for the mass to be physical, it is necessary to expand around the minimum (i.e.,

undergo spontaneous symmetry breaking).

Building on the scalar field example, we can make ϕ a complex scalar field

ϕ = (ϕ1 + iϕ2) /
√
2. (1.27)
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The Lagrangian from Eq. 1.22 becomes [1]

L =
1

2
(∂µϕ1)

2 +
1

2
(∂µϕ2)

2 − 1

2
µ2
(
ϕ2
1 + ϕ2

2

)
− 1

4
λ
(
ϕ2
1 + ϕ2

2

)
, (1.28)

which has a similar form and solutions as before (Eq. 1.22). The minima of interest

are at

ϕ2
1 + ϕ2

2 = −µ
2

λ
, (1.29)

a circle. Again, expand the ϕ around one of the minima, (ϕ1,ϕ2) = (
√
−µ2

λ
,0), with

χ(x) for the real component and ξ(x) for the imaginary component. The complex

scalar field then becomes

ϕ(x) =

√
1

2

(√
−µ

2

λ
+ χ (x) + iξ (x)

)
. (1.30)

Substituting in the expanded field into the Lagrangian (Eq. 1.28) results in

L′ =
1

2
(∂µξ)

2 +
1

2
(∂µχ)

2 + µ2χ2 + constant + quartic terms in χ and ξ. (1.31)

Again, a physical mass term pops out for the χ field. New in this Lagrangian is a ξ

field with a kinetic term (1
2
(∂µξ)

2), but no associated mass term. This is referred to

as a massless scalar field, or a Goldstone mode/boson. The spontaneous symmetry

breaking of the SU(3)A generates these Goldstone modes, too. The modes are π, η,

and K. However, these mesons are not observed to be massless. Instead, the mesons

are observed to have mass. The mass is a result of the light flavored quarks (i.e., u,

d, and s) being massive and explicitly breaking the SU(3)A symmetry. This is OK

and the spontaneous breaking of the symmetry still functions as a viable model since

the quark masses are relatively small, much like how a wheel with a small dent in it

sill rotates.

As noted in Sec. 1.1, the mass difference between the chiral partners is a result of

a spontaneous breaking of the symmetry. Assuming that the interaction (potential)
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between the chiral partners σ and π is similar to the potential in Eq. 1.28, the potential

would take the form shown in Fig. 1.5 with the σ field on the x-axis and π field on

the y-axis. The ball in the circular valley is able to rotate from one field into another.

Figure 1.5 : A ball sitting in a potential that is rotationally symmetric. This figure
was taken from [3].

This rotation is similar to the axial transformation performed in Sec. 1.1, where

the axial transformation rotates one chiral partner into the other partner. The ball

has spontaneously settled in a minima that corresponds to the previous example’s

minima at (ϕ1,ϕ2) = (−
√

µ2

λ
,0) with the χ and ξ fields mapping to the σ and π

fields. This position has been chosen because the σ field has the same characteristics

as a quark-antiquark wave function (ψ̄ψ) and that is the same characteristic as the

vacuum, or ground state, while the π does not possess the same characteristics as the

vacuum. The expectation value of the quark-antiquark wave function (⟨ψ̄ψ⟩) is also

known as the quark condensate or chiral condensate. Similar to µ2, ⟨ψ̄ψ⟩ becomes an

order parameter of the symmetry breaking. This order parameter has a finite value

because the σ field is some distance away from the center. It also means that the

π field, which corresponds to the ξ field in our previous example, is massless. This

explains the mass difference between the chiral partners, and when we also consider
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the finite quark masses, it explains why the π mass is relatively low and not quite

massless.

At high temperatures and/or densities, ⟨ψ̄ψ⟩ is expected to vanish [3]. In our

example potential, which looks like a sombrero, a vanishing ⟨ψ̄ψ⟩ would result in the

center of the potential to drop and turn the potential into a bowl-like shape. The

ball sitting in the valley in Fig. 1.5 would role into the minimum at the center and

would signify the σ and π fields becoming degenerate. This example of spontane-

ous symmetry breaking between π and σ extends well for the chiral partners ρ and

a1(1260), where their mass difference can be explained by the spontaneous breaking

of the SU(3)A symmetry. If one was to change to a phase of QCD matter, where

the temperature and/or density was higher, it would be interesting to see if the mass

difference between the chiral partners disappears and the symmetry is restored. This

is one of the reasons why people are interested in studying QCD under different

conditions.

1.1.1 Phase Diagram

Enrico Fermi stated that matter in unusual conditions could be represented by a

phase diagram [50]. Similar to the phase diagram for water, in which the phases for

water (i.e., gas, liquid, and solid) are mapped, the phase diagram for QCD matter

allows for gas, plasma, and solid phases. These three phases are formally known as

the Quark-Gluon Plasma (QGP), Hadron Gas, and Color Superconductor [51]. The

Quark-Gluon Plasma is best described as a plasma with freely interacting quarks and

gluons, the Hadron Gas phase is a medium of freely interacting hadrons (a bound

state of quarks; mesons and baryons), the Color Superconductor phase is a medium

of quark Cooper pairs. When QCD matter is in a state of local thermal equilibrium,
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it can be described by an equation of state with the external variables temperature

and baryonic chemical potential (µB) (i.e., the change in free energy as a result of

adding a baryon into the system with temperature (T ) and volume (V ) constant).

The µB is related to the net baryon density (nB) is the difference in number of baryons

(NB) and the number of anti-baryons (NB̄) per unit volume (nB = NB−NB̄

V
) of the

system. In a grand canonical ensemble, the quark chemical potential (µq) may be

associated with µB as µq = 1
3
µB. It follows that the net quark density (nq) is the

difference in number of quarks (Nq) and the number of anti-quarks (Nq̄) per unit

volume (nq = Nq−Nq̄

V
), and then 3nB = nq. The relationship between quark and

baryon numbers enables mapping baryon dominated and quark dominated phases on

the same plane. The phases of QCD matter are typically shown on a T − µB plane.

The current understanding of the QCD phase diagram is shown in Fig. 1.6 [4].

In Fig. 1.6, the label Nuclear Matter is matter at the room-temperature environ-

ment. Along the right side of the baryon chemical potential axis, this region represents

the conditions in a neutron star, which has a high neutron density at low tempera-

tures; along the left side, this region represents a Hadron Gas phase. The upper

left corner represents the early universe (a few microseconds after the Big Bang [52])

where it is hot (order of 0.3 GeV [53]) and there exists an equal balance of baryons

and anti-baryons (µB ∼ 0). Heavy ion (e.g., Au, Pb, or U) collisions are a capable of

generating QCD matter that starts in the Quark-Gluon Plasma phase (represented

as an explosion symbol in the plot) and then, as the hot, dense medium cools down,

it begins to traverse the phase diagram into the hadron gas phase (the transition is

represented by the colored arrow in the plot).

Figure 1.7 illustrates the evolution of a heavy ion collision through different stages

of the collision’s life. The depicted collision evolution is broken down into 5 stages
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Figure 1.6 : A conjectured phase diagram for QCD matter. This figure was taken
from [4].

(i.e., (1)Before colliding, (2)Pre-equilibrium, (3)Expansion, (4)Hadronization, and

(5)Freeze-out). (1) Before the collision, the ions are traveling at relativistic speeds

toward one another. At relativistic speeds, there is Lorentz contraction, which is why

the spherical ions resemble pancakes in Fig. 1.7. (2) At the start of the collision,

quarks and gluons that make up the nucleons of the colliding ions will begin to
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scatter off each other. The collision system begins to rapidly increase in pressure

and temperature. This leads to a hot, dense collection of quarks and gluons with

a low µB and high temperature. (3) The quarks and gluons thermally equilibrate

and form a state of matter (i.e., medium) described by freely interacting quarks and

gluons, or a QGP. The collision system will undergo collective expansion causing a

decrease in temperature. (4) Once cold enough, the quarks and gluons will coalesce

to form hadrons. This process is called hadronization and the collision system is now

best described by thermally equilibrated hadrons. A state of matter called hadron

gas. (5) The expansion continues and cools to the temperature where hadrons no

longer inelastically collide, and this is known as chemical freeze-out. Still expanding

and cooling, the collision continues until the hadrons no longer maintain thermal

equilibrium, and this is referred to as kinetic freeze-out. At this point, the remaining

hadrons will (hopefully) be detected by equipment setup around the collision. The

collision process during thermal equilibrium is called a fireball as it can be described

by relativistic hydrodynamics [54].

1.1.2 Quark-Gluon Plasma

The Quark-Gluon Plasma is a phase of QCD matter consisting of freely interacting

quarks and gluons, where enough energy density is present to negate the bounds

between quarks and gluons and make them asymptotically free [55, 56]. When the

baryon chemical potential is close to zero and temperatures are high (T ∼ 0.3 GeV

[53]), the QGP resembles conditions similar to the Universe microseconds after the

Big Bang as illustrated in Fig. 1.8 [6]. These temperatures and baryon chemical

potentials are reachable by the collision of heavy ions near the speed of light, where

a fireball is created with lower µB and higher T as the center-of-mass collision energy
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Figure 1.7 : The evolution of a heavy ion collision. This figure was taken from [5].

is increased [57], as indicated by the explosion symbols in Fig. 1.6.

1.2 Evidence of the Quark-Gluon Plasma

Heavy ion collision experiments have provided evidence for the formation of the QGP

[9]. Detectors for these experiments are either situated around a target at the terminus

of a beam line branching off an accelerator complex or along an interaction point at a

circular collider. One of these circular colliders is the Relativistic Heavy Ion Collider

(RHIC) at Brookhaven National Laboratory, Upton, NY, which houses the detector

known as the Solenoidal Tracker at RHIC (STAR). At the RHIC, A+A collisions are

provided with collision energies between a center-of-mass energy per nucleon-nucleon

pair (
√
sNN) = 5 and

√
sNN = 200 GeV. This thesis presents data that has been

produced at STAR. Previous key STAR measurements [9] that support the formation
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Figure 1.8 : History of the Universe from the Big Bang to present day. This figure
was taken from [6].

of the QGP include jet suppression, quark scaling of elliptic flow, and freeze-out

temperatures consistent with theoretical calculations that predict the phase transition

temperature. The measurements performed by STAR follow the coordinate system

defined in Fig. 1.9. The z-axis is along the beam line, and the x- and y-axises define

the plane transverse to the z-axis. The polar angle (θ) is the angle between the z-axis

and momentum (p⃗) in ẑ (pz), and the azimuthal angle (ϕ) is the angle between the
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x-axis and the momentum in the transverse plane (i.e., transverse momentum (pT )).

The rapidity,

y =
1

2
ln

[
E + pz
E − pz

]
, (1.32)

where E is the energy of the particle, is another variable used to describe the kinema-

tics of a particle. For convenience, the variable pseudo-rapidity (η = − ln[tan (θ)/(2)])

is defined as the angle of particle emission with respect to the beam axis and is the

rapidity (y) in the limit where mass (m) is ignored (p ≫ m). The pseudo-rapidity

is helpful when dealing with multiple particle species or particles that have not been

identified (i.e., mass is unknown). The transverse distance between the centers of two

colliding nuclei is the impact parameter (b) and is a measure of centrality. Centrality

is the amount of overlap between the colliding ions and is scaled from 0-100%, where

the lowest percentage (i.e., smallest b) is the most central collision. A 0% centrality

corresponds to the scenario where the ions collide head-on and there is a complete

overlap between the colliding transverse surfaces. A 100% centrality corresponds to

the scenario where the ions pass-by each other without overlapping. Centrality can

be related to the number of particles created in the collision, where more central

collisions lead to more particles [58].

Jet suppression [59] refers to the observation that the jets produced in heavy ion

collisions lose energy as they traverse the QGP. One way to observe the suppression

is the comparison of diharon azimuthal correlations (∆ϕ) between different collision

systems, where ∆ϕ is the difference between the azimuthal angles of the high-pT

triggered hadron and another high-pT hadron within the collision. Trigger hadrons

are hadrons that the detector recognized as having a high-pT and led to the collision

information being saved. The correlations in central gold-on-gold (Au+Au) collisions,

deuteron-on-gold (d+Au) collisions, and proton-on-proton (p+p) collisions are shown
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Figure 1.9 : The coordinate system used for making measurements at the STAR
experiment. (a) Two heavy ions the moment before they collide. The momentum
vector (P ) is used to illustrate the coordinates with respect to the z-axis. (b) The
transverse momentum vector is used to illustrate the coordinates with respect to
the transverse plane. Also shown is a transverse view of two gold atoms colliding.
The transverse distance between the centers of the nuclei is known as the impact
parameter (b).

in Fig. 1.10 [7]. Two peaks at ∆ϕ ≈ 0 (near-side) and ∆ϕ ≈ π (away-side) in d+Au

and p + p collisions correspond to dijet production, where the near side peak is the

trigger hadron being paired with other high-pT hadrons from the same jet and the

away-side peak is from the trigger hadron being paired with high-pT hadrons from

the other jet (dijets are produced back-to-back). However, central Au+Au collisions

exhibit one peak at the near side. The missing away-side peak is an observation of

jet suppression. The disappearance of the peak is explained as the triggered hadron

belonging to a jet that has been emitted near the edge of the QGP, while its partner

must traverse across the QGP to be detected. The partner jet loses energy during the

traverse because the medium is dense with quarks and gluons and those quarks and

gluons interact strongly with the jet. These interactions cause the jet to fragment
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and radiate away energy to the extent that the jet becomes indistinguishable from

the medium. Hence, the suppression of the jet is evidence for a strongly interacting

medium.
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Figure 1.10 : The dihadron azimuthal distributions of h+h− for p + p collisions (bar
graph), minimum bias d+Au collisions (red points), d+Au collisions of the top 20%
centrality (green triangles), and central (0-5%) Au+Au collisions (blue stars). This
figure was taken from [7].

Quark scaling of elliptic flow refers to the scenario where the elliptic flow (v2)

of hadrons, when divided by the number of constituent quarks (nq), overlap with

one another. Quark scaling of v2 is indicative of the collective expansion of the

medium at the quark level as opposed to the hadron level. Elliptic flow is the second

component of the Fourier expansion of the particle azimuthal distribution ( dN
d∆ϕ

∝

1 +
∑

n 2vn cos (n∆ϕ) or v2 = ⟨cos (n∆ϕ)⟩). The v2 and v2/nq for the hadrons π,

K0
S, p, and Λ are shown in Fig. 1.11 [8]. Each of the hadrons’ elliptic flow overlap
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after normalizing for the number of constituent quarks, except for π. For π, one

explanation for the deviation of v2/nq from the other hadron distributions is that

these π are not only direct products of the medium, but from secondary π (i.e., decay

products) too. Secondary π, which originate from hadrons simulated to follow the

number of constituent quark scaling, exhibit a v2/nq similar to the measured values

[8]. The secondary π simulation agreement with data and the other hadrons following

quark scaling suggest a phase of QCD matter consisting of partons (i.e., quarks and

gluons), a QGP, or at least that partonic degrees of freedom matter exists.

Chemical freeze-out temperatures have been determined from a statistical model,

which is based on the grand canonical ensemble description [60], fit to the hadron

yield ratios. The fit of the hadron yield ratios are shown in Fig. 1.12 [9]. The

resulting temperature and baryon chemical potential are 163 ± 4 MeV and 24 ±

4 MeV, respectively [9]. They have been found to be consistent with lattice QCD

calculations [61] and are used as evidence of a phase transition between the QGP and

hadron gas phases. Lattice QCD is the use of lattice gauge theory [62, 63, 64, 65, 66]

to calculate properties of QCD matter in the nonperturbative regime on a set (lattice)

of space-time points.

1.3 Beam Energy Scan Program

The Beam Energy Scan Program at RHIC set out to scan the QCD phase diagram

by colliding Au with Au at a large range of collision energies. By varying the colli-

sion energy, the initial temperature and baryon chemical potential are changed while

maintaining the collision species. In the phase diagram shown in Fig. 1.6, the con-

jectured region of the mapping by the Beam Energy Scan Program is illustrated

with the yellow symbols and the label, RHIC Energy Scan. By mapping out the
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Figure 1.11 : (a) The elliptic flow v2 for π, K0
S, p, and Λ as a function of pT . (b) v2

normalized by the number of quarks (nq) for π, K
0
S, p, and Λ as a function of pT/nq.

This figure was taken from [8].

phase diagram, the program set out to: (1) confirm and build upon the evidence

of the aforementioned QGP and the early signs of the QGP in measurements from

the Alternating Gradient Synchrotron and Super Proton Synchrotron, (2) search for

evidence of a first-order phase transition, and (3) search for a critical point in the

QCD phase diagram [4]. A key tool used to study the properties of the collisions

are electromagnetic probes, which are particles that interact via the electromagnetic
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Figure 1.12 : The ratio of hadron yields in Au+Au collisions at
√
sNN = 200 GeV

from STAR. The horizontal bars represent the statistical model fit to the ratios of
hadron yields. This figure was taken from [9].

force and not the strong force.

1.4 Electromagnetic Probes

1.4.1 Introduction

Electromagnetic probes are particles that interact electromagnetically and their pro-

perties can be used to study the collision. Photons γ and virtual photons γ∗ (where

γ∗ decay into lepton pairs l+l− and l = e, µ) are produced throughout the evolu-

tion of a collision. These products do not interact via the strong force, but rather,

interact electromagnetically. Hence, the particles are able to traverse the strongly

interacting medium with minimal final state effects as the electromagnetic coupling

constant (αem) is much less than the strong coupling constant (αs). Or in other

words, these particles are able to carry information from the time of their genesis to
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the detector, which provides valuable insight into the conditions during various stages

of the collision. The kinematic properties of the probes can be used to distinguish at

which stage of the collision the probe was produced. Hence, with the minimal final

state effects and the ability to discriminate which stage of the collision the probes

originated, the probes are excellent tools to the study the medium.

1.4.2 Uses

By separating the electromagnetic probes based on their kinematic properties, one can

differentiate and study the various stages of the collision. For photons, the kinematic

variable of choice is their transverse momentum, or transverse energy. The transverse

momentum spectrum can be chronologically divided where photons from the earliest

stages of the collision dominate the higher momentum regions and photons from the

later stages dominate the lower momentum end of the spectrum, as illustrated in Fig.

1.13 [10]. In Fig. 1.13, the earliest dominant contributions are prompt photons from

hard scatterings (green line), then the photons from jet interactions in the medium

(purple line), followed by contributions from the medium before thermal equilibrium

is established (gray line), then photons from the QGP (red line), and finally, photons

from the Hadron Gas phase (blue line). Not shown are the photons from the hadron

decays, which occur much later in the collision lifetime.

For γ∗ (γ∗ → l+l−), there is an additional kinematic property that real photons

do not have and that is mass. The invariant mass of l+l− (Mll) can be used to study

the various stages of each collision, where earlier times dominate the higher invariant

masses, but also contribute to lower invariant masses. The stages are illustrated as the

e+e− invariant mass in Fig. 1.14. In Fig. 1.14, the High-Mass Region (HMR, Mll &

MJ/Ψ) corresponds to < 1 fm/c [11] after the start of the collision and is dominated
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Figure 1.13 : The relative yields to the photon transverse momentum/energy
spectrum from different stages of the collision. This figure was created based on
[10].
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by contributions from the Ψ-family and Drell-Yan, the Intermediate-Mass Region

(IMR, Mϕ . Mll . MJ/Ψ) corresponds to ∼ 1 − 10 fm/c [11] and is dominated by

contributions from open-heavy flavor decays, and the Low-Mass Region (LMR, Mll

. Mϕ) corresponds to the latest stages of the collision at ∼ 10 fm/c [11] and is

dominated by meson decays.

0 1 2 3 4 5

mass [GeV/c
2
]

d
N

e
e

/ 
d
y
d
m

o
, Dalitz-decays

,

J/

l

Drell-Yan

DD

Low- Intermediate-  High-Mass Region
> 10 fm > 1 fm < 0.1 fm

Figure 1.14 : The chronological divisions of the e+e− invariant mass spectrum, where
x fm/c represents the typical time (c = 1) after the start of the collision. This figure
was taken from [11].
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1.4.3 Popular Topics

Various physics topics may be studied by selecting electromagnetic probes based on

their kinematic properties. Popular topics include the effective temperature (TEff ) of

the medium, the collective expansion of the medium (size and momentum anisotropy–

e.g., v2), the suppression of hadronic production by the medium, and the modification

of vector mesons in the medium and the vector meson modification’s possible link to

chiral symmetry restoration. This will be further discussed in Ch. 2.

To study TEff of the medium with photons, an exponential fit to the photon

yield as a function of energy can be used [10]. In order to do this, the photon yield

must only contain photons thermally produced by the medium. Initially, all photons

are measured and contribute to the yield. Hence, non-thermal photon contributions

need to be removed, and non-thermal contributions are primarily the prompt photons

from hard scatterings (very early in the collision) and the photons from hadron decays

(late after the collision). Prompt photons come from quark gluon Compton scattering

(qg → γq), quark anti-quark annihilation (qq̄ → γg), and quark fragmentation (e.g.,

qq → qqγ) as illustrated in Fig. 1.15. The prompt photon energy yield as a function

of energy is approximated by theoretical calculations and is subtracted from the total

yield. Since these mechanisms are also found in p + p collisions, the calculations

are typically Next-to-Leading Order (NLO) perturbative QCD prompt photon cross-

sections for p + p collisions, which have been scaled up by the number of nucleon

collisions modeled to occur in the ion-on-ion (A + A) collision system [10]. The

calculations account for effects such as nuclear shadowing, energy loss, and iso-spin

conservation. Photons from hadron decays are predominately from π0, then η, and

to a lesser extent ω, η’, and ϕ. One method in removing hadron decayed photons is

by determining if there is an invariant mass after reconstructing a pair of photons
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together, and if there is a mass, their spectrum is subtracted from the total photon

spectrum, like the prompt photon contributions. Another technique used to identify

photons from hadron decay is the measurement of virtual photons via l−l+ pairs. By

selecting the transverse momentum of the l−l+ pair (pllT ) to be much greater than

the invariant mass of the pair (pllT >> Mll), the virtual photons are effectively real

photons. This phenomenon is called internal conversion, where the source of real

photons are also the source of low-mass virtual photons, and is being studied by both

STAR [67] and PHENIX [68].

