

DOE NP contract: DE-SC0013405

**TEMPLE UNIVERSITY®** 

College of

## **Transverse Spin Dependent Azimuthal Correlations of Charged Pion Pairs in Run 2015** $p^{\uparrow} + p$ Collisions at $\sqrt{s} = 200$ GeV Babu Pokhrel Science and Technology

**RHIC/AGS User Meeting 2019, BNL, NY** 



## **STAR collaboration**

Temple University, College of Science and Technology, Philadelphia, PA

### Motivation

### •<u>Theoretical Aspect</u>:

\* The transversely polarized cross – section of hadron pairs in  $p \uparrow + p$  collisions can be written similar to :

 $d\sigma_{UT} \propto \sin(\phi_{RS}) \int dx_a dx_b f_1(x_a) h_1(x_b) \frac{d\Delta\hat{\sigma}}{dt} H_1^{\measuredangle}(z, M)$ 

 $\rightarrow \hat{\sigma}$  = Polarized parton cross – section with four momentum transfer t  $\rightarrow$  f<sub>1</sub>(x<sub>a</sub>) = Unpolarized parton distribution function  $\rightarrow$  h<sub>1</sub>(x) = Transversity →  $H_1^{\checkmark}(z, M) = Di - hadron interference fragmentation function (IFF) as a function of$ z, the fractional energy w.r.t the fragmenting quark carried by hadron pair & its invariant mass, M.

• Solenoidal Tracker At RHIC (**STAR**) is one of the major experiments at RHIC. • Time Projection Chamber (TPC) provides tracking, measures momenta and identifies particles in central range  $|\eta| < 1$  by measuring ionization energy loss, dE/dx. • Barrel Time of Flight (TOF) within acceptance range  $|\eta| < 1$ over large solid angle improves particle identification, specifically important for multi-particle correlation studies.

### **STAR Detector**



Cross-Ratio Formula : ★

# $A_{UT} \cdot P \cdot \sin(\phi_{RS}) = \frac{\sqrt{N \uparrow (\phi_{RS}) N \checkmark (\phi_{RS} + \pi)} - \sqrt{N \checkmark (\phi_{RS}) N \uparrow (\phi_{RS} + \pi)}}{\sqrt{N \uparrow (\phi_{RS}) N \checkmark (\phi_{RS} + \pi)} + \sqrt{N \checkmark (\phi_{RS}) N \uparrow (\phi_{RS} + \pi)}}$

- $\rightarrow$  A<sub>UT</sub> = Single spin asymmetry
- = Beam polarization
- $\rightarrow$  N  $\uparrow$  ( $\downarrow$ ) = Number of hadron pairs