With the prompt and decay photons subtracted from the spectrum, all that should

be left in the spectrum are photon contributions from the medium. Jets in the me-

dium produce photons via the quenching of the partonic jets, in which the parton

may undergo quark-gluon Compton scattering, quark-antiquark scattering, or brems-

strahlung within the medium to produce photons. The QGP contribution to the

spectrum comes from quark-gluon Compton scattering and quark-antiquark annihi-

lation in the QGP. The hadron gas contribution is predominately from πρ interactions,

but there are contributions from other hadrons (e.g., ω → γπ [69, 70]), but the lea-

ding order contribution is from πρ interactions–due to the Hadron Gas temperature

being on the same order as the π mass.[10]. Traditionally, an exponential (e−Eγ/TEff )

fit is made to the spectrum to derive the temperature. Because photons are thermally

produced over the entire evolution of the collision, the temperature is not the initial

temperature at a specific time, but rather an effective temperature of the medium.

Note that theoretical models and additional kinematic measurements, such as mo-

mentum anisotropy and system size, are necessary to give a more precise temperature

and make other observations of the medium [71].

Like photons, l−l+ pairs may be used to study a variety of aspects of the collision.
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Figure 1.15 : Sources of prompt photons: (a) quark anti-quark annihilation (b) quark
gluon Compton scattering, and (c + d) quark fragmentation.

The suppression of hadron production, such as the Ψ family (J/Ψ, Ψ(2S)), is studied

through the reconstruction of their l−l+ daughters (i.e., decay products), as these

daughters are able to traverse the medium while carrying information about their

parent (i.e., J/Ψ, Ψ(2S)) at the time of their genesis. As shown in Fig. 1.14, the

Ψ family is produced in the earliest stages of the collision of ions, where the energy

density is high enough to generate more massive hadrons such as J/Ψ, and their l−l+

daughters will carry information about the QGP. As the QGP is a plasma of freely
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interacting quarks and gluons, J/Ψ and other cc̄ mesons in the QGP are thought to

be created, melted, and recreated. Theoretically in the hot, dense medium, the cc̄

has a bond that can be easily broken. Once broken, the partner quarks can easily be

screened from one another by a color field from neighboring quarks and gluons [72].

This is akin to Debye screening, but with the strong force instead of the electromag-

netic force. To evaluate the amount of suppression for J/Ψ, the distribution of J/Ψ

as a function of pT (i.e., transverse momentum spectrum) from A + A collisions is

compared to a reference transverse momentum spectrum that is expected to have no

medium effects. The reference spectrum is taken to be the p + p transverse momen-

tum distribution of J/Ψ that has been scaled by the number of nucleon-on-nucleon

collisions (Ncoll) in a A + A collision, as if an A + A collision is a collection of p + p

collisions. The comparison of the spectra is referred to as the nuclear modification

factor (RAA),

RAA =
dN/dpAA

T

NcolldN/dp
pp
T

, (1.33)

where dN/dpAA
T is the transverse momentum spectrum from A + A collisions with

N being the number of particles in a given pT bin and dN/dpppT is the transverse

momentum spectrum from p + p collisions. In Eq. 1.33, an RAA < 1 is suppression

and > 1 is enhancement. The RAA measurement (of the electromagnetic production

from the earliest stages of the collision, such as prompt photons from jets) is used to

verify that the electromagnetic probes traverse the medium with minimal final state

effects. The production from prompt photons have been shown to have a RAA ∼ 1

[73]. Hence, electromagnetic probes do traverse the medium with minimal affects on

their final state, and the suppression or enhancement (i.e., RAA) measured for J/Ψ

would be related to the J/Ψ itself and not the decay products of J/Ψ.

In the IMR of the l−l+ invariant mass spectrum, the contributions are dominated
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by open heavy flavor decays (e.g., cc̄ → D0D̄0 → e+K−νee
−K+ν̄e), Drell-Yan con-

tributions (q + q̄ → e+e−), and the QGP (qq̄ → γ∗ → e+e−). One topic of interest

in this IMR is the temperature of the QGP. By removing contributions from the

open heavy flavor and Drell-Yan, the remaining invariant mass spectrum would have

originated from the QGP. Then to measure the effective temperature, the invariant

mass spectrum is fitted with an exponential (A · eMee/TEff ). Like photons, the lepton

pairs are produced throughout the evolution of the system and TEff is an integral

of the collision temperatures. However, unlike thermal photons, the invariant mass

spectrum does not change due to radial flow, and hence, no blue shift and a more

ideal TEff measurement [74]. If statistics or uncertainty on the contributions in this

region are insufficient to remove the contributions, studying the effective tempera-

ture, or inverse slope, could also be illustrative of the properties of the medium. The

effective temperature has been studied by the CERN experiment NA60 with µ+µ−

from In+In collisions at
√
sNN = 17.3 GeV [16].

In the LMR of the l−l+ invariant mass spectrum, contributions are primarily from

the decay of light flavored mesons (e.g., π0, η, ω, and ρ). Light flavored mesons are

of interest because they are made up of light flavored constituent quarks and the

mass of a light quark is primarily generated by the spontaneous breaking of chiral

symmetry, as shown in Fig. 1.16 [12]. However, most light mesons are not formed until

later in the collision when chiral symmetry has already been broken. On the other

hand, the ρ has a short lifetime, ∼ 1.3 fm/c, and may decay at a time when chiral

symmetry is at least partially restored. The ρ decaying during this temporal period

is an excellent opportunity because the ρ and its chiral axial-vector partner, a1(1260),

are candidates for exhibiting chiral symmetry breaking, which is demonstrated in Sec.

1.1. By measuring and studying the ρ, one may gain insight into chiral symmetry
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restoration, or at the very least, information about the hot, dense matter.

Figure 1.16 : The estimated masses for the up, down, charm, strange, truth, and
beauty quarks and the relative contribution to each mass from different mechanisms.
The yellow bar represents the contribution to the mass from the breaking of chiral
symmetry and the blue bar represents the contributions to the mass from the breaking
of electroweak symmetry (Higgs mechanism). This figure was taken from [12].

The mass difference between these chiral partners and other chiral partners are

an excellent example of spontaneous chiral symmetry breaking. The a1(1260) does

not decay into products that are easily reconstructed in the heavy-ion collisions en-

vironment (there has not been an a1 measurement made by a heavy-ion experiment

with A + A collisions at
√
sNN > 20 GeV, yet). The a1 has a short-lifetime, is a

wide resonance, and decays into products that interact via the strong force, which

make measuring the a1 experimentally challenging [75]. However, the ρ has a decay

channel to e+e− with a branching ratio of 0.00472% [45]. While it is not frequent,

it is possible to measure. The reason for selecting the e+e− channel rather than the
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ππ channel, which has a branching ratio of > 99%, is that the electrons are able to

traverse the hot, dense medium with minimal effects and retain information about

their parent, or in this case, the ρ at the time of the decay while the πs are modified

by the medium.

For my thesis, I have set out to measure the invariant mass spectrum of e+e−

pairs in the collision of Au + Au at
√
sNN = 27 GeV. The goal of the measurement

is to extract the e+e− pairs that have been produced by the ρ and QGP. The ρ

is especially interesting because when it decays, the medium is still hot and dense.

Recall our sombero example, increasing the temperature and density of the medium

may lead to the chiral symmetry being restored, at least partially. While it would be

very challenging to measure the a1 and search for degeneracy, comparing the e+e−

pairs to theoretical calculations may be an alternative approach to say something

about the restoration of chiral symmetry, or at least, describe the behavior of the

ρ in a hot, dense medium. In the next chapter, I will discuss the different models

pertaining to the ρ and QGP production of e+e− pairs.
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Chapter 2

Theoretical Models

2.1 Introduction

As previously mentioned in Sec. 1.4.1, electrons traverse the strongly interacting colli-

sion system with minimal effect on the final state of the electrons and retain kinematic

information about their source(s). In the low mass region of the e+e− invariant mass

spectrum, the invariant mass spectrum from ρ and the QGP are of particular in-

terest. Theoretical models are used to predict the phenomena that occur in this

low mass region of the e+e− invariant mass spectrum for the ρ and QGP contribu-

tions to the e+e− invariant mass spectrum (e.g., mass dropping versus broadening

of the ρ spectral function). These theoretical models include those models by Rho-

Brown [76, 77], Rapp et al. [78, 79, 80, 81, 35], and Parton-Hadron-String Dynamics

[82, 83, 84, 85], which describe a shift in the ρ mass, broadening of the ρ spectral

function & QGP contributions, and broadening of the ρ spectral function & QGP con-

tributions, respectively, as discussed in further detail in the following sections (Sec.

2.2, 2.3, and 2.4).

2.2 Rho-Brown

The density-induced scaling of the ρ mass results in a shift of its pole (i.e., ground

state) mass toward 0 as density increases and was first hypothesized by G.E. Brown

and M. Rho [76, 77]. The density-induced scaling of the ρ mass is performed by
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introducing a medium-dependent scalar field to break the scale invariance of the

Skyrme Lagrangian [86] (L0)– an effective chiral SU(2) × SU(2) Lagrangian. An

effective chiral Lagrangian should describe the kinematics of QCD in the low-energy

limit, and in particular, it should exhibit similar properties as QCD [49]. The Skyrme

Lagrangian with chiral fields (U) is

L0 =
f 2
π

4
Tr
(
∂µU∂

µU †)+ η2

4
Tr[U †∂µU,U

†∂νU ]
2 + cTr(MU +H.c.), (2.1)

where the chiral field (U) is defined as eiπ/fπ with π = π⃗ · τ⃗ , π⃗ being a pion field,

τ being the Pauli matrices, and the fπ is the pion decay constant. The η term is a

coefficient that is directly related to the axial-vector coupling constant (gA), c is a

constant,M is the quark mass matrix and explicitly breaks the symmetry, and H.c. is

the hermitian conjugate. However, the Skyrme Lagrangian does not follow the scaling

behavior of the QCD Lagrangian (Eq. 1.1 in Sec. 1.1)–the Skyrme Lagrangian does

not contain a trace anomaly. To incorporate in the Skyrme Lagrangian a behavior

similar to that of a trace anomaly, Ellis [87] introduced a scalar glueball field (χ) into

the Skyrme Lagrangian and transformed Eq. 2.1 into

L =
f 2
π

4

(
χ

χ0

)2

Tr
(
∂µU∂

µU †)+ η2

4
Tr[U †∂µU,U

†∂νU ]
2

+c

(
χ

χ0

)3

Tr(MU +H.c.) +
1

2
∂µχ∂

µχ+ V (χ) , (2.2)

where the potential (V (χ)) reproduces the trace anomaly and minimizing V (χ) leads

to a finite vacuum expectation value (χ0 ≡ ⟨0|χ|0⟩, where|0⟩ is the vacuum at zero

density). The χ0 is the order parameter associated to the introduced behavior that

mimics the spontaneous breaking of scale invariance. In QCD, the order parameter

associated to trace anomaly is the gluon condensate, and so the χ0 is analogous to

the gluon condensate.
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Rho and Brown then took Eq. 2.2 one step further [76] and subdivided the glueball

field (χ) into

χ = χ∗ + χ′, (2.3)

where χ∗ represents the minimum of the field as density increases and scales the

quark condensate in a dense medium, and χ′ represents a fluctuating glueball field

and scales the gluon condensate in a dense medium. The quark condensate (i.e.,

⟨0|q̄q|0⟩ or ⟨ψ̄ψ⟩ as given in Sec. 1.1) scaling is given by

⟨0∗|q̄q|0∗⟩
⟨0|q̄q|0⟩

=

(
χ∗

χ0

)3

, (2.4)

where χ∗ ≡ ⟨0∗|χ|0∗⟩ and |0∗⟩ is the vacuum at non-zero density (i.e., ground state).

Scaling of the quark condensate leads to the following definition of the effective pion

decay constant (f ∗
π):

f ∗
π = fπχ

∗/χ0, (2.5)

which is used to establish a relationship between the scaling of the quark conden-

sate and the vector meson mass scaling via the Kawarabayashi-Suzuki-Riazuddin-

Fayyazuddin (KSRF) relation [88, 89], m2
V = 2g2f 2

π , where mV is the mass of the

vector meson, g2 is the gauge coupling constant, and fπ is the pion decay constant.

Brown and Rho [76] then extended Eq. 2.5, which is only applicable in the vacuum,

to be applicable in the presence of a medium such that the effective mass of the vector

mass follows m∗
V
2 = 2g∗2f ∗

π
2. Since g is a gauge coupling constant, g is scale invariant

and no χ field is applied to g; therefore, when the non-zero density is introduced, g

does not depend on χ∗ and gives g∗ = g. With g∗ = g, the KSRF relation leads to

m∗
V /mV ≈ f ∗

π/fπ with the introduction of non-zero density (a medium).

To provide a means of quantifyingm∗
V /mV , a connection between the scaling of the

vector meson mass and the scaling of the nucleon mass (m∗
N/mN) needs to be made,
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where m∗
N is the effective mass of a nucleon. The connection is made by introducing

the subdivided χ field (refer to Eq. 2.3) and the effective pion decay constant (refer

to Eq. 2.5) to the Skyrme Lagrangian with a glueball field (refer to Eq. 2.2) and

rewriting the equation as:

L =
f ∗
π
2

4
Tr
(
∂µU∂

µU †)+ η2

4
Tr[U †∂µU,U

†∂νU ]
2

+c

(
f ∗
π

fπ

)3

Tr(MU +H.c.) + . . . , (2.6)

where U(x) = eiπ
∗/f∗

π , π∗ ≡ πχ∗/χ0, H.c. is the Hermitian conjugate, and the el-

lipsis represents the additional terms with the χ′ field. A relationship between the

effective pion decay constant and the effective mass of a nucleon can be formed by

using the baryon mass (MB) relationship (MB ∼ g
1
2
Afπ) from the Skyrme Lagrangian

(refer to Eq. 2.1) [90, 91], the dense medium equivalent of th baryon mass (M∗
B(ρ) ∼

g∗A(ρ)
1
2f ∗

π(ρ)), and the Lagrangian in Eq. 2.6. The effective nucleon (i.e., baryon) mass

follows m∗
N/mN ≈ (g∗A/gA)

1
2f ∗

π/fπ, where mN is the nucleon mass. Again, since the

axial-vector coupling constant, gA, is scale invariant, m∗
N/mN ≈ f ∗

π/fπ and m∗
V /mV

≈ f ∗
π/fπ ≈ m∗

N/mN . Given that the effective nuclear mass at nuclear matter density

(ρ0) is less than the nuclear mass in the vacuum (e.g., m∗
N(ρ0)/mN ≈ 0.8), the mass of

the vector meson (e.g., ρ-meson) will drop in the presence of a dense medium. Com-

parisons between predictions of the density induced mass scaling (i.e., dropping mass)

model and the measurements from the CERN experiments CERES [15] and NA60

[16] have been made (as shown in Sec. 2.5). For more information on Brown-Rho

scaling, refer to this review [92].
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2.3 Effective Many-body Theory by Rapp et al.

Rapp, van Hess, Wambach, and others [78, 79, 80, 81, 35] have worked together to

create an effective many-body model that describes the production of e+e− in the

presence of a dense medium. In the many-body model, the e+e− production rates

are propagated through the space-time evolution of a thermal fireball (i.e., the A+A

collision), resulting in the production of e+e− pairs. In this thesis, the e+e− pair

production of the many-body model and experimental data are compared.

2.3.1 Thermal e+e− Production Rate

The thermal rate of e+e− pair production (Nee) per unit four-volume (d4x) and unit

four-momentum (d4q) is [93, 94]

dNee

d4xd4q
= − α2

3π2

L(M)

M2
ImΠEM(M, q⃗)fB(q0;T ), (2.7)

where α is the electromagnetic coupling constant ( e
2

4π
≃ 1

137
), M is the e+e− invariant

mass, L(M) is the final-state phase-space factor, fB is the thermal Bose function

with q0 being the e+e− energy and T being the temperature, and ImΠEM(M, q⃗) is

the imaginary component of the electromagnetic spectral function with q⃗ representing

the three-momentum of a e+e− pair in the local rest frame of the medium (i.e., QGP

or hadron gas). In the vacuum, the electromagnetic spectral function (ImΠvac
EM) can

be split into two scenarios. One scenario is in the low mass region (M < 1.5 GeV−2)

and the other scenario is the high mass region (M > 1.5 GeVc−2). The ImΠvac
EM in

the low mass region follows the Vector Meson Dominance (VDM) model [95] as given

by

ImΠvac
EM =

(
m2

ω

gω

)2

ImDω(M) +

(
m2

ρ

gρ

)2

ImDρ(M) +

(
m2

ϕ

gϕ

)2

ImDϕ(M), (2.8)
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where DV = 1
M2−m2

V −
∑

V
is the vector meson propagators,

∑
V is the self-energy, V is

the type of vector meson (i.e., ρ, ω, ϕ), mV is the mass of the vector meson, and gV

is the coupling constant of the vector meson in the VDM. In the high mass region,

the ImΠvac
EM is the rate of the annihilation of qq̄ into e+e− or the reverse (e+e−→ qq̄),

ImΠvac
EM =

−M2

12π

(
1 +

αs(M)

π
+ . . .

)
Nc

∑
q=u,d,s

(eq)
2, (2.9)

where Nc is the number of quark colors (Nc = 3), eq is the electric quark charge

for the light flavored quarks (u, d, s), αs is the strong coupling constant, and the

αs(M)
π

+ . . . terms represent higher-order corrections where the quark and/or anti-

quark may radiate gluons.

In the medium, the ρ, ω, and ϕ vector meson propagator functions (Dρ, Dω, and

Dϕ) need to include the effects of the medium in their self-energies, which broaden the

electromagnetic spectral functions closer to the phase-transition region between the

QGP and hadron gas phases (i.e., broadens more at higher temperatures). At the top

Au+Au collision energies produced at RHIC, the ω is expected to contribute < 10%

to the thermal dielectron rate and the ϕ is assumed not to contribute to the thermal

rate of e+e− pair production since the phase change temperature is high enough for

the quark-antiquark pair that forms the ϕ to decouple in the medium [13].

The ρ propagator, with transverse (T ) and longitudinal (L) modes, is:

DL,T
ρ =

1

M2 −
(
m0

ρ

)2 −∑L,T
ρππ −

∑L,T
ρM −

∑L,T
ρB

, (2.10)

where
∑

ρππ represents the self-energy of the ρ and the pion cloud,
∑

ρM represents

the self-energy of the ρ interacting with other mesons (π, K, K̄, ρ . . .), and
∑

ρB

represents the self-energy of the ρ interacting with baryons (N, ∆, N(1440), N(1520)

. . .). The values of the self-energies of the ρ have been parameterized using resonance

decay and vacuum scattering data [96, 79, 80]. Diagrams of the self-energies are shown
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in Fig. 2.1. Note that in the vacuum, the baryon and meson self-energies vanish while

(a)

ρ

π

π

(b)

ρ

a1(1260)

π

(c)

ρ

N∗(1520)

h

Figure 2.1 : Example self-energy diagrams that are considered a part of the in-medium
ρ propagator. (a) The self-energy of the ρ and its pion cloud. (b) The self-energy
of the ρ interacting with mesons, in this case, a1(1260). (c) The self-energy of the ρ
interacting with baryons, in this case, N∗(1520).

the pion cloud self-energy still contributes to ρ propagator and is responsible for the

wide resonance of the ρ. Also, in a low baryonic chemical potential environment, the

anti-baryons are about as abundant as baryons. Since ρ0 is its own anti-particle, the

self-energy of ρ interacting with baryons is almost doubled in relativistic heavy-ion

collisions, where the collisions can produce a dense baryonic environment (a small

µB is associated to a small net baryon density ((B − B̄)/V ), and if dense, a high

total baryon density ((B + B̄)/V )), and is responsible for most of the ρ propagator

contribution in relativistic heavy ion collisions.

The ω propagator follows:

Dω =
1

M2 − im2
ω (Γ3π + Γρπ + Γωπ→ππ)− Σωπb1 − ΣωB

, (2.11)

where the decay width (Γρπ) accounts for the direct ω → ρπ decay, Γ3π accounts for

the direct ω → πππ decay, Γωπ→ππ accounts for the ω absorption in the inelastic decay

ωπ → ππ, Σωπb1 is the self-energy of ω scattering off π and generating a b1 meson,

and ΣωB is the self-energy of ω interacting with baryons. The self energies of ω have

also been parameterized [96, 79, 80]. The ϕ propagator (Dϕ) will not be discussed
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in this thesis since Dϕ is not expected to contribute to the thermal distribution of

e+e− pairs. For e+e− invariant masses ≥ 1 GeVc−2, the annihilation of ππππ are

added to the thermal distribution of e+e− pairs and have been parameterized using

measurements on the decay τ in a vacuum [97].

Contribution of the QGP to the thermal distribution of e+e− pairs is modeled

using an electromagnetic spectral function that has been parameterized by thermal

lattice QCD rates (with a q dependence that has been convoluted from leading-order

perturbative QCD photon rates) [35]. The thermal lattice QCD rates are derived by

relating the Euclidean-time correlation function (ΠV ) to the electromagnetic spectral

function [98]. The Euclidean-time correlation function is

ΠV (τ, q;T ) =

∞∫
0

dq0
2π

(−2ImΠi
i(q0, q⃗;T ))

cosh[q0(τ − 1/ (2T ))]

sinh[q0/ (2T )]
, (2.12)

where T is the temperature.

The Euclidean-time correlation function is then taken to be in the limit where the

temperature is greater than the QGP to Hadron Gas phase change temperature and q⃗

= 0 (such that M = q0). The behavior of ΠV , when normalized to the non-interacting

perturbative QCD limit, is approximated by splitting the function into a low-energy

Breit-Wigner (BW ) term and a perturbative continuum (p.c.) term [98],

− 2ImΠii
V (q0) = BW + p.c., (2.13)

where the Breit-Wigner term is given as

BW = SBW
q0Γ/2

q20 + Γ2/4
, (2.14)

with the strength (SBW ) and width (Γ) of the Breit-Wigner peak, and the perturbative

continuum term is given as

p.c. =
CEMNc

2π
(1 + κ)q20 tanh(

q0
4T

), (2.15)
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with CEM ≡
∑

q e
2
q for light quark flavors (u, d, s) and κ representing the deviation

from the limit of T → ∞ and large q0–in this limit, κ ≈ αs

π
. To give −2ImΠii

V (q0) a

dependence on three-momentum, the Breit-Wigner term is replaced with the leading

order perturbative QCD photon rate as a function of three-momentum. Ultimately,

the electromagnetic spectral function for QGP emission has the following form:

− ImΠT =
CEMNc

12π
M2

(
f̂2 (q0, q⃗;T ) + 2παs

T 2

M2
KF (M2) ln

(
1 +

2.912

4παs

q0
T

))
,

ΠL = (M2/q20)ΠT , (2.16)

where K = 2 is a factor selected to improve the function’s description of lattice QCD

results, F (M2) = 4T 2

4T 2+M2 is a form factor selected to improve the function’s behavior

at higher energies, and

f̂2 (q0, q⃗;T ) =

(
1 +

2T

q
ln

[
1 + e−(q0+q)/2T

1 + e−(q0−q)/2T

])
. (2.17)

The e+e− pair yields (dNee/dMdy, the number of e+e− pairs (Nee) per invariant

mass (M) and rapidity (y) bins) are found by integrating the e+e− pair production

rates over the evolution of the medium (i.e., from the time of the QGP formation

until kinetic freeze-out) [81], using the following equation:

dNee

dMdy
=

M

∆y

τfo∫
0

dτ

∫
VFB

d3x

∫
d3

q0

dNee

d4xd4q
A (M, qt, y) . (2.18)

Here, ∆y represents the rapidity gap set by the user, A() is a function describing

the detector acceptance of the experiment (i.e., the measurable phase space of the

experiment), VFB is the time-dependent volume of the fireball, τ is the time from the

start of the fireball, and dNee

d4xd4q
is the rate of the e+e− production. The fireball volume

is an isotropically expanding cylindrical volume described by [97]

VFB(t) = π

(
r⊥,0 +

1

2
a⊥t

2

)2(
z0 + vz,0t+

1

2
azt

2

)
, (2.19)
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where z0 is the initial longitudinal size, vz,0 is the initial longitudinal expansion velo-

city of the edges, az is the longitudinal expansion acceleration, r⊥,0 is the initial

transverse overlap of the colliding ions, and a⊥ is the transverse acceleration of the fi-

reball. The thermodynamics of this cylindrical fireball model is used to determine the

temperature and baryonic chemical potential of the system, both of which influence

the e+e− production rates.

By asserting that the total entropy (Stotal) for each collision is constant, the vo-

lume of the fireball is related to the entropy density (s) of the fireball by Stotal =

VFB(τ) · s(τ). By substituting the entropy density into an equation-of-state, the che-

mical potential and temperature of the fireball are determined. The equation-of-state

used is derived from [99], which is based on the default AZHYDRO code [100, 101].

The equation-of-state for the QGP (T > 170MeV [35]) is given by lattice QCD cal-

culations, which are matched to an equation-of-state for a hadron gas at the phase

change temperature. After chemical freeze-out, the equation-of-state for a hadron gas

is used for the lower temperatures until kinetic freeze-out.

With an effective many-body model, Rapp and van Hees [13] show that the ther-

mal e+e− yield has a trend similar to the trend in the fireball lifetime (i.e., the total

e+e− emission time of the fireball) in the low invariant mass region (0.3 GeVc−2 <

Mee < 0.7 GeVc−2) (as shown in Fig. 2.2). Lifetime is the total e+e− emission time

of the fireball.

A review of predictions of the production of µ+µ− and e+e− pairs with the ef-

fective many body model by Rapp et al. and the comparisons with experimental

measurements are presented in Sec. 2.5. In this thesis, the e+e− pair production from

the effective many-body model by Rapp et al. is compared to e+e− pair measure-

ments presented and is used to study the possible connection between the measured
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Figure 2.2 : The comparison of the e+e− yield normalized by the number of charged
particles in the collision and the lifetime of the fireball as a function of

√
sNN . The

solid purple line represents the normalized total yield from the hadronic component
(red short-dashed line) and the QGP component (yellow dashed line) with the quan-
tity indicated by the left y-axis. The blue dot-dashed line is the fireball lifetime and
the duration is indicated on the right y-axis. This figure was taken from [13].

e+e−pairs to the lifetime of the collision.

2.3.2 Chiral Symmetry Restoration Observable

Rapp et al.’s effective many-body theory only describes the ρ spectral function mo-

dification through collisional broadening. To make a link between the ρ spectral

function and chiral symmetry restoration, Hohler and Rapp [14] have been working

on an a1(1260) spectral function ansatz for comparison with the ρ spectral function

(refer to Eqs. 2.8 and 2.10) with the Weinberg sum rules, the QCD rules, and lattice
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QCD parameterizations. The Weinberg sum rules are used to relate the difference

between the ρ spectral function and a1 spectral function to chiral order parame-

ters. The QCD sum rules are used to relate each spectral function with the quark

and gluon condensates. The chiral order parameters, which include the quark and

gluon condensates, have been parameterized to help constrain the rules. The results

of the ansatz a1 spectral function and ρ spectral function at different temperatures

are shown in Fig. 2.3, where the ρ spectral function is the black curve and the a1

spectral function is the red curve. In Fig. 2.3 from left to right, notice how both

spectral functions begin to modify. The ρ spectral function decreases in amplitude

and broadens as the temperature increases, while the a1 spectral peak shifts toward

the ρ spectral function peak position as temperatures increase. The shifting of the a1

spectral function is mostly controlled by the Weinberg sum rules, while the shape of

the spectral functions at higher temperatures is mostly controlled by the QCD sum

rules. Once the temperature reaches 170 MeV, the two spectral functions begin to

overlap, or rather, to become degenerate, which is an observable of chiral symme-

try restoration. This observation means that the ρ spectral function, which has had

success describing experimental measurements, is compatible with chiral symmetry

restoration.

2.4 Parton-Hadron-String Dynamics

Parton-Hadron-String Dynamics (PHSD) is a model by Linnyk, Bratkovskaya, Cas-

sing, et al. [82]. The model is “a microscopic covariant transport model that in-

corporates effective partonic, as well as hadronic degrees of freedom, and involves a

dynamic description of the hadronization process from partonic to hadronic matter,”

as defined by [83]. The model has been extended to study the production of e+e− [85]
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Figure 2.3 : The a1 (red) and ρ (black) spectral functions at different temperatures.
This figure was taken from [14].

and can be broken down into five chronological stages starting from the beginning

to the end of the collision: (1) Initial Collisions and Conditions, (2) Formation of a

Quark-Gluon Plasma, (3) Partonic Stage – Quark-Gluon Plasma, (4) Hadronization,

and (5) Hadronic Stage.

2.4.1 Initial Collisions/Conditions

The collision of heavy ions are setup by having the ions travel toward each other

with a normalized velocity (β = v
c
) corresponding to the center-of-mass energy per

nucleon pair (
√
sNN) of interest. The heavy ions are represented as a group of nucleons

that undergo binary nucleon-nucleon collisions. The distribution of the nucleons and

the number of binary collisions follow similar prescription as the Ultrarelativistic

Quantum Molecular Dynamics (UrQMD) model [102, 83]. UrQMD is a microscopic

transport model that simulates heavy-ion collisions on an event-by-event basis. Each

collision follows the LUND string model [103] as setup in PYTHIA5.7/JETSET [104]
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to form strings that represent pre-hadrons. The pre-hadrons either form hadrons or

melt into the QGP depending upon the energy density with respect to the critical

energy density.

2.4.2 Formation of a Quark-Gluon Plasma

If the energy density of the medium is greater than the critical energy density of the

medium, the pre-hadrons are melted into quarks (q) and gluons (g) that are massive

(i.e., quasiparticles). The same approach is taken in the A Multi-Phase Transport

Model for Relativistic Heavy Ion Collisions (AMPT) [105]. The pre-mesons melt into

qq̄ pairs and the pre-baryons melt into a q+qq pair, and then the qq decays into q+q.

These quasiparticles are then handled by the Dynamical QuasiParticle Model [106].

2.4.3 Partonic Stage – Quark-Gluon Plasma

In the situation where the energy density is high enough and the partons have not

been hadronized, the Dynamical QuasiParticle Model (DQM) is used to propagate

the partonic stage. The DQM gives the quarks and gluons mass and width that

depend on the temperature of the medium and have been parameterized to lattice

QCD calculations [84]. This finite width does not vanish, which is different than other

quasiparticle models. In DQM, the quarks and gluons interact in elastic and inelastic

collisions–the elastic collisions modeled are q + q → q + q, q + q̄ → q + q̄, q̄q̄ → q̄q̄,

g+ q → g+ q, g+ q̄ → g+ q̄, and g+ g → g+ g, and the inelastic collisions modeled

are q + q̄ → g, g → q + q̄, q + q̄ → g + g, and g → g + g.
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2.4.4 Hadronization

As the partons travel outward from the start of the collision (in time and direction)

and the energy density decreases, the Dynamical QuasiParticle Model begins to eva-

luate whether the partons will hadronize or not. Hadronization occurs when the

energy density drops below the critical energy density, and the partons hadronize by

grouping together within their local phase-spaces to form the pre-hadrons of mesons

and baryons, where q + q̄ → meson, q + q + q → baryons, and g → q + q̄, which can

then combine with neighboring partons.

2.4.5 Hadronic Stage

The pre-hadrons, produced either at the initial collision in regions of low energy

density or by partons that have been hadronized via DQM, then follow the off-shell

transport model, Hadron-String-Dynamics [107], as a many-body approach limited

to two-body correlations. The Hadron-String-Dynamics model operates as a coupled

set of transport equations for a hadron that has the phase distribution (fh(x, p));

{
(
Πµ − Πν∂

p
µU

ν
h −M∗

h∂
p
µU

S
h

)
∂µx +

(
Πν∂

x
µU

ν
h +M∗

h∂
x
µU

S
h

)
∂µp }fh(x, p)

=
∑

h2h3h4...

∫
d2d3d4 . . . [G

†G]12→34...δ
4
Γ (Π + Π2 − Π3 − Π4 . . .) (2.20)

× {fh3(x, p3)fh4(x, p4)f̄h(x, p)f̄h2(x, p2)− fh(x, p)fh2(x, p2)f̄h3(x, p3)f̄h4(x, p4)} . . . ,

where Π represents an effective four-momentum, US
h (x, p) represents the vector hadron

self-energy, Uµ
h represents the axial hadron self-energy, M∗ represents the effective

mass, f̄h(x, p) = 1 ± fh(x, p), and “G†Gδ4 . . .” represents the transition rates in the

collision and the “. . .” represents additional terms to the collisions if more than two

hadrons are involved in the final and/or initial channels.
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2.4.6 e+e− Production

The e+e− pairs are modeled in PHSD by incorporating e+e− production from partonic

and hadronic sources. The partonic sources are q + q̄ → γ∗, q + q̄ → g + γ∗, q + g →

q+γ∗, and q̄+g → q̄+γ∗, where γ∗ → e+e−. The cross-sections of these e+e− sources

are parameterized through the use of the Dynamical QuasiParticle Model [108, 109].

The hadronic sources are the following: (1) the direct decay of the vector mesons,

ω, ρ, ϕ, J/Ψ, and Ψ′; (2) the Dalitz decays of mesons and baryons, π0, η, η’, a1, ∆,

and ω; (3) Drell-Yan decays, q + q̄ → e+e−; (4) the radiation from secondary meson

interactions, π+π, π+ρ, π+ω, ρ+ρ, and π+a1; and (5) the correlated semi-leptonic

decays of D-mesons and B-mesons.

The vector mesons are effectively modified in the medium by collisional broadening

of the spectral function and, if the option is enabled, a dropping mass shift induced

by a dense medium like the aforementioned Rho-Brown scaling in Sec. 2.2. The

collisional broadening is incorporated in the definition of the modified vector meson

width (Γ∗
V ) by summing linearly an additional term:

Γ∗
V (M, |p⃗|, ρN) = ΓV (M) + Γcoll(M, |p⃗|, ρN), (2.21)

where ΓV (M) is the vacuum vector meson width, Γcoll(M, |p⃗|, ρN) is the collisional

width, and ρN is the baryon density. The incorporation of collision broadening cau-

ses the vector meson spectral function to broaden as the density increases and is

proportional to ρN
ρ0
. The dropping mass is given as:

M∗
0 (ρN) =

M0

(1 + αρN
ρ0
)
, (2.22)

where M∗
0 is the dropping pole mass, M0 is the vacuum pole mass, and α is a vector

meson dependent parameter.
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Since the production of e+e− by A + A collisions is infrequent, the transport

calculation (refer to Eq. 2.20) uses a perturbative method to increase the production

of e+e−. The perturbatation of the transport calculation is referred to as a time

integration method where e+e− are allowed to be emitted up until the time that the

resonance is either absorbed by the medium or decayed strongly. An example of the

time integration method is provided in [82] and shown as follows:

dNρ→e+e−

dM
=

tF∑
t=0

Γρ0→e+e−(M) · ∆t

γ(~c)
· 1

∆M
, (2.23)

where ∆M represents the mass bin, ∆t represents the length of a time step in fm/c,

γ is the ρ’s Lorentz factor with respect to the frame of the medium, and Γρ→e+e−(M)

represents the electromagnetic decay width, as follows:

Γρ→e+e−(M) =
Γρ→e+e−(M0)

M0

M∗
0
4

M3
, (2.24)

where M0 is the vacuum pole mass and M∗
0 is the medium modified mass. If the

dropping mass option is disabled, the medium modified mass is the vacuum pole

mass; otherwise, the medium-modified mass follows Eq. 2.22.

2.5 Past Results

The Rho-Brown scaling theory, the effective many-body model by Rapp et al., and the

PHSD model have been evaluated against data to determine whether a dropping mass

or broadening of the spectral function best describes the production of e+e− pairs.

One of the first evaluations of the theoretical models against data was with e+e− pairs

produced in Pb+Au collisions at 158 AGeV collected by the CERES Collaboration at

the CERN Super Proton Synchrotron [44, 15]. The CERES Collaboration reported a

deviation of the measured e+e− yield from the expected hadronic cocktail at freeze-

out as is shown in Fig. 2.4. On the right panel in Fig. 2.4, model calculations from the
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dropping mass of the ρ (the dashed blue line) and the broadening of the ρ spectral

function (the long-dashed red line) have been added to hadronic cocktail. Neither

model calculation could be ruled out with this data sample. One might be able to

argue that the cocktail with the broadened ρ spectral function describes the data

better than the cocktail with the dropping ρ mass in between ω and ϕ masses while

there are points below the ω mass that tend to agree better with the cocktail with

the dropping mass scenario.
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Figure 2.4 : (Left) The black solid points represent the e+e− invariant mass spectrum.
The black solid line represents the hadronic cocktail (the summation of simulated
known contributions to the e+e− continuum) with its components represented by the
colored lines. (Right) The same invariant mass data are shown as black solid points
with a dashed blue line representing hadronic cocktail calculations with a dropping
ρ mass and a long-dashed red line representing hadronic cocktail calculations with a
broadened ρ-spectral function. This figure was taken from [15].

Another CERN Super Proton Synchrotron experiment, NA60, measured the µ+µ−

continuum in In+In collisions at 158 AGeV in the low-mass region with greater pre-

cision than CERES, as shown in Fig. 2.5 [16]. In Fig. 2.5, comparisons between the
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NA60 data and models that include the dropping mass scenario and the broadening

of the ρ spectral function are shown. These comparisons effectively ruled out the

mass dropping scenario as the only cause for the modification of the ρ as shown in

the right panel of Fig. 2.5 where the broadening of the ρ spectral function (the blue

line) agrees with the data while the mass dropping scenario (the dashed green line)

does not describe the data. However, some models still consider the dropping mass

scenario in conjunction with other medium effects (e.g., PHSD has the option to

include the dropping mass scenario along with collisional broadening).
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Figure 2.5 : (Left) The solid red points represent the invariant mass measurement,
while the solid red line connects the points. The other solid colored curves represent
expected hadronic contributions to the µ+µ− mass spectrum. The solid black triangles
represent the difference between the data (red points) and the expected contributions
(colored curves). (Right) The µ+µ− invariant mass difference (solid black triangles)
between the hadronic contributions and data points similar to (Left), but a different
centrality selection. The curves show model predictions when using a broadened
spectral function (Rapp/Wambach, solid blue curve), an unmodified spectral function
(Vacuum ρ, dot-dashed red curve), a cocktail ρ based on the ratio ρ/ω = 1.2 (cockt.
ρ, solid red curve), and DD̄ → µ+µ−X. This figure was taken from [16].
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At RHIC, both STAR and PHENIX have measured the e+e− invariant mass

spectrum in Au+Au collisions at
√
sNN = 200 GeV and measurements agree with the

effects of the medium on the ρ spectral function [17, 18]; the measurements are shown

in Fig. 2.6. In Fig. 2.6, the STAR experiment presented the results of both the PHSD

model (the dot-dashed blue curve) and the effective many-body theory by Rapp et

al. (the solid red curve) in comparison with the excess data (where excess data is

defined as the difference between the e+e− measurement and the hadronic cocktail,

which does not contain contributions from ρ and partonic emission). In Fig. 2.6, the

PHENIX experiment presented results of the effective many-body theory by Rapp et

al.’s ρ (the dashed red curve) and partonic emission (the dashed blue curve). The

contributions by Rapp et al. have been added to the hadronic cocktail (the dashed

green curve) to form the total expected e+e− emission (the solid black line). In both

cases, the models are in agreement with the measured excess. Given the uncertain-

ties on the STAR data points, it is difficult to distinguish which model agrees better

with data, although PHSD might perform better in the lowest and intermediate mass

regions as seen in the lower left panel of Fig. 2.6. In any case, these measurements

demonstrate a modification of the ρ meson, which can be described by models that

incorporate a broadening of the ρ spectral function. However, at an order of magni-

tude higher in
√
sNN at the Large Hadron Collider, the ALICE collaboration shows

preliminary e+e− pair production in Pb+Pb at
√
sNN = 2.76 TeV. The e+e− pair

measurements by ALICE are consistent with the hadronic cocktail and no sensitivity

for a measured excess yield in the low-mass region [110], which is different than what

has been observed at RHIC.
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Figure 2.6 : (Left a) STAR’s e+e− invariant mass spectrum produced from 0-80%
centrality Au+Au minimum-bias collisions at

√
sNN = 200 GeV shown as the solid

black points. The solid black curve represent the hadronic cocktail and the sum of
the known hadronic sources (perforated multicolored curves) excluding ρ. (Left b)
The solid black points represents the ratio of data to the hadronic cocktail. The solid
red curve represents the ratio of the effective many-body theory plus the hadronic
cocktail to the cocktail. The dashed blue curve represents the ratio of Parton-Hadron-
String Dynamics (PHSD) plus the hadronic cocktail to the hadronic cocktail. (Right)
PHENIX’s e+e− invariant mass spectrum produced from 0-92% centrality Au+Au
minimum-bias collisions at

√
sNN = 200 GeV shown as the solid black points. The

hadronic cocktail without ρ contributions is represented by the dashed green curve.
The contributions, ρ and QGP, from the effective many-body theory are shown as
the dashed red and dashed blue lines, respectively. The solid black line represents
the total expected contribution to the e+e− invariant mass spectrum. The left and
right figures were taken from [17, 18], respectively.

2.6 Goal for the Beam Energy Scan Program

The Beam Energy Scan Program at RHIC collided Au on Au from
√
sNN = 7.7 to 62.4

GeV and was able to produce e+e− pairs from collisions at energies as high (Pb+Au at

√
sNN = 17.3 GeV) as those produced at the Super Proton Synchrotron (SPS) and at

energies an order of magnitude higher than SPS at the top energy at RHIC (Au+Au
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at
√
sNN = 200 GeV). This provides an excellent opportunity to create an excitation

function of e+e− production for the following reasons: (1) the program spans across

the collision energy gap in-between the previous measurements at SPS (
√
sNN =17.3

GeV) and RHIC (
√
sNN = 200 GeV), (2) the program uses the same colliding species

(e.g., Au), and (3) the program enables the same detector to make measurements

at each collision energy (STAR). The Beam Energy Scan Program collected enough

data to produce statistically significant e+e− measurements of the invariant mass

spectrum for minimum-bias Au+Au collisions with a 0-80% centrality at
√
sNN =

19.6, 27, 39, and 62.4 GeV. At these collision energies, the average chemical freeze-

out temperature (Tch) is approximately constant [19] and is shown in Fig. 2.7. Also,

the total baryon density is near constant from
√
sNN = 20 GeV to 200 GeV as shown

in Fig. 2.8, where the ratio of protons to π is presented as a function of
√
sNN . Since

both the effective many-body model by Rapp et al. and the PHSD model incorporate

a broadening of the ρ spectral function that depends on the total baryon density

and temperature of the medium, the two models can be explored while keeping both

the total baryon density and temperature near constant and varying the collision

energy. In addition, a constant total baryon density and temperature suggests that

the emission of e+e− pairs may be dependent on the lifetime of the collision. If the

variables remain constant, then the lifetime of the collision should be apparent in the

total emission of the measured e+e−pairs.

To test ρ models, or more importantly, to study ρ production, the difference bet-

ween the l+l− measurements and the sum of l+l− from known sources (i.e., hadronic

cocktail), not including contributions from the medium and the ρ, is used. The diffe-

rence, also known as the excess, should contain contributions from the ρ and medium,

which models can be compared to. This excess, when corrected for acceptance of the
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detector, can also be used to measure the average lifetime of the system [13]. The

collection of the data from Au+Au collisions at
√
sNN = 27 GeV will be discussed

further in the following Chapter 3.

 (MeV)
B

µ
100 200 300 400

 (
M

eV
)

ch
T

120

130

140

150

160

170

180

00-05%
30-40%
60-80%

Cleymans et al.
Andronic et al.

7.711.519.6273962.4200 GeV

Au+Au Collisions

Grand Canonical Ensemble (Yield Fit)

Figure 2.7 : The average chemical freeze-out temperature versus baryon chemical
potential (bottom) and collision energy (top). The temperature is extracted from
grand canonical ensemble fits to the ratio of particle yields. This figure was taken
from [19].
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Figure 2.8 : The ratio of protons and anti-protons to π+ and π− yields as a function
of

√
sNN for different centralities. These ratios serve as an approximation of the total

baryon density. The yields were taken from [19, 20].
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Chapter 3

Data Collection

The data analyzed in this thesis is a subset of data collected by the Beam Energy Scan

Program (Sec. 1.3), which is a collection of data produced in the years 2010, 2011,

and 2014 when RHIC collided Au on Au with a
√
sNN = 7.7, 11.5, 14.5, 19.6, 27, 39,

and 62.4 GeV at the STAR collaboration’s interaction point. The STAR detector was

built around their interaction point and used to record data from collisions selected

with a minimum-bias towards the type of collision. Each collision recorded is referred

to as an “event”. The number of events recorded at each collision energy is listed in

Table 3.1. This chapter discusses the facilities and detector used in the collection of

the data analyzed and presented in this thesis.

Table 3.1 : The data samples collected by the STAR experiment for the Beam Energy
Scan Program.

Species
√
sNN (GeV) Number of Events (×106)

Au+Au 7.7 4

Au+Au 11.5 12

Au+Au 14.5 20

Au+Au 19.6 36

Au+Au 27 70

Au+Au 39 130

Au+Au 62.4 67
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3.1 RHIC

The Relativistic Heavy Ion Collider (RHIC) is located at Brookhaven National La-

boratory in Upton, New York (shown in Fig. 3.1 as the blue and yellow rings). In

order for the gold atoms to reach the RHIC rings and collide, the gold ions must first

traverse the accelerator complex (shown in Fig. 3.1). The accelerator complex starts

at the Tandem Van de Graaffs where gold ions are produced and transfered (shown

as the gold line) at 1 MeV/nucleon over to the Booster synchrotron (shown as the

cyan line). The Booster synchrotron then accelerates the ions and transfers the ions

at 100 MeV/nucleon to the Alternating Gradient Synchrotron (AGS) (shown as the

green line). The AGS accelerates and transfers the ions at 8.9 GeV/nucleon to the

RHIC where half of the ions are passed along in the “yellow ring” and the other half

travel in the opposite direction in the “blue ring”. Here, the ions are accelerated (or

decelerated) to the desired beam energy and then steered to collide at the interaction

points. For the Beam Energy Scan Program, the delivery of these collisions proved

to be challenging compared to the delivery of Au+Au collisions at
√
sNN = 200 GeV,

which the RHIC was initially designed to collide. To over come this challenge, the col-

lisions were delivered over a 2 meter range along the beam direction at the interaction

point. The data and results presented in this thesis were produced in collisions of

Au+Au at
√
sNN = 27 GeV, which took place between Tuesday, June 21, 2011 to

Tuesday, June 28, 2011.

3.2 STAR

The Solenoidal Tracker At RHIC (STAR) is centered at the 6 o’clock interaction point

of the RHIC. The 2011 detector configuration of STAR is shown in Fig. 3.2. STAR is
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Figure 3.1 : An aerial view of the Relativistic Heavy Ion Collider and the accelerator
complex that supplies the gold ions to the RHIC. This figure was taken from [21].

comprised of several subsystems used to record and monitor information during the

collisions. STAR has several subsystems used to select (i.e., trigger) which collisions

to save. In this analysis, events of interest were trigged with a minimum-bias on

the type of event, which was accomplished by requiring a coincidence of signals in

the −z and +z components (where ẑ is the direction along the beam path) in at

least one of the following detectors: the Beam-Beam Counter (BBC), the Vertex

Position Detector (VPD), or the Zero Degree Calorimeter (ZDC). For trigged events,
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information from the Time Projection Chamber (TPC) and Time of Flight (TOF)

subsystems is used to identify the particles.

Figure 3.2 : An exploded view of the Solenoidal Tracker At RHIC (STAR), where
sections of the detector are missing to illustrate different subsystems such as TOF.
When taking data, the BBC and the end-cap electromagnetic calorimeter (EEMC)
to the BBC’s right are actually positioned directly against the barrel of STAR. This
figure was taken from [22].

3.2.1 Trigger Systems

Two Beam-Beam Counters (BBCs) surround the beam pipe, with one situated on

the +z side and the other situated on the −z side of STAR, such that the subsystem

covers an absolute pseudo-rapidity (|η|) from 2.1 to 5. The BBC on each side is
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comprised of 36 light-tight scintillator panels (the 18 large panels on the outer rings

cover 2.1< |η| <3.3 and the 18 small panels on the inner rings cover 3.3< |η| <5).

Each panel is connected to a photomultiplier tube via optical fibers. The panel-to-

photomultiplier-tube mapping is shown in Fig. 3.3. A signal is generated in a BBC

when a minimum-ionizing particle crosses a scintillator panel producing a scintillation

which is then amplified by the photomultiplier tube.
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Figure 3.3 : A schematic view of one of the BBCs. This figure was taken from [23].

The Vertex Position Detector (VPD) consists of two components, with one si-

tuated on the +z side and the other situated on the −z side of the STAR center

(referred to as the “East” and “West” components), such that the subsystem covers

an |η|-range from 4.24 to 5.1 [24] (the assemblies are shown in Fig. 3.4a). Each com-
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ponent of the VPD is an array of 19 individual tubes that surround the beam pipe

in two concentric rings as shown in Fig. 3.4b. Each tube consists of a Pb converter,

a scintillator, and a close-proximity photomultiplier tube to detect photons from π0s.

For the data presented in this thesis, the VPD is used only as a detector to aide in

the decision if a collision should be saved for analysis (i.e., triggered); however, in

other studies and calibrations of the Time of Flight (TOF) system (the TOF system

is described in Sec. 3.2.3), the VPD is used as alternative method to verify the z-

position of the collision, as determined by the TPC, and to provide a reference time

for when the collision started.

Base R5946 PMT scint Pb

electrostatic shield
Kapton tape

RTV-615
lead wire
spacerback cap

front cap

BNC

SHV

(a) (b)

Figure 3.4 : The VPD subsystem. (a) The VPD assemblies. Each assembly is
mounted with the beam pipe going through the center. (b) The hollow cylinder of
each VPD assembly contains a photomultiplier tube (PMT) with a lead converter in
front. This figure was taken from [24].

The Zero Degree Calorimeter (ZDC) [25] is comprised of two components, with

one situated on the +z side and the other situated on the −z side of STAR, at about

18 m from the center in each direction. The purpose of the ZDC is to detect neutral

beam fragments, which can be used in the minimum-bias selection of events. The
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ZDC is located outside of the detector hall, as a consequence, the ZDC is not shown

in Fig. 3.2. The calorimeter is designed to stop, and measure the energy deposition

of, hadrons. Coming from the interaction point, the ZDC components are located

downstream of the dipole steering (DX) magnets in-between the collider rings (shown

as the red boxes in Fig. 3.5a). As the charged particles (i.e., protons) first pass

through the DX steering magnets, the charged particles are steered away from the

ZDC while the neutrons continue forward and are deposited in the ZDC. The energy

deposited from stopping the neutron(s) is then translated into a count of how many

neutrons have been detected. During ion-on-ion collisions, nucleons (i.e., neutrons

and protons) that do not interact inelastically usually continue to travel past the

interaction point and down the beam pipe (the DX magnets will steer the protons

outside the beam pipe, while the ions that were not collided will be steered to remain

inside the beam pipe). So in more peripheral collisions, there are a greater number

of neutrons traveling down the beam pipe. This leads to the ZDC having a larger

signal, which is why the ZDC is associated with detecting peripheral collisions.

3.2.2 Time Projection Chamber

The Time Projection Chamber (TPC) is the heart of STAR, as shown in Fig. 3.2.

Nestled inside of STAR’s solenoidal magnet, the TPC tracks the charged particles, me-

asures the momentum of the charged particles, and measures the energy loss (dE/dx)

of the charged particles. The TPC consists of a chamber filled with a P10 gas (i.e.,

10% methane and 90% argon). A uniform electric field is applied across each half

of the chamber and it runs along the beam pipe direction (i.e., the z-axis) from the

grounded end caps pointing toward the High Voltage Membrane (a cathode) in the

center. The Multi-Wire Proportional Chambers (MWPCs) [111], and readout pads
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(A)

(B)

Figure 3.5 : The physical location of the ZDC (the cross-hatched area in (a) and
the red box in (b)) with respect to the beam pipes and interaction point (labeled
“Intersection Point” in (b)). In this figure, ions are being collided. (a) The x − y
plane showing the beam pipes going into/out of the page. (b) The z−x plane showing
the beam pipes moving along the width of the page. This figure was taken from [25].

associated with the MWPCs, are located at the end caps of the TPC. The P10 gas

is ionized by the charged particles as the particles pass through the gas. Since the

electric field in the chamber is uniform, the cations travel toward the center while the

anions travel toward the MWPCs. The MWPCs amplify the signal and induce an

image charge on the readout pads, which are measured. A plane of readout pads is

shown in Fig. 3.7, where the inner plane (closest to the beam pipe) has fewer readout

pads than the outer plane.

Particle tracking (i.e., the determination of the path a particle traveled) is per-

formed in two parts. The first part is the reconstruction of where the particle ionized
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Figure 3.6 : A schematic view of the Time Projection Chamber. This figure was
taken from [26].

the gas. The second part is fitting the collection of coordinates (i.e., TPC points or

hits) with a helix to form a track. Reconstructing coordinates of the ionized gas is

performed in the transverse plane (x− y) and in the ẑ-direction, separately. Because

the electric field and magnetic field in the STAR detector are in-parallel and uniform

along the z-axis of the TPC, the transverse position of a particle is approximated

by measuring the x-y position of the signal generated on the readout pads. With a

uniform electric field, the z-position of the particle is found by dividing the “time

taken for the anions (i.e., electrons) to reach the outer membrane” by the “average

drift velocity”. After finding the coordinates, the momentum of the particle is deter-

mined. The momentum of the particle is calculated via the use of the 0.5 T magnetic
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Figure 3.7 : One sector of twelve that make up a TPC endcap. There are two endcaps,
so the TPC consists of twenty-four sectors in total. This figure was taken from [26].

field of STAR’s solenoidal magnet surrounding the outside of the TPC. The magnetic

field runs parallel with the electric field such that the charged particles bend in the

transverse plane. In order to determine the transverse momentum (pT ) of a particle,

a circle is fitted to the coordinates of the transverse plane to produce a radius, which

is used to calculate the pT . The total momentum of the particle is then found by

taking the radius of curvature of the particle and the angle between the particle track

and the z-axis. All together, this information gives a helix, or a particle track.

Particle identification is performed by measuring the dE/dx and momentum of

each track and comparing them to Bichsel curves [112, 113]. Bichsel curves are the

most probable dE/dx for a given particle species in the gas. For more detail on the

particle identification used in this analysis refer to Ch. 4.
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3.2.3 Time of Flight

The Time of Flight (TOF) system [27] is a collection of multi-resistive plate chambers

(MRPCs) positioned around the TPC. The TOF is designed to measure the arrival

of charged particles with a precision ≤ 100 ps. These MRPCs are sandwiches con-

structed of phenolic-impregnated Kraft paper honey comb, PC board, pick-up pads,

mylar, electrodes, glass, and fishing line (used to keep the glass plates at a uniform

distance) with the physical dimensions of 9.4 cm (w) x 1.95 cm (h) x 21 cm (l), as

shown in Fig. 3.8. The TPC is enveloped by 120 MRPC filled trays where 60 of the

trays layover like slats on a deck from the middle of the TPC to the endcap and the

other 60 trays layover on the other half of the TPC. A single tray is shown in Fig.

3.9 to illustrate their positioning outside the TPC. Each tray is filled with thirty-two

MRPCs facing the interaction point (except for four trays, where in each tray, four

MRPCs have been removed to accommodate a Gas Electron Multiplier(GEM)-based

chamber used to monitor calibrations in the STAR TPC). The orientation of the

MRPCs inside a TOF tray are shown in Fig. 3.9.

When the TOF is in operation, a high potential difference is applied across the

glass plates of a MRPC with +7000 V through one electrode and -7000 V through the

other. This produces a strong electric field in each gas gap between the plates, causing

the plates to electrically float. Charged particles traversing through the MRPC ionize

the gas (a mixture of 95% Freon R134a and 5% isobutane). Ionization of the gas in

the MRPC leads to a series of avalanches that quickly cumulate and generate an

electric signal.

The TOF measures the arrival time of the particle (tf ), which is compared to the

start time of the collision (t0), to calculate the particle’s time of flight, ∆t = tf − t0.

The normalized velocity (β) of the particle can be found with the particle’s time of
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Figure 3.8 : Side views of a TOF multi-resistive plate chamber. (Top) The short edge
of an MRPC. The face of this side runs parallel with the beam pipe. (Bottom) The
long side. The face of this side runs perpendicular to the beam pipe. This figure was
taken from [27].
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Figure 3.9 : (Top) The positioning of a TOF tray on the outside of the TPC. (Bottom)
The orientation of the MRPCs inside of a TOF tray, where the left side is positioned
over the center of the TPC. This figure was taken from [28].

flight, which we have with the TOF, and the path length (s) as follows:

β = v/c =
s

c∆t
, (3.1)

where v is velocity and c is the speed of light. The path length is found by associating

the signal position (i.e., hit) in the TOF with an extrapolated track from the TPC.

In addition to the path length of the particle, the TPC provides the momentum of

the particle. When using the inverse normalized velocity (β−1) and momentum of

the particle together, the TOF system enables the identification of the particle by

its mass. By using the TOF and TPC subsystems together, the kinematic reach of

pure electron identification is extended beyond the capabilities of the TPC alone,

and this makes an analysis of electrons with low/intermediate momentum possible.

The extended identification reach is demonstrated in Ch. 4’s Electron Identification

section. An example of the β−1 as a function of momentum for Au+Au collisions
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at
√
sNN = 27 GeV is shown in Fig. 3.10. In this figure, the separation of charged

particle species is evident and the dashed lines represent the expected β−1 distribution

for a given species. The expected β−1 is given as

β−1 =

√
p2 +m2

p
, (3.2)

where p is the momentum and m is particle species mass.
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Figure 3.10 : The β−1 as a function of momentum for particles from Au+Au collisions
at

√
sNN = 27 GeV. The dashed lines represent the expected β−1 for a given species.

The corresponding species from bottom left to top right: e, π, K, p, and d.

In this thesis, we analyzed the data using a start time that has been determined

by the TOF system. The option to determine the start time with the TOF system is

referred to as startless mode. Typically, the start time is determined through the use
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of the VPD; however, for Au+Au collisions at the beam collision energies of
√
sNN

= 19.6 and 27, the rapidity distribution of π0 is narrow compared to π0 produced

in larger collision energies. This leads to an insufficient amount of π0 with a large

enough rapidity to reach the VPD and, thus, to determine the start time efficiently.

The startless mode takes the average difference between the arrival times of a π

sample to determine the start time. The TOF startless timing resolution is 60 ps and

one π track is required to determine a start time.

As an aside, the TOF, VPD, and Muon Telescope Detector (MTD) (the MTD is

not discussed in this thesis) subsystems and other studies that use these subsystems

have been supported by my work in various ways. For example, I expanded the TOF

calibration corrections from being applied to groupings of 8 pickup pads to a single

pickup pad (a pad is shown in Fig. 3.8), determined the offline timing windows used

to save raw TOF data with respect to the timing of the collision, calibrated the VPD

and TOF systems for the STAR Collaboration’s official data production sample at

√
sNN = 27 GeV, and acted as the TOF and VPD slow controls expert during the

Au+Au collisions at
√
sNN = 27 GeV. Additionally, a significant amount of my time

has been spent on monitoring and repairing EPICS-based slow controls systems for

the TOF, VPD, and MTD, and assisting in decoupling the VPD calibrations from the

TOF calibrations such that the TOF calibrations may be reused for different beam

systems.
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Chapter 4

Analysis

This chapter discusses the analysis of the e+e− continuum from Au+Au collisions at

√
sNN = 27 GeV. The analysis may be broken up into several parts. These parts

are the quality assurance in the selection of good events (Sec. 4.1) and tracks (Sec.

4.2), the particle identification (Sec. 4.3), the generation of an e+e− continuum (Sec.

4.4), the determination of the efficiencies in the data selection (Sec. 4.5), and the

systematic uncertainties in the analysis’ methods (Sec. 4.6). The results corrected for

the inefficiencies in data selection are presented in Ch. 6.

4.1 Event Selection

The data analyzed in this thesis was produced in Run 11’s Au+Au minimum-bias

collisions at
√
sNN = 27 GeV and recorded by STAR on days 172 through 179 with

the trigger: “mb1-fast”. The mb1-fast is a minimum-bias trigger and the “mb1-fast”

version used in this analysis had the trigger ID = 360001. Collisions saved under the

mb1-fast trigger were required to have coincidental hits in the −z and +z components

of either the VPD, BBC, or ZDC. In this study, to be registered as a viable event,

an event must have occurred within the STAR detector while the subsystems were

performing well. For an event to have occurred within STAR, an event must have a

primary vertex within ± 70 cm of the TPC center along the z-axis and within the

beam pipe. The beam pipe has a radius of 2 cm, and hence, the event must have a
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primary vertex that has x and y components that satisfy the relation√
x2 + y2 < 2cm, (4.1)

where the transverse plane (x − y) is centered at the beam pipe center. An event

must also be from a collision with a 0-80% centrality. To select the top 80% most

central collisions (i.e., 0-80% centrality), a corrected reference multiplicity of at least

6 has been required. A corrected reference multiplicity refers to the number of good

tracks from the collision (i.e., reference multiplicity) that has been corrected for losses

from the detector and trigger due to the z-position of the collision. The centrality

and corrected reference multiplicity has been provided by the StRefMultCorr package

[114]. The StRefMultCorr package is a software package that provides the centrality

and corrected reference multiplicity for an event when given the data taking period,

z-position of the collision, and the reference multiplicity as input. Each event is also

required to have at least one track that satisfies all of the following properties: (1) at

least 15 TPC points (a point is a reconstructed position of ionized gas in the TPC)

are fitted to form the particle track (out of a possible 45 points), (2) a ratio of fitted

TPC points to possible TPC points > 0.52, (3) a pseudo-rapidity (η) within ± 1,

and (4) 0.2 ≤ transverse momentum (pT ) ≤ 2.0 GeVc−1. These requirements for a

track are imposed to ensure that the event plane for each collision can be calculated,

where an event plane is defined by the total momentum of the event in the x and y

directions.

In addition, the following events have been excluded from the data sample: events

taken during Vernier scans (run numbers: 12174077, 12174085, and 12174086), events

with an incorrectly set voltage for one of the TPC inner sectors (run numbers:

12173053-12173057), events recorded when the TOF system was off (run number:

12174096), events when the Barrel ElectroMagnetic Calorimeter (BEMC) was not
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included in the data collection (run number: 12177097, the BEMC omission affects

the collision centrality definition), and events recorded during time periods that the

StRefMultCorr package indicates as bad. The StRefMultCorr evaluation of “good”

and “bad” time periods is the result of quality assurance performed by a member(s)

of the STAR collaboration during the generation of look-up tables used to correct the

reference multiplicity. After satisfying the listed event requirements, 68 million out

of 133 million were included in this analysis.

4.2 Track Selection

To ensure that tracks of good quality have been used in this analysis, a track must

meet the following requirements:

• At least 15 TPC points are fitted to form a track; This limits the amount of

track splitting in the sample. Track splitting is the scenario where small tracks

are misidentified and should have been identified as one larger track, but were

split into smaller segments instead. By requiring more points in the track, the

number of split tracks is reduced.

• A ratio of fitted TPC points to possible TPC points > 0.52. This limits the

amount of track splitting.

• A global Distance of Closest Approach (gDCA) < 1 cm; This limits the amount

of particle tracks that originate from photon conversion. gDCA is the distance

between the collision vertex and the closest point along a track.

• At least 15 TPC points used in the dE/dx calculation.

• An absolute pseudo-rapidity (|η|) < 1; This is a requirement because the TOF is
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used in the particle identification, and the TOF coverage over the TPC extends

to |η| < 0.9 for collisions at the center of the TPC (z = 0). A requirement

that is imposed based on the kinematic reach of the detector is referred to an

acceptance requirement.

• A transverse momentum (pT ) > 0.2 GeVc−1; This is an acceptance requirement

such that charged tracks have enough momentum to reach the TOF subsystem.

• The normalized velocity (β) > 0; This requires a TOF signal to be associated

with a track in the TPC. (I.e., a particle has left a track in the TPC and a hit

in the TOF. The hit has been associated/matched to the TPC track.) There

are instances where β = -999 is used as a flag in the data to indicate an error.

• A TOF signal occurring within ± 1.8 cm of the y coordinate system of a TOF

readout pad (|yTOF | < 1.8 cm); A readout pad is ∼ 3.6 cm wide as shown in

Fig. 3.8.

4.3 Electron Identification

The TPC and TOF systems are used to identify electrons (and positrons) in each

event. For a given charged particle, the TPC measures the energy loss (dE/dx),

momentum, and electric charge-sign. The measurements can be transformed into a

Gaussian quantification of the likelihood that a particle belongs to a specific particle

species (e.g., π, K, p, e, . . .). The Gaussian quantification (nσ or the number of stan-

dard deviations from the expected value) is conducted by normalizing the measured

dE/dx by the expected dE/dx of the Bichsel function [113, 112] for a given particle
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species as follows:

nσspecies = (RdE/dx)
−1 log

dE/dxMeasured

dE/dxBichsel

, (4.2)

where (RdE/dx)
−1 is the dE/dx resolution.

To improve nσ as a particle identifier for electrons, the TOF system is used to

remove hadronic contributions in the nσe measurements. Slow hadrons (i.e., hadrons

with |β−1 − 1| < 0.03) are removed in this study to improve the electron purity

in the nσe measurements. To illustrate the improvement, the nσe as a function of

momentum, before and after removing slow hadrons, are shown in Fig. 4.1. On

the left, the nσe distribution is shown for all quality tracks (before the slow hadron

rejection). At nσe ∼ 0, there are hints of an electron band. On the right, slower

hadrons have been removed and the nσe distribution shows an electron band at nσe

∼ 0. ∗
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Figure 4.1 : (Left) The nσe vs. momentum distribution for all quality tracks. (Right)
The nσe vs. momentum distribution for all quality tracks after rejecting the slow
hadrons using the TOF system.

∗The nσ calculation for the official P11id production of the Au+Au collisions at
√
sNN = 27 GeV

data sample were ∼ 1
2 the actual nσ value.
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To select a sample consisting of >99% electrons (i.e., a “pure electron sample”),

the following requirements are imposed on the tracks:

nσe < −0.687342× p+ 2.1,

nσe > −0.663252,when p ≥ 0.637 GeVc−1,

nσe > 1.604× p− 1.685,when p < 0.637 GeVc−1,

where p is momentum and has units of GeVc−1.

4.3.1 Purity

To estimate the purity of the electron (and positron) sample, a multi-Gaussian fit is

performed on nσe for different momentum ranges, where each Gaussian curve repre-

sents a different particle species (i.e., e, π, p, K, and ππ–ππ is not actually a particle

species, but rather a symbol to explain that a single track is the result of two π that

have been merged together by the tracking algorithm). The area under each Gaussian

curve is used to count the number of each species (Nx) and together with the sum of

each species, the electron purity (Pe) is given by

Pe =
Ne

Ne +Nπ +Np +NK +Nππ

. (4.3)

Very pure samples of each species are fitted with Gaussian curves to fix the mean

and width of their respective Gaussian curve in the multi-Gaussian fit on nσe. The

pure samples of π, K, and p are made by using the same quality track requirements

outlined in Sec. 4.2 with a particle identification criteria of |nσx| < 0.5, where x = π,

K, or p, and |β−1−β−1
expected| < 0.03, where βexpected is the expected velocity for a given

species. Since there is no ππ, the ππ Gaussian mean and width in each momentum
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range are constrained by fitting the ππ contamination around nσe = 2 for tracks with

|nσπ| > 3 as shown in Fig. 4.2.
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Figure 4.2 : The nσe distribution for quality tracks with a nσπ > 3 in momentum (p)
slice of 0.4 to 0.42 GeVc−1. The yellow curve at nσe ∼ 2 is the fit to the ππ peak,
where the mean and width are used in the multi-Gaussian fit for the corresponding
ππ Gaussian.

The electrons in the very pure electron sample are selected from photon conver-

sions and π0 decays. To select the electrons, e+e− pairs are reconstructed from a list

of electron candidates in each event that follow the same quality track requirements

(refer to Sec. 4.2) and have a |nσe| < 0.5. A e+e− pair is formed when the two elec-

trons have a distance of closest approach between each other ≤ 0.5 cm, and each e+e−

pair must have an opening angle ≤ 0.1 π, an invariant mass ≤ 5 MeVc−2, and a ϕv

< 0.5, where ϕv is the angle between the reconstructed opening angle orientation of

the e+e− pair (ŵ) and the orientation of the opening angle if the e+e− pair originated
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from photon conversion (ŵc), as given by

ϕv = acos(ŵ · ŵc). (4.4)

The orientation of the opening angle of the e+e− pair is

ŵ = û× v̂, (4.5)

where û is a unit vector in the e+e− pair’s direction and v̂ is a unit vector in the

direction perpendicular to the pair’s plane, given by

û =
p⃗+ + p⃗−
|p⃗+ + p⃗−|

,

v̂ = p⃗+ × p⃗−, (4.6)

where p⃗+ and p⃗− represent the three-momentum vector of the positron and electron,

respectively. The orientation of the opening angle if the e+e− pair originated from

photon conversion is

ŵc = û× ẑ, (4.7)

where ẑ is the magnetic field direction. Pairs originating from photon conversion have

an opening angle of 0, such that the pairs will only bend azimuthally (i.e., bend in

the transverse plane) by the magnetic field. Pairs from hadrons (e.g., π0) do have

a finite opening angle and hence will not have a preferred orientation of their decay

plane. This characteristic allows us to select (or reject) electrons originating from

photonic conversions.

In the cases where there is an overlap between particle species as a function of

nσ for a given momentum range, an exponential extrapolation of the yields (eA·p+B)

as a function of momentum is used to constrain the amplitude. This is motivated

by studying the bands of yield to the sides of the overlap region. The extrapolations
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used for e, K, and p are shown in Figs. 4.3 and 4.4. Alternative extrapolations were

performed by fitting different momentum ranges and these alternative extrapolations

were compared to the extrapolations presented in Figs. 4.3 and 4.4 for the assessment

of systematic uncertainty. Please refer to Sec. 4.6.3 for a discussion on the systematic

uncertainty.
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Figure 4.3 : The raw yield counts for electrons as a function of momentum. The red
and blue lines are the exponential extrapolations used to estimate the yield.

The electron purity as a function of momentum is shown in Fig. 4.5. The average

purity of the electron sample for electrons with a momentum in the range of 0.2 to 2.0

GeVc−1 is 94.5 ± 0.02 ± 0.7%, where the uncertainty is the statistical and systematic

uncertainty, respectively.
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Figure 4.4 : (Left) The raw yield counts for kaons as a function of momentum. The
red line is the exponential extrapolation used to estimate the yield. (Right) The raw
yield counts for protons as a function of momentum. The red line is the exponential
extrapolation used to estimate the yield.

4.4 e+e− Continuum

From the sample of identified electrons, e+e− pairs are formed. The reconstructed

e+e− pairs contain pairs from both physical and unphysical sources. The unphysical

sources are all considered background and include combinatorial pairs, pairs with ha-

dron contamination, and correlated pairs. Combinatorial pairs are formed by pairing

electrons and positrons from uncorrelated sources such as an electron from the decay

γ →e−e+ and a positron from the decay π0 → γe−e+. Pairs with hadron contamina-

tion are formed by pairing together a hadron misidentified as an electron (positron)

with either a positron (electron) or another misidentified hadron of opposite electric

charge. Correlated pairs are electron pairs formed from the same sources, but not the

same signal. Examples of correlated pairs include pairs from double-Dalitz decays
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Figure 4.5 : The electron purity as a function of momentum. The green region
represents the systematic uncertainty of the purity derived from varying yield extra-
polations. The gray shaded region represents the region where the yield totals have
been extrapolated by exponential functions.

(π0 → γγ →e+e−e+e−) and jets, where in a double-Daltiz decay the paired electrons

are from separate γs. The physical sources include electron pairs produced in the

Au+Au collision (i.e., our signal) and electron pairs originating from γ-conversion

within detector materials (i.e., γ-conversion electron pairs). The γ-conversion elec-

tron pairs are considered background and have a very low invariant mass because the

electron pair is produced on detector material, but are reconstructed such that the

origin of the electron pair is the collision vertex instead of the detector material. The

displacement of the electron pair origin results in an increased opening angle (from

0), which increases its effective invariant mass from approximately 0 GeVc−2.

To remove γ-conversion electron pairs, low invariant mass pairs are selected such
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that:

Mee > −0.2199 · ϕv + 0.1132,

Mee > −0.0324 · ϕv + 0.0357. (4.8)

Figure 4.6 shows the invariant mass of an electron pair as a function of ϕv, where

the selection criteria imposed in Eq. 4.8 is the red line and conversion pairs from the

beam pipe and inner field cage of the TPC are pointed out in the lower left-hand

corner.
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Figure 4.6 : Invariant mass as a function of ϕv.

To estimate the correlated and combinatorial backgrounds (BG), a geometric

mean, which has been corrected for different charge acceptances, is used

BG = 2
√
N++N−−

ME+−

2
√
ME−−ME++

. (4.9)



90

The BG is estimated with a geometric mean of the like-sign pairs (e+e+ and e−e−)

because e− and e+ are only generated in pairs and predominately from independent

sources, where this conclusion has been derived in [115]. In Eq. 4.9, N−− and N++

are the e−e− and e+e+ pair counts within the same event and ME−−, ME++, and

ME+− are the e−e−, e+e+, and e+e− pair counts from pairs that have been for-

med with electrons from different events. The charge-acceptance correction factor is

needed because while the detector is hermetic, the detector is not perfect–there are

non-fiducial regions in the detector. Since electrons and positrons bend in opposite

directions in the magnetic field, pairs of the same charge have a different acceptance

than the pairs of the unlike charges. This is why the ratio of unlike-sign pairs to

like-sign pairs have been used as a correction factor (c.f. = ME+−

2
√

ME−−ME++

). Mixed

events are used to ensure that the pairs are uncorrelated, and the events that are

mixed are required to have similar event properties (i.e., belong to the same event

class).

The three properties used to distinguish different event classes are the z position

of the primary vertex (Vz), centrality, and event plane angle. Since collisions are

delivered with a relatively flat Vz distribution across the STAR detector, events are

divided into 25 equi-distance dVz pools, 12 event pools based on the event plane angle

(Ψ2, see Eq. 4.10), and 16 event pools based on centrality (i.e., 0 to 80% centrality

grouped into pools by 5% increments). Therefore, there are 25×12×16 = 4800 event

pools used for mixing tracks from different events.

The primary vertex position and centrality class definitions are event-level cha-

racteristics and provided by the data sample without any additional calculations;

however, Ψ2 definitions was not readily available and needed to be measured. The
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Ψ2 [116] is measured by following:

Ψ2 = ATan2(Qx, Qy)/2,

Qx =
∑
tracks

Q̂x =
∑
tracks

pT cos 2ϕ, (4.10)

Qy =
∑
tracks

Q̂y =
∑
tracks

pT sin 2ϕ,

where Qx and Qy are the total momentum of the event in the x and y directions

and Q̂x and Q̂y is the momentum in the x and y directions for a given particle

track. In order to remove anisotropies caused by the detector acceptance, Qx and

Qy have been re-centered (i.e., set to (0,0)) to flatten the event plane distribution.

To further flatten the event plane distribution, a shifting method has been employed

based on this paper [116]. (The event plane angle is expected to be isotropic over a

large number of collisions and by flattening the distribution, the distribution becomes

more isotropic.) Re-centering Qx and Qy is conducted on an event-by-event basis, in

which each Q̂ is corrected by the mean value ⟨Q̂⟩, as follows:

Corrected Qx = Qx −Ntracks · ⟨Q̂⟩. (4.11)

We found that ⟨Q̂x⟩ = 0.00116153 and ⟨Q̂y⟩ = 0.0060679.

After re-centering Qx and Qy, Ψ2 is flattened more to reduce any remaining accep-

tance correlations. To flatten Ψ2, Ψ2 is corrected (Ψ2-∆Ψ2) on an event-by-event

basis, where ∆Ψ2 is given by

∆Ψ2 =
1

2
(2⟨cos 2Ψ2⟩ sin 2Ψ2 − 2⟨sin 2Ψ2⟩ cos 2Ψ2

+sin 4Ψ2⟨cos 4Ψ2⟩ − ⟨sin 4Ψ2⟩ cos 4Ψ2). (4.12)

In Eq. 4.12, the parameters ⟨cos 2Ψ2⟩, ⟨sin 2Ψ2⟩, ⟨cos 4Ψ2⟩, and ⟨sin 4Ψ2⟩ are found
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by fitting the Ψ2 distribution, after re-centering Qx and Qy ,with

P (Ψ2) ∼ 1 + 2⟨cos 2Ψ2⟩ cos 2Ψ2 + 2⟨sin 2Ψ2⟩ sinΨ2 +

2⟨cos 4Ψ2⟩ cos 4Ψ2 + 2⟨sin 4Ψ2⟩ sin 4Ψ2, (4.13)

for which, we found ⟨cos 2Ψ2⟩ = -2.74700e-03, ⟨sin 2Ψ2⟩ = -4.23629e-03, ⟨cos 4Ψ2⟩ =

6.59813e-04, and ⟨sin 4Ψ2⟩ = 4.15457e-03. These parameters are unique for Au+Au

collisions with a 0-80% centrality at
√
sNN = 27 GeV.

To illustrate effect of the re-centering and shifting on Ψ2, Fig. 4.7 shows Ψ2 before

all of the corrections (blue), after re-centering (red), and after shifting (pink).
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Figure 4.7 : The event plane angle Ψ2 distribution before any corrections (blue), after
re-centering (red), and after shifting (pink). The pink distribution is the event plane
angle used for event pooling.

The charge acceptance-corrected background, Eq. 4.9, is subtracted from the e+e−

continuum (foreground) as a function of invariant mass and pair transverse momen-

tum to give the raw signal. The resulting invariant mass distributions for the fore-

ground, combinatorial and correlated backgrounds, and signal have been normalized
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to the number of events and are shown for Au+Au collisions at
√
sNN = 27 GeV

in the top panel of Fig. 4.8. The bottom panel of Fig. 4.8 is the ratio of signal to

background and demonstrates that an interesting e+e− pair occurs once in about

every 1000 minimum-bias events, with more prominent resonances such as ω and ϕ

occurring at about once in about every 50 events.
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Figure 4.8 : (Top) The raw invariant mass distributions normalized by the number
of events for the e+e− (open points), correlated and combinatorial backgrounds (red
histogram), and the signal (closed points). (Bottom) The ratio of the signal to back-
ground invariant mass distributions. The vertical error bars represent the statistical
uncertainties and the horizontal error bars represent the bin width.

The hadron contamination remaining in the e+e− continuum is approximated in

Sec. 4.6.4, and the resulting signal still needs to be corrected for acceptance and
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efficiency losses. The acceptance and efficiency loss corrections are covered in the

following section, Sec. 4.5.

4.5 Efficiencies

This section discusses the signal losses involved in the e+e− measurement and the

corrections for those losses. Estimates of the signal losses are broken down into the

following categories: tracking, matching, electron identification, and pair formation.

4.5.1 Tracking

Tracking is performed by the TPC. To account for the efficiency in track recon-

struction, an embedding technique is used. Embedding is when simulated particles

(electrons in our case) are processed through a GEANT v.3 [117] description of the

TPC and then the simulated TPC signals are inserted into an actual event. The

real and simulated signals of the event are then reconstructed through the same soft-

ware framework. This allows us to account for the number of tracks before and after

reconstruction by being able to know how many simulated tracks existed before recon-

struction. To measure the TPC tracking efficiency, the same selection requirements

implemented to ensure a quality track (Sec. 4.2) are required of the simulated tracks

after reconstruction, except for the TOF related requirements (β > 0 and |ylocal| <1.8

cm) as these are related to the TOF efficiencies discussed in the next section (Sec.

4.5.2). Efficiency is defined as the number of simulated tracks reconstructed to the

number of tracks simulated, ϵtracking =
NReco

NSim
.

Simulated electrons (and positrons) are embedded in collisions that occurred with

a |Vz| < 50 cm and required to be generated from a flat pT distribution from 0.2

to 4.0 GeVc−1 to ensure enough statistics at higher pT (the yield of electrons drop
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exponentially as a function of pT ), and required to be generated from a flat η distri-

bution between -1.2 to 1.2. The detector acceptance requirements for the tracking of

electrons are pT > 0.2 GeVc−1 and |η| < 1, in which the acceptance requirements are

applied to both the simulated and reconstructed simulated tracks. The efficiency is

found as a function of η, pT , and ϕ for both electrons and positrons. Electron and

positron embedding samples both consist of 200,000 events, where each event was

embedded with the number of simulated tracks matching 5% of the total number of

tracks in the event. The number of events ensures enough statistics to measure the

tracking efficiency as a function of pT , ϕ, and η. The number of embedded tracks

was limited to 5% to prevent additional efficiency losses caused by having too many

tracks in the detector.

4.5.2 Matching

Matching efficiency accounts for losses when a TPC track is not properly associated

with a TOF signal. To estimate the matching efficiency, the scaled matching efficiency

of a charged pion is used in place of the matching efficiency of an electron [38]. The

pions are used as a substitute because there is an insufficient number of pure electrons

to provide a smooth efficiency distribution across pT–it is especially important in the

low-pT region, which has the highest yield of electrons. However, there are enough

pure electrons to create an electron matching efficiency that will be used in the scaling

of the pion matching efficiency. To accomplish the substitution, matching efficiencies

are found for both pions and electrons, and then the pion efficiency is scaled to match

the electron efficiency as a function of pT . The matching efficiency (ϵmatching) is defined

as a ratio of the number of tracks associated (i.e., matched) with a TOF signal to
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the number of all the tracks in the sample, as given by

ϵmatching =
NTOF

NAll

. (4.14)

The samples are pure pions and electrons (with a purity > 99%). All of the tracks in

both samples (NAll) satisfy the quality track requirements listed in Sec. 4.2 and the

pure sample requirements listed in Sec. 4.3.1 sans the β−1 requirements. The matched

tracks in the sample (NTOF) have a TOF Match Flag > 0 (which means that each

track is associated with a TOF signal), a β > 0, and |ylocal| < 1.8 cm.

The pure electron sample consists of electrons from both photon conversion and

π0 decays. Because most of the pure electrons originate from photon conversion, the

distribution may be distorted between matched and not matched tracks at the edges

of η, where there is a larger material budget, which leads to more photon conversion.

Hence, the d2N
dηdϕ

of the electron sample needs to be corrected to fix the distortion. A

pure pion sample is used as a reference for the proper d2N
dηdϕ

distribution. The correction

to d2N
dηdϕ

is conducted in three steps for all tracks in the samples. First, the weights

(W ) to correct the electron (and positron) distribution as a function of η and ϕ are

found as the ratio of charged species such that:

WMatch(dη, dϕ) =
Nπ+

Match

Ne+Match

. (4.15)

Second, the weights are applied to the 3D (pT , dη, dϕ) yield distribution of electrons

(h), as follows:

h′Match(pT , dη, dϕ) = WMatch(dη, dϕ)× hMatch(pT , dη, dϕ). (4.16)

Third, the corrected distributions are normalized,

h′′Match(pT , dη, dϕ) =
NBeforeWeight

Match

NAfterWeight
Match

× h′Match(pT , dη, dϕ). (4.17)
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After correcting the d2N
dηdϕ

of both (matched and all tracks) electron samples, the

matching efficiency is determined. The matching efficiency results are shown in Fig.

4.9.
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Figure 4.9 : The matching efficiency as a function of pT for electrons (red dot) and
π (blue square). (Left) Negative charge. (Right) Positive charge. The uncertainties
are statistical.

To produce the scaled matching efficiency of pions, the π efficiency is multiplied

by a functional form (f(x))

f(x) =
1

a+ e
x−b
c

+ d, (4.18)

where x is pT , which describes the matching efficiency of an electron. The parameters

for Eq. 4.18 is found by fitting the ratio of the electron matching efficiency to the π

matching efficiency shown in Fig. 4.9, where the parameters for the negative charged
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species are: a = 10 ± 0.9, b = 0.163 ± 0.009, c = 0.06074 ± 0.00349, and d = 1.077

± 0.002, and the positive charged species are: a = 16.71 ± 1.06, b = 0.228 ± 0.016,

c = 0.03525 ± 0.00569, and d = 1.079 ± 0.002.

4.5.3 Electron Identification

The efficiency of the electron identification process is determined by taking a pure

electron sample (same as Sec. 4.3.1) and counting how many electrons are lost after

imposing the electron identification criteria (as listed in Sec. 4.3). The efficiency

is determined as a function of momentum, regardless of charge, for the β−1 and nσe

criteria (Sec. 4.3), separately. The β−1 efficiency (ϵβ) has been determined by counting

the number of electrons and positrons that survive the |β−1 − 1| < 0.03 requirement,

and this method will be referred to as the counting method. The fraction of electrons

after the nσe requirements represents the nσe efficiency. The nσe efficiency (ϵnσ)

is determined through a fit method, where the Gaussian fits to the pure electron

sample in Sec. 4.3.1 are used to estimate the number of electrons before and after the

application of the nσe requirements as a function of momentum, and this method will

be referred to as the fitting method.

The resulting efficiencies are shown in Fig. 4.10, where the β−1 efficiencies are

shown on the left and the nσe and electron identification efficiencies are shown on the

right. The total electron identification efficiencies (ϵeID = ϵβ × ϵnσ) are shown for the

combination of β−1 efficiencies from the counting method and nσe efficiencies from

the fitting method (cyan triangle). The total electron identification efficiencies are

also shown for the combination of β−1 efficiencies from the counting method and nσe

efficiencies from the counting method (pink triangle). Past e+ and e− identification

efficiencies, calculated as a function of pT , ϕ, and η, are also shown (open and closed
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squares). The nσe count method is an alternative method used to calculate the

efficiency and as a means to approximate the systematic uncertainty in Sec. 4.6.
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Figure 4.10 : Electron identification efficiencies as a function of momentum. (Left)
β−1 efficiencies for the count method (blue points) and the fit method (red points).
The fit method is used as an alternative calculation for systematic uncertainty ap-
proximation and discussed in Sec. 4.6. (Right) The nσe efficiencies by the fit method
(open circles) and count method (brown crosses).

4.5.4 Pair Formation

The efficiency of detecting an e+e− pair is found by simulating virtual photons (γ∗)

decaying into e+e− pairs and reconstructing the electron pairs after the application of

the single track efficiencies found from the tracking efficiencies (Sec. 4.5.1), the mat-

ching efficiencies (Sec. 4.5.2), and the electron identification efficiencies (Sec. 4.5.3).

The steps taken to generate the pair efficiencies are laid out in Fig. 4.11.

Virtual photons (γ∗) are generated according to a flat distribution of center-of-

mass energies (Wγ) from 0 to 5 GeVc−2, a flat distribution of rapidities (Y ) from -2

to 2, and a flat distribution of pT from 0 to 5 GeVc−1. For each event, a single photon

is generated by randomly drawing a Wγ, Y , and pT with a pseudo-random number
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Figure 4.11 : Flowchart for the Monte Carlo virtual photon generator used to create
electron pair efficiencies from the single track efficiencies.

generator, Mersenne Twistor [118]. Once the virtual photon is generated, the energy

(E) and momentum in the z-direction (pz) of the system are found via

E =
√
W 2

γ + p2T coshY, (4.19)

pz =
√
W 2

γ + p2T sinhY (4.20)

Then momentum in the x-direction (px) and y-direction (py) are generated with

a ϕ randomly drawn from a uniform distribution of 0 to 2π and given by

px = pT cosϕ, (4.21)
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py = pT sinϕ. (4.22)

The virtual photon is decayed into an e+e− pair in the center-of-mass frame, where

the electron and positron decay back-to-back (i.e., p⃗− = −p⃗+). The kinematics of

the electron (and positron with the opposite-signed momentum) is randomly drawn

from an isotropic ϕ distribution [0,2π] and isotropic cos θ distribution [-1,1] are:

p1 =

√
W 2

4
−m2

e, (4.23)

p1,x = p1 sin θ cosϕ, (4.24)

p1,y = p1 sin θ sinϕ, (4.25)

p1,z = p1 cos θ, (4.26)

E1 =
√
m2

e + p21,x + p21,y + p21,z, (4.27)

where me is the mass of an electron.

The daughters of the virtual photon (electron and positron) are boosted into the

laboratory frame. The transverse momenta of the daughters are then smeared to

simulate the detector momentum resolution, as will be mentioned in Ch. 5. After

smearing, the STAR detector acceptance (peT > 0.2 GeVc−1, |ηe| < 1, and |Yee| < 1)

for reconstructing e+e− pairs is applied. The tracks are then reconstructed based on

the total single track efficiencies

ϵtotal = ϵtracking × ϵmatching × ϵeID, (4.28)
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where the total single track efficiency is the product of the tracking efficiency (ϵtracking),

the matching efficiency (ϵmatching), and the electron identification efficiency (ϵeID) for

a given track.

The e+e− pair efficiencies are formed by counting the number of pairs that were

reconstructed after applying the total single track efficiencies to the number of pairs

within the STAR acceptance before the application of the total single track efficiencies.

There is one more requirement applied at the electron pair level that needs to be

folded into the pair efficiencies–the ϕv requirement, Eq. 4.8. The efficiency of the ϕv

requirement is estimated through embedding, where π0 decays have been embedded

into real data from Au+Au collisions at
√
sNN = 200 GeV. The efficiency of the

ϕv requirement, as a function of invariant mass, is shown in Fig. 4.12. To apply

the ϕv efficiency to the electron pair efficiencies based on single track efficiencies,

the efficiencies are multiplied, producing the final electron pair efficiencies that are

applied to the raw e+e− signal shown in Fig. 4.8.

4.6 Systematic Uncertainties

Systematic uncertainties provide an estimate of the uncertainty on the methods used

to measure e+e− production. In this study, the systematic uncertainties are evaluated

in the following: tracking, matching, electron identification, hadron contamination,

and the charge acceptance correction.

4.6.1 Tracking

To evaluate the systematic uncertainty in tracking, a different method than embed-

ding is used to evaluate the tracking efficiency. As described in Sections 4.5.1, 4.5.2,

and 4.5.3, three different components of tracking are considered separately for syste-
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Figure 4.12 : ϕv efficiency as a function of invariant mass. The embedding ϕv efficiency
from π0 Dalitz decay based on the reconstructed track properties are used as the ϕv

efficiencies in this analysis (open red points). An alternative embedding ϕv efficiency
from π0 Dalitz decays with the simulation values are also shown (solid black circles).
Another alternative ϕv from the γ∗ Monte Carlo are shown for comparison (open
green squares).

matic uncertainties; (1) the number of TPC fit points used in tracking, (2) the gDCA

requirement, and (3) the number of TPC fit points used in the dE/dx calculation.

As an alternative method, the efficiency measurements are performed with data only,

instead of embedding simulations into the data. The data consists of a pure electron

sample from π0 decays. The pure sample requires electrons that satisfy π0 pair re-

quirements and single track properties. The single track properties are as follows: pT

≥ 0.2 GeVc1, |η| < 1, |nσe| < 0.5, and gDCA < 3 cm. The π0 pair requirements are

as follows: a perpendicular decay length (i.e., the distance between the primary and

secondary vertices in the x-y plane) ≤ 2 cm, ϕv ≤ π for the e+e− pair, an invariant
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mass ≤ 4 MeVc−2 when using global (i.e., no associated primary vertex) track pro-

perties, an invariant mass ≤ 5 MeVc−2 when using primary track properties, and a

distance of closest approach between the pair helices ≤ 1 cm.

The tracking efficiencies for each of the three tracking categories are the fraction

of electrons surviving each constraint as a function of pT , η, and ϕ for each charge.

The tracking efficiencies are integrated over ϕ and η and presented as a function of pT .

These “alternative” tracking efficiencies are compared with the tracking efficiencies

that are being used to correct the raw signal, see Sec. 4.5.1.

In Fig. 4.13, for electrons and positrons, we show the differences between the

efficiency calculations for the requirements: (1) a track having ≥ 15 TPC points and

(2) a ratio of fitted TPC points to possible TPC points > 0.52. A straight line fit is

performed on each difference. The mean of the two fits is the systematic uncertainty,

which is 1%.
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Figure 4.13 : The difference in (TPC fit points for tracking) efficiency calculations
between the data and embedding driven methods as a function of transverse momen-
tum. (Left) Electrons. (Right) Positrons. The uncertainties shown are statistical.
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The difference between the efficiency calculations for the track requirements of

at least 15 TPC points to calculate dE/dx is shown in Fig. 4.14 for electrons and

positrons. A straight line fit is performed on each difference. The mean between the

two fits is the systematic uncertainty, which is 1.1%.
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Figure 4.14 : The difference in TPC fit points for dE/dx efficiency calculations bet-
ween the data and embedding driven methods as a function of transverse momentum.
(Left) Electrons. (Right) Positrons. The uncertainties shown are statistical.

The difference between the efficiency calculations for the track requirements of

gDCA < 1 cm is shown in Fig. 4.15 for electrons and positrons. A straight line

fit is performed on each difference, and the mean of the two fits is the systematic

uncertainty, which is 2.8%.

4.6.2 Matching

The systematic uncertainty in matching a TPC track to a signal in the TOF is estima-

ted by comparing the calculated efficiencies (refer to Sec. 4.5.2) with the efficiencies

calculated from a pure electron sample. The pure electron sample is the same sam-
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Figure 4.15 : The difference in gDCA efficiency calculations between the data and
embedding driven methods as a function of transverse momentum. (Left) Electrons.
(Right) Positrons. The uncertainties shown are statistical.

ple that is used as a reference to scale the π matching efficiencies. In Fig. 4.16, the

difference between efficiency calculations are shown as a function of transverse mo-

mentum. A straight line fit is performed on the difference between efficiencies and

the fits are averaged to find an overall systematic uncertainty of 0.53%.

4.6.3 Electron Identification

The systematic uncertainty of the electron identification method is determined by

comparing counting method efficiency calculations and fitting method efficiency cal-

culations for both the β−1 and nσe selection requirements.

A counting method is used in the efficiency calculation of the rejecting slow ha-

drons requirement (|β−1−1| < 0.03) that is used to correct the raw signal (as discussed

in Sec. 4.5.3). An alternative method is used to compare efficiencies and evaluate the

systematic uncertainty and the alternative method is a fit based method. Each β−1
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Figure 4.16 : The difference in matching efficiency calculations between the scaled
π and pure electron methods with respect to the scaled π efficiency as a function of
transverse momentum. (Left) Electrons. (Right) Positrons. The uncertainties shown
are statistical.

distribution of electrons is fitted to a Gaussian curve across several momentum ran-

ges. To calculate the “slow hadron rejection” efficiency, a ratio of the integrated fits

before and after the β−1 criteria for different ranges of momentum is performed using:

After

Before
=

1
d(β−1)

1.03∫
0.97

A× e−0.5((β−1−B)/C)2d(β−1)

1
d(β−1)

1.1∫
0.8

A× e−0.5((β−1−B)/C)2d(β−1)

, (4.29)

where the ranges of integration (0.8,1.1) and (0.97,1.03) represent the β−1 acceptance

regions before and after the selection criteria, respectively.

The resulting “slow hadron rejection” efficiency is shown in Fig. 4.10 on the left

as the solid red points. The difference between the two methods is shown in Fig. 4.17.

A straight line fit to the differences between the “slow hadron rejection” efficiencies

is used to approximate the systematic uncertainty, which is 1.3% and shown in Fig.

4.17.
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The systematic uncertainty from the nσe requirements (see Sec. 4.5.3) is estimated

by comparing the nσe efficiency calculations that are based on a fitting method,

which is used in the raw signal correction, and a counting method (the alternative

method). To calculate the nσ efficiency via the counting method, the number of pure

electrons (the sample requirements are defined in Sec. 4.5.3) is counted before and

after imposing the nσe requirements. In Fig. 4.10, the nσ efficiency ( Nafter

Nbefore
) via the

counting method is shown as the brown crosses in the right image, labeled “Count

Method”. In Fig. 4.18, the difference between the two nσ efficiency calculations is

shown to decide on a systematic uncertainty. A 2% systematic uncertainty is used

as a conservative estimate. It is conservative because the majority of the identified

electrons have a low momentum, where the systematic uncertainty is negligible.
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differences between the two methods.

4.6.4 Hadron Contamination

The estimation of hadron contamination in the e+e− continuum is taken into account

as a systematic uncertainty. Estimation of the systematic uncertainty is accomplished

by taking pure hadron (π, K, and p) samples and mixing the hadrons with the electron

sample. This mixed sample is used to form the e+e− measurement in Fig. 4.8. Mixing

the pure hadron sample with the electron sample results in the reconstruction of

hadron-hadron (h−h), hadron-electron (h−e), and electron-electron (e−e) samples.

Background subtraction techniques are applied to the reconstructed h−h, h− e, and

e− e samples to determine the relative h− h and h− e signal within the e− e signal

(i.e., the relative hadron contamination in the signal).
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The pure hadron sample is created with the same event and quality track criteria

listed in Sec. 4.1 and 4.2, respectively. An additional requirement is appended to the

particle identification criteria, where π are selected with the requirements |β−1−β−1
π |

< 0.01 and |nσπ| < 2, K are selected with the requirements |β−1 − β−1
K | < 0.01 and

|nσK | < 2, and p are selected with the requirements |β−1 − β−1
p | < 0.01 and |nσp|

< 2. To prevent double counting, tracks that satisfy the requirements for more than

one particle species are omitted. When creating h − h and h − e pairs, each hadron

is scaled by a weight based on their relative purity (Px, where x is π, K, or p) levels

with respect to the electron purity (Pe) as indicated by

Whad =
Phad

Pe

× Ne

Nh

, (4.30)

where P is determined in Sec. 4.3.1 and N is the total number of hadrons (h = π, p,

or K) and electrons (e) used in this analysis.

To demonstrate that the pure hadron samples are indeed pure, an example of

the K-K foreground and background invariant mass distributions are shown in Fig.

4.19. Notice the bump in the K-K counts (red line) at ∼0.250 GeVc−2. This bump

corresponds to the reconstruction of the ϕ-meson, which is able to decay following

ϕ→K+K−. The reason the bump is at ∼0.250 GeVc−2, instead of ∼1.02 GeVc−2, is

because the hadrons are assumed to be electrons in the pair reconstruction (i.e., the

Ks have an electron mass instead of a K mass).

The uncorrected invariant mass signal of e − e and the pure hadron contamina-

ted sample (h − h and h − e) are shown in Fig. 4.20. The uncorrected signals are

the result of subtracting the geometric mean of the like-sign distributions with a

charge-acceptance correction (Eq. 4.9) as a function of invariant mass and transverse

momentum from the foreground. This method is also used to generate the uncorrected

e+e− invariant mass signal in Fig. 4.8.
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Figure 4.19 : The invariant mass distribution of K+K− (red square), K+K+ (blue
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(open square).

The relative systematic uncertainty from hadron contamination is found by di-

viding the pure hadron contaminated sample (h − h and e − h) signal by the e+e−

(e−e) signal. Because the amount of events recorded during the Au+Au collisions at

√
sNN = 27 GeV is on the smaller side and this sample size leads to a large statistical

uncertainty on the systematic uncertainty, the hadron contamination uncertainty in

this analysis uses the systematic uncertainty from a similar analysis performed on

Au+Au collisions at
√
sNN = 39 GeV. In the analysis for Au+Au collisions at

√
sNN

= 39 GeV, the purity values are from the analysis of Au+Au collisions at
√
sNN = 39

GeV, while the data samples for the hadron contamination study are from Au+Au

collisions at
√
sNN = 200 GeV. The 39 GeV sample is selected because it is close

in collision energy (
√
sNN = 39 GeV vs. 27 GeV), used a larger data sample in the

purity estimation than the 19 GeV sample (another e+e− study available), and is
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Figure 4.20 : The invariant mass distribution of e+e− (red) and h+h−/h+e−/h−e+

(blue). The uncertainties are statistical only.

being prepared for the same publication. The uncertainty from the Au+Au collisions

at
√
sNN = 39 GeV study and the relative uncertainties from Au+Au collisions at

√
sNN = 27 with and without a charge-acceptance correction are shown in Fig. 4.21

as a function of invariant mass.

4.6.5 Charge Acceptance

In this study, the charge-acceptance correction factor (c.f. = ME+−

2
√

ME−−ME++

) is used

as a function of invariant mass (Mee) and transverse momentum (peeT ) of the e
+e− pair

(i.e., a 2D correction). The systematic uncertainty is approximated by comparing the

charge-acceptance correction factor as a 1D correction (invariant mass of the e+e−

pair) to the charge-acceptance correction factor as a 2D correction. Each correction

factor is applied to the geometric mean of the like-sign distributions (Eq. 4.9). Due to
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Figure 4.21 : The relative systematic uncertainty of hadron contamination as a
function of invariant mass. The quoted uncertainty in this analysis is from a similar
study on Au+Au collisions at

√
sNN = 39 GeV. For reference, the relative uncertain-

ties from Au+Au collisions at
√
sNN = 27 are shown for when the geometric mean

was corrected with a charge acceptance correction (red square) and without a charge
acceptance correction (blue open point). Vertical error bars shown are statistical.

a limited amount of data, the geometric mean (2
√
N++N−−) has been calculated with

e+e− pairs reconstructed with electrons from different events within the same event

class (i.e., mixed events) instead of e+e− pairs reconstructed with electrons from the

same event. To ensure that using a mixed event sample of e+e− pairs is an acceptable

replacement of a sample with e+e− pairs from the same event, the ratio of e+e+ to

e−e− as a function of invariant mass is compared for mixed and same events samples.

In Fig. 4.22, the ratios are shown to be in agreement.

The relative difference between the charge acceptance-corrected geometric mean

calculated as a function of Mee and (Mee,p
ee
T ) is shown in Fig. 4.23, where the diffe-

rences are relative to the geometric mean calculated as a function of (Mee,p
ee
T ). The
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Figure 4.22 : The ratio e+e+ to e−e− as a function of invariant mass for pairs con-
structed from the same event and from mixed event samples. (Left) The ratio with
a finer invariant mass binning for quality assurance. (Right) The ratio with the in-
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statistical uncertainties.

relative difference between the charge-acceptance correction factor methods is used

to estimate the systematic uncertainty.
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Figure 4.23 : The systematic uncertainty of the charge-acceptance correction as a
function of invariant mass.
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4.6.6 Total Systematic Uncertainty

The individual systematic uncertainties, listed Table 4.1, are added together to give a

total systematic uncertainty. The total systematic uncertainty is applied as a function

of invariant mass to the final e+e− invariant mass spectrum. The single track un-

certainties are added in quadrature to find the total single track uncertainty. The

total single track uncertainty is doubled to find thhe systematic uncertainty of paired

tracks. In an effort to be conservative with the total systematic uncertainty, the un-

certainty of the paired tracks is summed with the pair-based systematic uncertainties

of the charge-acceptance correction factor and hadron contamination as a function of

invariant mass. In Fig. 4.24, we show the total systematic uncertainty (solid black

line), the charge-acceptance correction factor (dashed black line), the hadron conta-

mination (dot-dashed blue line), and the pair efficiency uncertainties from single-track

uncertainties (dot-long dashed pink line).

Table 4.1 : Systematic Uncertainties

Category Systematic Uncertainty (%) Section

Tracking 3.17 4.6.1

Matching 0.53 4.6.2

β−1 2.0 4.6.3

nσe 1.3 4.6.3

Total Single Track 4.0 4.6.6

Paired Tracks 8.0 4.6.6
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Chapter 5

Hadronic Cocktail

The hadronic cocktail is a mixture of known hadronic contributions to the e+e− con-

tinuum. The purpose of the cocktail is to separate the known hadronic contributions

from the corrected e+e− signal. The separation is conducted by subtracting the ha-

dronic cocktail from the corrected signal, which will leave behind the signal of interest.

Expected known contributions to the e+e− continuum are π0 → γe+e−, η → γe+e−,

η′ → γe+e−, ω → e+e−, ω → π0e+e−, ϕ → e+e−, ϕ → ηe+e−, J/Ψ → e+e−, cc̄ →

e+e−, and Drell-Yan production (qq̄ → γ∗ → e+e−). Contributions from the ρ and

QGP are expected as well, but are unknown and need to be separated from the signal.

Hence, the hadronic cocktail must include the expected contributions to separate out

the ρ and QGP. In the hadronic cocktail, the cc̄ and Drell-Yan processes are handled

by PYTHIA [104], a program that simulates high-energy particle physics events, and

will be discussed in Sec. 5.2. The remaining processes are handled by Monte Carlo

calculations and will be discussed in Sec. 5.1.

5.1 Monte Carlo Cocktail

The Monte Carlo simulation works by generating events where a parent hadron is

created based on its invariant mass, rapidity (y), and transverse momentum (pT )

distributions and then decayed into e+e− pairs, where the e+e− pairs are then re-

constructed. The reconstructed e+e− pair distributions are normalized and scaled to
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match the e+e− production with a Mee < 0.1 GeVc−2 in Au+Au collisions at
√
sNN

= 27 GeV.

5.1.1 Parent Invariant Mass

The parent hadron mass is handled differently if the decay process is a direct decay

into a e+e− pair (ω → e+e−, ϕ→ e+e−, and J/Ψ → e+e−) than if the decay process is

a Dalitz decay into a e+e− pair (π0 → γe+e−, ω → π0e+e−, ϕ → ηe+e−, η → γe+e−,

and η′ → γe+e−). The mass distribution for a direct decay follows a narrow Breit-

Wigner given by

dN

dMee

=
2Γ0

(Mee −Mh)2 + Γ2
0/4

, for Mee ≥ 2Me, (5.1)

whereMee is the e
+e− invariant mass,Mh is the pole mass of the parent hadron, and Γ0

is the Particle Data Group (an organization dedicated to reviewing and maintaining

a comprehensive list of particle data) width [45].

Dalitz decays follow the Kroll-Wada formula [119],

dN

dMee

= PS × |F (M2
ee)|2 ×G, (5.2)

where PS is the phase space factor, F (M2
ee) is the form factor, and G is the quantum

electrodynamics term.

The phase space factor for a three-body decay is described by

PS =

((
1 +

M2
ee

M2
h −M2

d

)2

− 4M2
hM

2
ee

(M2
h −M2

d )
2

) 3
2

, (5.3)

where Md is the pole mass of the daughter, and if the daughter is massless (i.e., a

photon), the phase space factor (Eq. 5.3) can be simplified to

PS =

(
1− M2

ee

M2
h

)3

. (5.4)
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The quantum electrodynamic kinematic term (G) supplies the universal decay

rate factor [115, 119] for the process γ∗ → e+e− and is given by

G =
N

3π

√
1− 4M2

e

M2
ee

(
1 +

2M2
e

M2
ee

)
1

Mee

, (5.5)

where Me is the electron mass and N is a degeneracy factor that depends on how

many photons can convert. N = 4 for ω and ϕ, and N = 2 for π0, η, and η’.

The electromagnetic transition form factor is given by [120, 43, 121]

|F (M2
ee)|2 =

1

(1−M2
eeΛ

−2)2 + Γ2
0Λ

−2
, (5.6)

where Λ−2 and Γ2
0 are listed in Table 5.1. The Γ2

0 factor was implemented in [42] to

account for the fact that the η’→ µ+µ−γ allowed region for the µ+µ− pairs invariant

mass spectrum overlaps with the ω and ρ poles [43]. In the special case of π0, the

form factor is as follows [45]:

|F (M2
ee)|2 =

(
1 +M2

eeΛ
−2
)2
. (5.7)

Table 5.1 : Form factor parameters used in Eq. 5.6 and Eq. 5.7. The parameters for
η′ have been derived by refitting [42] the data presented in [43].

Particle Λ−2 (GeV/c2)−2 Γ2
0 (GeV/c2)2

π0[45] 1.756 N/A

η[120] 1.95 0

η′ 1.8396 0.1989

ω[120] 2.24 0

ϕ[121] 3.8 0
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5.1.2 Parent Rapidity

The rapidity distribution of the parent is taken from CERES’ Monte Carlo event

generator GENESIS [122, 123, 124], which has been parameterized by CERES data,

and is defined as

dN

dy
= cosh−2

 3y

4σL

(
1− y2

2
√
s/Mh

)
 ,

σL =

√
log

( √
s

2MN

)
. (5.8)

In Eq. 5.8,
√
s is the center-of-mass energy per nucleon pair (27 GeV) and MN is

the nucleon mass, which has been approximated to be 0.939 GeVc−2 (the average of

the proton and neutron mass).

5.1.3 Parent Transverse Momentum

The transverse momentum of the parent is given by a Tsallis Blast Wave function

[125] for π0, η, η′, ω, and ϕ, and a Boltzmann distribution for J/Ψ. The Tsallis

Blast Wave model has been used to account for the collective motion of particles that

have been produced in the later stages of the heavy-ion collisions. The Boltzmann

distribution is used for J/Ψ because J/Ψ are generally produced in the earlier stages

of the heavy-ion collisions before the collective motion of particles develops in the

collision.

The Tsallis Blast Wave model is given by∗

dN

dpT
∝ pTmT

π∫
−π

dϕ

Y∫
−Y

cosh (y)dy

R∫
0

rdr

(
1 +

q − 1

T
ET (r, y, ϕ)

) −1
q−1

, (5.9)

∗This equation is based on the dN/mT dmT equation listed in [125], but with a change of variables.
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where r is the radial direction, y is the rapidity, ϕ is the azimuthal angle of the

particle, q represents the degree of non-equilibrium of the system with the range [0,1]

and when q → 1 the Boltzmann distribution is recovered [126] from the equation, T

is the temperature, mT =
√
p2T +m2, and ET is given by

ET (r, y, ϕ) = mT cosh (y) cosh (ρ (r))− pT sinh (ρ (r)) cos (ϕ). (5.10)

In Eq. 5.10, ρ represents the flow profile and is defined as

ρ (r) = arctan
(
βs

( r
R

)n)
. (5.11)

The flow profile is zero at the center of the collision and expands radially to βs at the

hard spherical edge (R), where βs is the maximum flow velocity and may be expressed

as a function of the average flow velocity (β) as given by

βs = β

(
1 +

1

n+ 1

)
. (5.12)

In Eq. 5.12, n is taken to be 1, as done in [125]. For this study, the limits for y and

r are taken to be [-6,6] and [0,R], respectively.

To setup the Tsallis Blast Wave model for use in the cocktail, the model is fitted

to measured spectra. Fits are performed on π+/−, K+/−, p, and p̄ spectra from

Au+Au collisions at
√
sNN = 27 GeV [19]. The measured spectra are provided for

the following centralities: 0-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%,

60-70%, and 70-80%. The centralities are combined to estimate the 0-80% centrality

by weighting each distribution by 5%, 5%, 10%, 10%, 10%, 10%, 10%, 10%, and 10%,

respectively, and then dividing by 0.8 to account for the 0-80% centrality coverage.

The fits are performed simultaneously over the 6 sets of spectra with a pT range of 0

to 2 GeVc−1, where 13 variables are used (see Table 5.2), and the fits are shown in

Fig. 5.1. The π+ and π− are treated as the same species and share the same amplitude



122

to help constrain the fits. The resulting fit parameters q = 1.014, T = 0.1222 GeV,

and β = 0.3927 c are used to generate the dN/dpT curves in the hadronic cocktail.

All of the variables and fit results are listed in Table 5.2.
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Figure 5.1 : The Tsallis Blave Wave fits on π, K, p spectra from [19, 20].
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Table 5.2 : Tsallis Blast Wave fit parameters. β [c] is the average flow velo-
city, T [GeV] is temperature, q is the non-equilibrium of the system, C is a con-
stant/amplitude, and M [GeVc−2] is the hadron mass.

Parameter Initial Value Step Size Limits Final Value

β 0.4 0.001 0, 0.7 0.3927 ± 0.00374

T 0.08825 0.001 0.040, 0.2 0.1222 ± 0.0008302

q 1.0535 0.001 0.8, 1.2 1.014 ± 0.0019

Cπ 300 5 0, 1E4 323.4 ± 6.104

Mπ 0.13957 Fixed Fixed 0.13957

CK+ 300 5 0, 1E4 292.12 ± 6.891

MK+ 0.493677 Fixed Fixed 0.493677

CK− 300 5 0, 1E4 208.948 ± 4.915

MK− 0.493677 Fixed Fixed 0.493677

Cp+ 300 5 0, 1E4 3664.37 ± 164.676

Mp+ 0.938272 Fixed Fixed 0.938272

Cp− 300 5 0, 1E4 795.264 ± 35.8599

Mp− 0.938272 Fixed Fixed 0.938272

The Boltzmann distribution is given by

dN

dpT
∝ pT × dN

dy

1

2πT
(
T +mJ/Ψ

)e−
(√

p2
T
+m2

J/Ψ
−mJ/Ψ

T

)
, (5.13)

where T = 0.4049 GeV, mJ/Ψ = 3.096916 GeVc−2–J/Ψ mass [45], and dN
dy

= 3.237E-

5. These parameters are from the Au+Au collisions at
√
sNN = 39 GeV simulation,

based on a study of the J/Ψ pT spectra [127].
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5.1.4 Parent Decay

The parent hadrons are generated by randomly selecting a pT , rapidity, and mass from

the appropriate distributions mentioned in Sec. 5.1.3 Parent Transverse Momentum,

Sec. 5.1.2 Parent Rapidity, and Sec. 5.1.1 Parent Invariant Mass, respectively, while

the azimuthal angle (ϕ) is selected from a flat distribution [0,2π]. Once the parent

hadron is generated, the parent hadron either follows a two-body (direct) decay or a

three-body (Dalitz) decay.

For two-body decays, the e+e− pair is decayed in the rest frame of the parent

hadron and then the pair is boosted into the laboratory frame. Below, the kinematic

equations for each daughter are listed as follows:

p1;2 =

√
M2

ee

4
−m2

e, (5.14)

p1;x = p sin θ cosϕ; p2;x = −p1;x, (5.15)

p1;y = p sin θ sinϕ; p2;y = −p1;y, (5.16)

p1;z = p cos θ; p2;z = −p1;z, (5.17)

E1;2 =
√
m2

e + p21,2;x + p21,2;y + p21,2;z, (5.18)

where Mee is selected randomly based on the distribution given by Eq. 5.1, cos θ is

randomly selected from a flat distribution [-1,1], ϕ is randomly selected from a flat

distribution [0,2π], p is the magnitude of the momentum, E is the energy, and the

numeric subscript represents daughter 1 and daughter 2.
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For three-body decays, the e+e− pair and the third body, either a daughter γ

or daughter hadron (γ/h), are decayed as a two-body decay in the rest frame of

the parent hadron. The e+e− pair then decays in their center-of-mass frame. The

daughter e+e− pair and γ/h are boosted into the frame of the parent, and all three

particles are then boosted into the laboratory frame. The kinematics for the first

decay frame are as follows:

Ph/γ/ee =

√(
M2

parent −
(
Mee +Mh/γ

)2)(
M2

parent −
(
Mee −Mh/γ

)2)
2Mparent

, (5.19)

ph/γ;x = Ph/γ/ee sin θ cosϕ; pee;x = −ph/γ;x, (5.20)

ph/γ;y = Ph/γ/ee sin θ sinϕ; pee;y = −ph/γ;y, (5.21)

ph/γ;z = Ph/γ/ee cos θ; pee;z = −ph/γ;z, (5.22)

Eee =
√
M2

ee + p2ee;x + p2ee;y + p2ee;z, (5.23)

Eh/γ =

√
M2

parent +M2
h/γ −M2

ee

2Mparent

, (5.24)

where cos θ is selected from a flat distribution of [-1,1], ϕ is selected from a flat

distribution of [0,2π], Mee is selected from Eq. 5.2, and Mparent is the mass of the

parent hadron. Once in the laboratory frame, the transverse momentum for each

track is smeared to simulate what the measured e+e− pairs look like when detected.
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5.1.5 Momentum Resolution

Smearing of the transverse momentum follows a double Crystal Ball function [128] as

given by

dN

dx
=


A(B − x−x̄

σ
)−n if x−x̄

σ
< −α

e
−(x−x̄)2

2σ2 if − α ≤ x−x̄
σ
< β

C(D + x−x̄
σ
)−m if x−x̄

σ
≥ −α and ≥ β

(5.25)

with

A =

(
n

|α|

)n

e
−|α|2

2 , (5.26)

B =
n

|α|
− |α|, (5.27)

C =

(
m

|β|

)m

e
−|β|2

2 , (5.28)

D =
m

|β|
− |β|, (5.29)

where x is the relative shift between the original (psimT ) and reconstructed (precoT )

momenta
(

precoT −psimT

precoT

)
of simulated tracks that have been embedded into real events,

α and β are the limits that define ranges of the two power-law tails and the Gaussian

core, and the parameters x̄, α, β, σ, n, and m are determined by fitting the double

Crystal ball function to embedding and are defined in Table 5.3.

Table 5.3 : The double Crystal Ball and resolution parameters used to describe the
resolution of the transverse momentum.

N n α m β x̄ σ a [c/GeV] b

1 1.224 1.812 4.325 2.145 -3.278E-4 9.319E-3 9.6E-3 7.934E-3
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The smearing of the transverse momentum of each track is performed by

pT = pT +
dN

dx

δpT
0.01

. (5.30)

The initial transverse momentum of the simulated track is smeared by adding the

double Crystal Ball parameterization (refer to Eq. 5.25) to the initial transverse mo-

mentum, where δpT (the pT resolution) is given by

δpT =
σ

pT
=
√
a2p2T + b2. (5.31)

The relative shift between the original and reconstructed momenta is scaled up to

a pT resolution of 1%. This is because the reconstruction of the simulated tracks in

the real events (i.e., embedding) typically underestimate the amount of momentum

smearing, and the
(

precoT −psimT

precoT

)
fitted by the double Crystal Ball function is presented

over a range of pT from 0.2 to 2.0 GeVc−1 (the amount of smearing increases as pT

increases, so a large pT range is less than ideal). To scale the relative shift between

the original and reconstructed momenta to 1%, the pT resolution of the simulated

tracks reconstructed in real events is determined and performed in a similar fashion

as the resolution definition in Fig. 10 of Ref. [26], where the Gaussian widths (σ) of(
precoT −psimT

precoT

)
are determined as a function of the transverse momentum. To determine

a and b in Eq. 5.31, the Gaussian width of the relative shift between the original and

reconstructed tracks is found as a function of pT and fit with Eq. 5.31. The result of

the fit (i.e., the relative pT resolution as a function of pT ) is shown in Fig. 5.2.

After scaling
(

precoT −psimT

precoT

)
to match the 1% resolution based on the resolution fit

(refer to Eq. 5.31), the double Crystal Ball function (refer to Eq. 5.25) is fitted to

precoT −psimT

psimT
for pT from 0.2 to 2.0 GeVc−1 to obtain the tail shape of the pT smearing

(as shown in Fig. 5.3).
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Figure 5.2 : The pT resolution of the embedding sample as a function of pT [GeVc−1].

The pT resolution is given as the Gaussian σ of
(

precoT −psimT

precoT

)
as a function of pT . The

red line is the result of fitting Eq. 5.31.

Now that the tail shape (i.e., double Crystal Ball) and initial pT resolution (Eq.

5.31) parameters have been determined, a χ2 minimization is used to adjust the

resolution parameters to match data. This is because the smearing of simulated

tracks reconstructed in real events may be underestimated and data can be used as

a reliable means to determine the pT resolution. The J/Ψ is chosen as the data

sample because the width of the J/Ψ’s invariant mass distribution is narrow and

broadening of the width can be attributed to Bremsstrahlung and detector resolution

effects. In the χ2 minimization, the parameter a in Eq. 5.31 is varied while b is

fixed from the fit to embedding sample shown in Fig. 5.2. Here, a represents the

TPC calibration effect on the resolution and b represents the single hit effect on

the resolution, which is modeled correctly in the reconstruction of simulated tracks



129

MC

T
)/pMC

T
-pRC

T
(p

0.2− 0.15− 0.1− 0.05− 0 0.05 0.1 0.15 0.2

C
ou

nt
s 

[A
rb

. U
ni

ts
]

1

10

210

310

410

510

Double Crystal Ball Function

/ndf: 1985/1882χ
 0.005±: 1.812 α
 0.013±: 2.145 β
 0.007±n: 1.224 
 0.113±m: 4.325 

 0.000011±: -0.0003278 x
 0.000011±: 0.009319 σ
 1.134e02±N: 8.056e04 

Figure 5.3 : The double Crystal Ball function (Eq. 5.25) fit to
precoT −psimT

psimT
for pT from

0.2 to 2.0 GeVc−1.

implemented in real events. The χ2 is found by fitting the cocktail histogram to the

data in the J/Ψ invariant mass region. The cocktail in the J/Ψ invariant mass region

(i.e., 2.8-3.2 GeVc−2) is comprised primarily of J/Ψ, cc̄, and Drell-Yan contributions.

To determine the lowest χ2, many hadronic cocktails are generated and each cocktail

has a different a parameter. The fit to the data with the lowest χ2 (i.e., the best fitting

cocktail) provides the a parameter that is used in the final cocktail. The parameter

a is found to be 9.6E-3 c/GeV with b = 7.9E-3.

5.2 cc̄ and Drell-Yan

The cc̄ and Drell-Yan contributions to the e+e− continuum are modeled by taking

the kinematics distributions given by PYTHIA [104] and then scaling the normalized

distributions based on the number of nucleon-on-nucleon collisions (Ncoll) to produce
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the e+e− contribution from Au+Au collisions at
√
sNN = 27 GeV.

PYTHIA version 6.416 is used to simulate the production of cc̄ pairs from proton-

on-proton (p+ p) collisions at
√
s = 27 GeV. PYTHIA is configured to run with the

following program settings: MSEL = 1, PARP(91) = 1, PARP(67) = 1, and the rest

of the settings are the default values. The simulated events are only considered if

there are exactly two strings from either c or c̄, where a string is considered an object

that stretches from an anti-quark end to the of another quark via some number of

intermediate gluons and has an invariant mass above a threshold defined by PYTHIA.

The cc̄ pair production is measured through the decay of charmed mesons (D+/−, D0,

D̄0, and D
+/−
s ) and baryon (Λ

+/−
c ) into e+e− pairs. These charmed hadrons could

decay into other particles, but those decays are disabled in this simulation configu-

ration. The e+e− pairs are reconstructed within the STAR detector acceptance. The

yield e+e− pairs from cc̄ production will be discussed in Sec. 5.3.

The Drell-Yan contributions are also based on the kinematic distributions by

PYTHIA and scaled by Ncoll. These contributions are modeled with PYTHIA 6.416

and the PYTHIA setup in this study uses the same settings as Refs. [17, 38], which are

as follows: MSEL = 11, MSTP(43) = 1, MSTP(33) = 1, MSTP(32) = 4, PARP(31)

= 1.8, PARP(91) = 1.5, PARP(67) = 4, MDME(174-189,1) = 0, MDME(182,1) = 1,

and CKIN(1) = 1.0.

5.3 Scaling

Once the e+e− pairs are reconstructed and the kinematic distributions are known,

the kinematic distributions need to be scaled such that the yields match the expected

channel production in Au+Au collisions at
√
sNN = 27 GeV. The yields for π0, η, η’,
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ω, and ϕ are scaled by following

1

N

dN

dM
=

1

nDecays

(
dN

dy

)
π0

dY
σhad
σπ0

BRhad→(X)e+e−
dN

dM
, (5.32)

where nDecays is the number of generated events,
(
dN
dY

)
π0 is the mean of STAR’s me-

asured
(
dN
dY

)
π− and

(
dN
dY

)
π+ [19], dy is the differential rapidity from CERES’ GENESIS

(Sec. 5.1.2), σhad

σπ0
is the cross-section ratio of the hadron to π0 production at SPS [44]

as listed in Table 5.4 (except for J/Ψ, which is mentioned later in this section), and

BRhad→(X)e+e− is the branching ratio (i.e., the rate a hadron decays into a given set

of particles) given by the Particle Data Group [45] as found in Table 5.5.

Table 5.4 : The ratio of the cocktail hadron cross-sections to the π0 cross-section
taken from [44].

Channel Ratio to σπ0

π0 1.

η 0.085

ω 0.069

ϕ 0.018

η’ 0.0078

J/Ψ 5.47859E-6

The cc̄ yield is given by

1

N

dN

dM
=

1

nDecays

(
dN

dM

)
pp

σcc̄
σmb

NcollBR(c→ e+)BR(c̄→ e−). (5.33)

In Eq. 5.33, nDecays is the number of generated cc̄ events, σcc̄ is the p + p cc̄

cross-section and σcc̄ = 26.4 ± 7.5 µb, σmb = 33 mb, Ncoll = 238.7 [129], and BR is
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Table 5.5 : The branching ratios used in the hadronic cocktail are taken from the
Particle Data Group [45].

Channel Branching Ratio

π → γe+e− 1.174E-2

η → γe+e− 6.9E-3

ω → π0e+e− 7.7E-4

ω →e+e− 7.28E-5

ϕ→ ηe+e− 1.15E-4

ϕ→e+e− 2.954E-4

η’→ γe+e− 9E-4

J/Ψ →e+e− 5.94E-2

D+/− → e+/− +X 0.1607

D0/D̄0 → e+/− +X 0.0649

D
+/−
s → e+/− +X 0.0605

Λ
+/−
c → e+/− +X 0.045

the branching ratio for a given decay and is found in Table 5.5. The σcc̄ is determined

by taking the midpoint between the upper Fixed-Order Next-to-Leading Logarithm

(FONLL) calculation [34] limit and the FONLL upper limit curve fitted to the data

in Fig. 5.4, where FONLL is software that calculates heavy quark (i.e., c, b, and t)

production cross-sections in p + p collisions. The uncertainty of σcc̄ is the absolute

difference. The σmb is determined by subtracting the elastic cross-section (7 mb) from

the total cross-section (40 mb) as given by the Particle Data Group [45].

The Drell-Yan scaling follows a similar method as cc̄ in Eq. 5.33 except for a

couple differences. One difference in methods is that charmed hadron branching
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Figure 5.4 : The cc̄ cross-section measurements as a function of collision energy
[29, 30, 31, 32, 33]. The dashed curves represent the upper and lower limits of the
FONLL predictions [34] and the red curve is the upper FONLL limit curve fitted to
the measurements.

ratios are not applicable in the Drell-Yan simulation. The other major difference is

in the determination of the Drell-Yan cross-section (σDY) for p + p collisions at
√
s

= 27 GeV. The σDY is approximated by taking the PYTHIA cross-section (σPYTHIA
DY27

= 17.27 nb) at
√
s = 27 GeV and weighting the cross-section with the ratio between

the cross-section for p + p collisions at
√
s = 19.6 GeV given by PYTHIA (σPYTHIA

DY19

= 13.44 nb) and the quoted cross-section in [37] (σpaper
DY19 = 9.88 nb), or

σDY = σPYTHIA
DY27 σpaper

DY19/σ
PYTHIA
DY19 . (5.34)

Since we estimate the dN/dMee of J/Ψ from the best fit of the cocktail to the

data (refer to Sec. 5.1.5), the dN/dy of J/Ψ can be estimated and, ultimately, is used
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to tune the cocktail’s
σJ/Ψ

σπ0
.

To estimate dN/dy, the following equation is used:

dN

dy
=
dN

dM
× dM × 1

dy
× J/Ψr

J/Ψr + cc̄r +DY r

× J/Ψt

J/Ψr

× J/ΨN
t

J/Ψt

× 1

BRJ/Ψ→ee

, (5.35)

where 1
dy

is CERES’ rapidity parameterization from -3 to 3 (Sec. 5.1.2) the subscript

r denotes the contribution in the Mee range from 2.8 to 3.2 GeVc−2, the subscript t

denotes the total invariant mass range, the superscript N denotes contributions inside

and outside the STAR acceptance, and BR is the J/Ψ to e+e− branching ratio.

The dN/dy for J/Ψ was found to be 1.6E-4 and the cross-section ratio comes out

to be 5.47859E-6. However, because the overall cocktail is scaled to match the data

in the 0-0.1 GeVc−2 region, the ratio was shifted to match the rest of the cocktail’s

relative shift.

After scaling, the hadronic cocktail is shifted as a whole to match the corrected

invariant mass distribution in the very low mass region (0.0-0.1 GeVc−2). The re-

sulting scale factor is 0.847134. We scale in the very low mass region because the

region is dominated by the π0 contribution with minimal contributions from other

sources, making it a safe known source of e+e− pairs to scale to.

5.4 Cocktail Uncertainties

The uncertainties of the cross-sections used in the construction of the hadronic cock-

tail are listed in Table 5.6. In addition to the uncertainty of σcc̄, the cc̄ contributions

also have a systematic uncertainty, where the correlation of cc̄ decays is expected to

be modified in Au+Au collisions with respect to p+ p collisions. To account for this

uncertainty in the level of modification, the correlation between e+e− pairs is wiped

out. This is accomplished by selecting, for each electron, a randomized azimuthal
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angle (ϕ), pseudo-rapidity (η), and transverse momentum (pT ) based on the electron

distributions from PYHTIA’s cc̄ production. The relative uncertainty is the difference

between the “Default” and “Decorrelated ϕ, η, and pT” distributions with respect to

the “Default” distribution shown in Fig. 5.5.

Table 5.6 : The uncertainties of the cross-sections used in the scaling of the hadronic
cocktail. The uncertainties for the ratios of the cocktail hadron cross-sections to the
π0 cross-section are taken from [44]

Contribution Uncertainty (%)(
dN
dy

)
π0

8

ση

σπ0
14

ση′

σπ0
16

σω

σπ0
13

σϕ

σπ0
17

σJ/Ψ

σπ0
24

σcc̄ 28.4

σDY 30
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Figure 5.5 : The e+e− invariant mass distribution from cc̄ decays with different as-
sumptions for the correlation between the daughters. The black solid line is the
distribution as is from PYTHIA. The red dot-dashed line is the distribution after
randomizing each daughter’s ϕ. The green dashed line is the distribution after rando-
mizing both ϕ and η for each daughter. The blue dotted line is the distribution after
randomizing each daughter’s ϕ, η, and pT .
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Chapter 6

Results

The uncorrected e+e− measurements (shown in Fig. 4.8 of Sec. 4.4) are corrected with

the e+e− pair efficiencies, as presented in Sec. 4.5.4, to give the efficiency corrected

e+e− invariant mass spectrum in the STAR detector acceptance (the electron trans-

verse momentum (peT ) > 0.2 GeVc−1, the electron absolute pseudo-rapidity (|ηe|) <

1, and the absolute rapidity of the e+e− pair (|Yee|) < 1). In the upper panel of Fig.

6.1, the corrected e+e− invariant mass spectrum is shown as the blue points, with the

errors bars representing the statistical uncertainty and the open boxes representing

the systematic uncertainty. Also in the upper panel of Fig. 6.1, the hadronic cocktail

is shown as the solid black curve with the cocktail uncertainty represented by the gray

band and the hadronic components of the cocktail drawn as various curves. We ob-

serve an excess of e+e− pairs between the measured data and the hadronic cocktail in

the low invariant mass region. In the bottom panel of Fig. 6.1, another quantification

of the excess e+e− yield is presented as the ratio of the invariant mass measurements

to the hadronic cocktail.

Contributions to the e+e− signal, which require some theoretical interpretation,

are omitted from the hadronic cocktail (e.g., the ρ and QGP contributions); hence,

there is an expectation that some excess yield (i.e., signal - cocktail) is present in

the e+e− invariant mass spectrum. Because the expected ρ and QGP contributions

and their kinematics are not trivial, model calculations that include the ρ and QGP

contributions are used to compare and describe the excess yield in the e+e− invariant
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Figure 6.1 : (Top) The corrected e+e− invariant mass spectrum (blue points) in the
STAR detector acceptance. For comparison, the hadronic cocktail is shown as the
solid black curve. (Bottom) The ratio of the measurements (i.e., data) to cocktail as
a function of invariant mass. The error bars represent the statistical uncertainties.
The open boxes represent the systematic uncertainties. The gray band represents the
cocktail uncertainties.

mass spectrum. One such model calculation is provided by Rapp et al. [79, 80, 35, 36]

where the spectral function of the ρ is modified by the hot, dense medium, which

includes contributions from the QGP phase, as discussed in Sec. 2.3. These model

calculations of the ρ and QGP e+e− production have been performed for Au+Au

collisions at
√
sNN = 27 GeV and are compared to the measurements of the e+e−

invariant mass spectrum within the STAR detector acceptance. Comparison of the

model calculations and the e+e− excess yield measurements are presented in Fig.

6.2, where the measurements are the black points, the hadronic cocktail is the solid

black curve, calculations of the ρ and QGP provided by Rapp et al. are the pink



139

dashed and blue dashed curves, respectively, and the model calculations added to the

hadronic cocktail is the solid red curve. Once the model calculations are added to

the hadronic cocktail, the yields from simulations of the e+e− sources are consistent

with the measurements of e+e−, within statistical and systematic uncertainties. To

study the enhancement (i.e., data over cocktail) in the low mass region, the model

calculations by Rapp et al. are added to the hadronic cocktail and then divided by the

hadronic cocktail (as shown in Fig. 6.3). There is agreement between the measured

enhancement and simulated enhancement (ρ and QGP contributions) in the low mass

region within uncertainties. The comparisons made in Fig. 6.2 and Fig. 6.3 suggest

that the measurements of the e+e− pair production are consistent with the model

calculations by Rapp et al. in which the ρ spectral function is being modified by the

hot, dense medium.
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Figure 6.2 : (Top) The corrected e+e− invariant mass spectrum (black points) in
the STAR detector acceptance shown with e+e− contributions from the hadronic
cocktail (solid black curve), the QGP (blue dashed curve), ρ with a broadened spectral
function (HG med/pink dashed curve), and the sum of the calculations (red solid
curve). The QGP and ρ calculations have been provided by Rapp et al. [35, 36].
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of invariant mass. The cocktail uncertainties are represented by the gray band. The
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To enable comparisons between our excess yield measurements and the excess

yields measured by other heavy-ion experiments and to explore the possible rela-

tionship between the excess yield and the lifetime of heavy-ion collisions [13], our

measured excess yield is corrected for the STAR detector acceptance. To correct our

measured excess yield for the STAR detector acceptance, the γ∗ Monte Carlo in Sec.

4.5.4 is used to determine a STAR detector acceptance correction factor (cfacc). The

γ∗ Monte Carlo is used to avoid an assumption about the ρ and QGP kinematics

within the STAR detector acceptance and the corrected STAR detector acceptance.
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The cfacc is the ratio of the number of e+e−pairs before (NBefore) and after (NAfter)

the application of the STAR detector acceptance in the Monte Carlo, as given by

cfacc =
NBefore

NAfter

. (6.1)

Then to correct the excess yield, the excess yield is multiplied by cfacc as a function

of invariant mass, but not as a function of invariant mass and transverse momentum.

This is because there are not enough e+e− pairs in the measurement of the excess

yield to apply a two dimensional correction (i.e., as a function of invariant mass and

transverse momentum). The effect of the STAR detector acceptance (cf−1
acc) as a

function of invariant mass and transverse momentum is shown in Fig. 6.4.
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Figure 6.4 : The STAR detector acceptance correction factor as a function of invariant
mass and transverse momentum.

The systematic uncertainties of the STAR detector acceptance correction are es-

timated by comparing the cf−1
acc to the ratio of theoretical predictions of the excess

yield within the STAR detector acceptance to predictions of the excess yield within
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a corrected STAR detector acceptance cf−1
accTH . The relative difference of cf−1

acc and

cf−1
accTH with respect to cf−1

acc is shown in Fig. 6.5. A conservative estimate for the

systematic uncertainty of 6% is used because the largest relative difference in Fig. 6.5

is just under 6%.
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Figure 6.5 : The relative difference between the STAR detector acceptance effect
from the γ∗ Monte Carlo simulation in Sec. 4.5.4 and Rapp et al.’s STAR detector
acceptance effect with respect to the γ∗ Monte Carlo simulation. To be conservative,
a flat 6% ssystematic uncertainty is used.

The acceptance-corrected e+e− excess yield, normalized to the charged particle

multiplicities at mid-rapidity (dNch/dy), as a function of invariant mass is shown in

Fig. 6.6. Normalization of the excess yield by dNch/dy removes the effect that the

size of the colliding ions have on the yield. The dNch/dy = 145, which is derived from

the summation of the dN/dy of π, K, and p in [19]. Comparisons to the measured

normalized acceptance-corrected e+e− excess yield are made with the model calcula-
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tions by Rapp et al., which include e+e− pair contributions from the ρ with a spectral

function that is modified by the hot, dense medium and the thermal radiation from

the QGP. As shown in Fig. 6.6, the model calculations remain in agreement with the

measurements within uncertainties.

Integrating the normalized excess yield of e+e− pairs over an invariant mass range

is another way to capture and quantify the excess yield. If the normalized excess yield

of e+e− pairs is integrated over 0.4-0.75 GeVc−2, the normalized acceptance-corrected

excess yield from the top 80% most central Au+Au collisions at
√
sNN = 27 GeV is

5.11 ± 2.07 (stat.) ± 0.95 (sys.).
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Figure 6.6 : The acceptance-corrected excess yields, normalized by dNch/dy at mid-
rapidity, as a function of invariant mass shown as the black points with statistical
and systematic uncertainties as the error bars and open boxes, respectively. Model
calculations by Rapp et al. are also shown to make comparisons with the data. Their
calculations (red line, “Sum”) consist of contributions from the ρ (blue short-dashed
line, “HG med”), which has a spectral function that is modified by the hot, dense
medium, and the QGP (pink long-dashed line, “QGP”).
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6.1 Beam Energy Scan Program Results

The production of e+e− pairs is also studied at other collision energies while maintai-

ning the same experimental setup and colliding species. The data, as shown in Table

3.1, collected at
√
sNN = 19.6, 39, and 62.4 GeV provided powerful enough statistics

to perform meaningful e+e− measurements in the low-mass region. The results on

low-mass region of the production of e+e− in Au+Au collisions at
√
sNN = 19.6 GeV

have been published [37]; however, the findings in this thesis and the production of

e+e− in Au+Au collisions at
√
sNN = 39 and 62.4 GeV are in preparation of journal

submission. Together, these measurements of e+e− are a systematic study of the

low-mass region production of e+e− that fills in the collisional energy gap between

measurements made at SPS energies [44, 15, 16] (i.e.,
√
sNN = 17.3 GeV) and the

top RHIC energy [17, 18, 38] (i.e.,
√
sNN = 200 GeV), and provide a first systematic

scan of the low-mass region excitation function over one order of
√
sNN .

The corrected e+e− invariant mass spectrum in STAR acceptance in Au+Au col-

lisions at
√
sNN = 19.6 is shown in Fig. 6.7(left) [37] with the hadronic cocktail

and the model calculations from Rapp et.al. In Fig. 6.7(right) [37], the normalized

acceptance-corrected excess yield is shown as a function of invariant mass for STAR’s

Au+Au at
√
sNN = 19.6 and 200 GeV and NA60’s In+In at

√
sNN = 17.3 GeV with

model calculations by Rapp et al. for Au+Au collisions at
√
sNN = 19.6 GeV. Notice

in Fig. 6.7(right), the agreement between the measurements at
√
sNN = 19.6 GeV

and the model calculations.

The measurements of e+e− in Au+Au collisions at
√
sNN = 27, 39, and 62.4 GeV

along with theory calculations are shown in Fig. 6.8. The left panel compares the

hadronic cocktail (solid black curve) with the data (blue points) within the STAR

detector acceptance as a function of invariant mass. Notice the excess of e+e− between
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Figure 6.7 : (Left) The top panel contains the e+e− invariant mass spectrum in the
STAR acceptance (peT > 0.2 GeVc−1, peT < 3 GeVc−1, |ηe| < 1, and |Y ee| < 1) with a
hadronic cocktail and calculations from Rapp et al.The bottom panel contains the ra-
tio of data to cocktail as a function of invariant mass and the ratio of calculations from
Rapp et al.+cocktail to cocktail as a function of invariant mass. The statistical and
systematic uncertainties are represented by the error bars and green boxes, respecti-
vely. The hadronic cocktail uncertainties are represented by the gray band. (Right)
The acceptance-corrected excess yields, which have been normalized by dNch/dy, as
a function of invariant mass, with theory calculations. The excess yields in Au+Au
at

√
sNN = 19.6 GeV are from [37]. The excess yields in Au+Au at

√
sNN = 200

GeV are from [17, 38]. The excess yields in In+In are from [16, 39]. Both figures are
from [37].

the data and cocktail in the low mass region for each collision energy. The middle

panel of Fig. 6.8 presents the enhancement (i.e., data over cocktail) (blue points)

as a function of invariant mass. Also shown in the middle panel of Fig. 6.8, the

theory calculations added to the cocktail over the cocktail (red curve) as a function

of invariant mass. There is agreement between the two curves of enhancement in the

low mass region for all collision energies, given uncertainties. The right panel of Fig.

6.8 presents the acceptance-corrected excess yields, normalized by dNch/dy at mid-
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rapidity, as function of invariant mass for the three collision energies (black points).

Overlaid are the theory calculations for the expected ρ (blue dashed curve) and the

QGP (pink dashed curve) e+e− contributions. These model contributions together

give the Sum (sold red curve) and are consistent with the data measurements, given

uncertainties.
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Figure 6.8 : (Left) The corrected e+e− invariant mass spectrum within the STAR
acceptance for Au+Au collisions at

√
sNN = 27, 39, and 62.4 GeV with the hadronic

cocktail for Au+Au at
√
sNN = 62.4 GeV added for reference. (Middle) The ratio of

the data to the cocktail as a function on invariant mass as represented by the blue
points. The ratio of the cocktail plus contributions from the Rapp et al. calculations
to the cocktail as a function of invariant mass as represented by the red curve. (Right)
The acceptance-corrected excess yields, normalized by dNch/dy at mid-rapidity, as a
function of invariant mass are shown as black points. Calculations by Rapp et al. are
added to the cocktail to give the Sum of contributions to the e+e− invariant mass
spectrum as shown by the red curve. The calculations for the contributions from the
ρ, which is modeled with a spectral function that is modified by the medium, and
the QGP. The statistical and systematic uncertainties are represented by the error
bars and open boxes, respectively. Cocktail uncertainties are represented by the gray
bands.

For the integrated excess yield of each beam energy scan collision energy, a χ2-

test is performed to test the null hypothesis of no excess yield where only statistical

uncertainties are considered. To consider the influence of the systematic uncertainties

on the measurement of integrated excess yields, the χ2-tests are performed again, but
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this time the excess yields are set at the lower limit determined by the systematic

uncertainties. Table 6.1 lists the χ2, p-value, and σ found using a two-tailed z-test.

These statistical results suggest that a statistically significant excess yield is observed

during the Beam Energy Scan Program.

Table 6.1 : χ2-tests of the null hypothesis, no excess yield.

√
sNN [GeV] χ2 p-value σ

19.6 6.1185 0.0133775 2.2

27 6.0936 0.0135673 2.2

39 47.7766 4.77657e-12 >5

62.4 16.3333 5.31227e-5 3.5

19.6 (low sys.) 4.21421 0.0400867 1.7

27 (low sys.) 4.50231 0.033849 1.8

39 (low sys.) 30.6278 3.12581e-8 >5

62.4 (low sys.) 10.2123 0.00139506 2.9

A similar χ2-test is performed, where the calculations by Rapp et al. are integra-

ted over the invariant mass range 0.4-0.75 GeVc−2. The integrated calculations are

used as the true value in the χ2-test, where only the statistical uncertainties on the

integrated experimental measurements are considered; the results are presented in

Table 6.2. The χ2 = 4.70909 corresponds to a p-value = 0.452405 and 1.65 σ based

on a two-tailed z-test.

To study the possibility of a total excess yield dependence on system size (i.e.,

dNch/dy), collision energy, and predicted lifetimes of the collision system, the acceptance-

corrected excess yields normalized by dNch/dy are integrated from 0.4-0.75 GeVc−2.
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Table 6.2 : χ2-tests of Rapp et al. calculations as expected value.

√
sNN [GeV] χ2

19.6 0.08181

27 1.98556

39 0.31195

62.4 0.87078

200 1.45899

Total 4.70909

The integrated normalized yields are shown as a function of collision energy in Fig.

6.9 as the closed markers. Corresponding integrated yields from theoretical calcula-

tions are also shown in Fig. 6.9 as the open markers. The theoretical calculations

demonstrate a slight dependence on collision energy. The data measurements do

not demonstrate a statistically significant dependence on collision energy, but are

consistent with model calculations, within uncertainties.

The integrated acceptance-corrected excess yields, normalized by dNch/dy, are

studied as a function dNch/dy to explore the possibility of a charged particle den-

sity dependence (and centrality or number of participants dependence), as shown in

Fig. 6.10. Presented are the measurements from Au+Au collisions at
√
sNN = 19.6,

27, 39, 62.4, 200 GeV at 0-80% centrality, Au+Au collisions at
√
sNN = 200 GeV

with centralities of 0-10%, 10-40%, and 40-80%, and In+In collisions at
√
sNN =

17.3 GeV with dNch/dη > 30. The corresponding dNch/dy are listed in Table 6.3.

As we observed in [37], the central Au+Au collisions at
√
sNN = 200 GeV have a

larger acceptance-corrected excess yield, normalized by dNch/dy, than the peripheral
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Figure 6.9 : The acceptance-corrected excess yields, normalized by dNch/dy, inte-
grated over 0.4 to 0.75 GeVc−2 as a function of collision energy (closed markers).
The data points are from STAR’s Au+Au collisions at

√
sNN = 19.6, 27, 39, 62.4,

and 200 GeV and NA60’s In+In collisions at
√
sNN = 17.3 GeV. The statistical and

systematic uncertainties are represented as the error bars and boxes, respectively.
The corresponding model calculations by Rapp et al. are shown for comparison (open
circles).

collisions of the same collision system and collisions at lower collision energies with a

0-80% centrality.

As mentioned in Sec. 2.3, the model by Rapp et al. relates the total e+e− excess

yield, normalized by dNch/dy, to the lifetime of the fireball. To investigate a pos-

sible relationship between the fireball lifetime and the excess yield, the acceptance-

corrected excess yields, normalized by dNch/dy, are integrated over the invariant mass

range of 0.4 to 0.75 GeVc−2 and plotted against predicted fireball lifetimes for a gi-

ven collision system [13, 36] as shown in Fig. 6.11. The correspondence between the

predicted lifetime and collision system (e.g., Au+Au at
√
sNN = 27 GeV) are given

in Table 6.3. Also, shown in Fig. 6.11 are the predicted yields given by Rapp et al.
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Figure 6.10 : The acceptance-corrected excess yields, normalized by dNch/dy, inte-
grated over 0.4 to 0.75 GeVc−2 as a function of dNch/dy. The data points are from
STAR’s Au+Au collisions at

√
sNN = 19.6, 27, 39, 62.4, and 200 GeV with 0-80%

centrality, STAR’s Au+Au collisions at
√
sNN = 200 GeV with centralities of 40-80%,

10-40%, and 0-10% (red squares), and NA60’s In+In collisions at
√
sNN = 17.3 GeV.

The statistical and systematic uncertainties are represented as the error bars and
boxes, respectively.

integrated from 0.4 to 0.75 GeVc−2 as a function of the predicted fireball lifetime.

The measured excess yield demonstrates no statistically significant dependence on li-

fetime and appear to be systematically lower that theoretical calculations. However,

there are large uncertainties on the measured yields, and the measured yields remain

in agreement with the calculations.

6.2 Conclusions

In this thesis, I presented measurements of the e+e− invariant mass spectrum from

Au+Au collisions at
√
sNN = 27 GeV with a 0-80% centrality. These measurements

are compared with theoretical calculations that include e+e− contributions from the
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Table 6.3 : The fireball lifetimes given by model calculations [13, 36] and the corre-
sponding collision systems. These are used in Fig. 6.11.

Lifetime Species
√
sNN Centrality dNch/dy

(fm/c) (GeV)

6.8±1.0 In+In 17.3 dNch/dη > 30 120

7.0 Au+Au 200 40-80% 78.6

7.7±1.5 Au+Au 19.6 00-80% 135

8 Au+Au 27 00-80% 145

8.2 Au+Au 39 00-80% 153

9.2 Au+Au 62.4 00-80% 191

10.5±2.1 Au+Au 200 00-80% 261

11.5 Au+Au 200 10-40% 347

14.5 Au+Au 200 00-10% 729

QGP and ρ (as discussed in detail in Sec. 2.3). Figures 6.2 and 6.3 show the model

calculations describing the e+e− excess and enhancement in the STAR acceptance,

respectively, which contain a ρ spectral function that is broadened in the hot, dense

medium. The acceptance-corrected excess yields, normalized by dNch/dy, shown in

Fig. 6.6 are also shown to be consistent with model calculations by Rapp et al. that

include a broadening of the ρ spectral function in the medium. All of which support

the claim that the ρ spectral function is modified by the medium.

The e+e− results from Au+Au collisions at
√
sNN = 27 GeV are part of a larger

study that systematically measured the e+e− pair production in the low invariant

mass region as a function of collision energy for Au+Au systems. The Beam Energy

Scan Program produced enough good Au+Au collisions to make a meaningful study
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Figure 6.11 : The acceptance-corrected excess yields, normalized by dNch/dy, inte-
grated over 0.4 to 0.75 GeVc−2 as a function of predicted fireball lifetimes by Rapp
et al.The data points are from STAR’s Au+Au collisions at

√
sNN = 19.6, 27, 39,

62.4, and 200 GeV with 0-80% centrality, STAR’s Au+Au collisions at
√
sNN = 200

GeV with centralities of 40-80%, 10-40%, and 0-10% (red squares), and NA60’s In+In
collisions at

√
sNN = 17.3 GeV. The predicted yields by Rapp et al., normalized by

dNch/dy, integrated from 0.4 to 0.75 GeVc−1 are plotted against predicted fireball
lifetimes for comparison. The statistical and systematic uncertainties are represented
as the error bars and boxes, respectively.

of the production in the low-mass region at
√
sNN = 19.6, 27, 39, and 62.4 GeV.

The previously published
√
sNN = 19.6 GeV results, together with the

√
sNN =

27, 39, and 62.4 GeV results (part of an upcoming publication), fill in the order

of magnitude gap in collision energy between the top SPS and top RHIC energies.

Presented together, the e+e− measurements within the STAR acceptance exhibit an
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excess of e+e− that can be described by a model that includes the broadening of

the ρ spectral function by a hot, dense medium. This agreement between the data

and the model is shown in Figs. 6.7 and 6.8. Also shown in the Figs. 6.7 and 6.8

are the acceptance-corrected excess yields, normalized by dNch/dy, described by the

same model calculations. In Fig. 6.9, the data measurements do not rule out a

constant integrated acceptance-corrected excess yield, normalized by dNch/dy, as a

function of collision energy; however, the measurements are consistent with model

calculations that show an increase in excess yields as the collision energy increases,

given uncertainties. Without greater precision in the integrated excess yields, the

flat trend in the integrated excess yields is not unexpected. As stated in Sec. 2.6,

the total baryon density across these collision energies is relatively constant and the

ρ spectral function depends primarily on ρ’s strong coupling to baryons instead of

mesons. Hence, with the removal of the system size dependence (dNch/dy), the excess

yields are not expected to vary greatly.

Figure 6.10 demonstrates that central (0-10% centrality) Au+Au collisions at

√
sNN = 200 GeV have a higher integrated normalized acceptance-corrected excess

yield than peripheral Au+Au collisions at
√
sNN = 200 GeV and Au+Au collisions

with a 0-80% at
√
sNN = 19.6, 27, 39, and 62.4 GeV. This is consistent with Rapp et

al.’s model [79, 35, 80, 13, 36] that predicts a longer lifetime in more central collisions

and thus, more excess production. Finally, the integrated acceptance-corrected excess

yields, normalized by dN/dy, are shown as a function of theory lifetime in Fig. 6.11

along with corresponding model excess yield calculations. While a constant lifetime

cannot be ruled out for the data measurements, the measurements are consistent with

model calculations that demonstrate an increase in excess yield as lifetime increases,

given uncertainties.
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To summarize, an excess in the e+e− measurements is observed and is described

by a model that incorporates a broadening of ρ’s spectral function, which is presented

in Sec. 2.3. As mentioned in Ch. 2’s Chiral Symmetry Restoration Observable (Sec.

2.3.2), Hohler and Rapp have been working on a model [14] that tries to establish

indirectly an observation of chiral symmetry restoration. The model connects the ρ

spectral function, which has been successful in describing the excess production of

e+e− presented in this thesis, and an ansatz a1 spectral function in hot, dense medium

calculations. These calculations show the degeneracy of the spectral functions at T =

170 MeV, where the degeneracy of the ρ and a1 are an observable of chiral symmetry

restoration. Of course, this is an indirect way to try and claim that chiral symmetry

restoration in heavy-ion collisions is observed. Nonetheless, it pushes us to see how

this model can be tested further.

6.3 Future Studies

Better precision in the measurement of e+e− pairs is needed to claim a successful

description of the e+e−invariant mass spectrum by model calculations and to study

dependencies with collision energy, dNch/dy, and fireball lifetime. In 2019 and 2020,

Beam Energy Scan Phase II is scheduled to take place at RHIC. In the second phase

of the Beam Energy Scan Program, collisions of Au+Au at
√
sNN = 7.7, 9.1, 11.5,

14.5, and 19.6 GeV with higher luminosities has been proposed. The new program

will also usher in new and upgraded detectors at STAR, such as endcap Time-of-

Flight (eTOF) system [130] and inner Time-Projection-Chamber (iTPC) upgrade

[40]. The iTPC upgrade will replace the current inner TPC sector pad rows with a

greater density of readout pads. This upgrade will lead to better measurements of

the momentum and dE/dx resolutions and allows for forward tracking (at |η| < 1.5).
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The eTOF system is comprised of MRPC models from the Compressed Baryonic

Matter (CBM) experiment at the Facility for Antiproton and Ion Research (FAIR).

These MRPC modules are of similar technology as the MRPCs used in the TOF

system. The eTOF system will cover -1.6 < |η| < -1.1 and extend the forward particle

identification region. The extended forward coverage complements the iTPC and the

pair of upgrades could be used in a similar fashion as the TPC and TOF are used to

enable the identification of electrons in the low and intermediate momentum regions.

For future studies on e+e− production, the increase in luminosity and improved

detectors will lead to an improvement in statistics and systematic uncertainties. For

reference, the increase in luminosity will result in statistical uncertainties similar to

the statistical uncertainty presented for the e+e− pair production in Au+Au colli-

sions at
√
sNN = 200 GeV with 0-80% centrality [17, 38]. Figure 6.12 illustrates

the expected improvements from an increased luminosity and iTPC upgrade. In Fig.

6.12(left), the e+e− excess yields, as a function invariant mass for Au+Au collisi-

ons at
√
sNN = 19.6 GeV as reported in [37], are shown. The blue points are the

published measurements of the e+e− invariant mass spectrum. The black points re-

present the scenario where only the luminosity is increased and no iTPC upgrade is

installed. This scenario results in an increase in statistics and hence, a decrease in

statistical uncertainty. The red points represent the scenario where both the lumino-

sity is increased and the iTPC has been implemented. In addition to the improved

statistical uncertainty from the luminosity increase, the iTPC upgrade will reduce

the systematics. The leading improvement in systematic uncertainties will be in the

hadron rejection, or electron purity, as a result of the improved dE/dx resolution. It

is with these improvements that competing models of ρ broadening, such as PHSD

(Sec. 2.4) and Rapp et al. (Sec. 2.3), may be distinguished. Also in Fig. 6.12(left),
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the solid red curve represents the model predictions by Rapp et al. with a ρ spectral

function that broadens in the medium. The dashed pink curve represents the model

predictions by Rapp et al. with a vacuum ρ spectral function. The dashed blue curve

represents the model calculations by PHSD with a ρ spectral function that broadens

in the medium. In Fig. 6.12(right), measurements of the acceptance-corrected excess

yield, normalized by dNπ/dy, are shown as a function of collision energy (red points).

Projected uncertainties with the iTPC for Phase II collision energies are shown as

blue points. Predictions of e+e− production given by Rapp et al. (dashed red curve)

and PHSD (shaded orange area) are shown too. The projected uncertainties present

the possibility to test PHSD’s prediction that excess yield will increase as the total

baryon density increases at lower collision energies. Finally, the increased statistics

means that we will be able to explore the dNch/dy dependence at each collision energy

as performed with Au+Au collisions at
√
sNN = 200 GeV. STAR should be able to

reach as low as dNch/dy = 27 for Au+Au collisions at
√
sNN = 7.7 GeV with a

centrality between 40-80% and make a statistically significant e+e− invariant mass

measurement. These improvements will lead to an exciting future program and build

upon the results presented in this thesis.
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Figure 6.12 : (Left) The e+e− excess yield from Au+Au collisions at
√
sNN = 19.6

GeV. (Right) The acceptance-corrected excess yields, normalized by dNπ/dy, inte-
grated over 0.4 to 0.75 GeVc−2 as a function of collision energy. The red points are
actual measurements, while the blue points are the 19.6 GeV value projected on the
Phase II collision energies with the expected uncertainties with iTPC and more col-
lisions. The statistical and systematic uncertainties are represented by the error bars
and open brackets, respectively. For details, please refer to the text. The left and
right figures are from [40, 41], respectively.
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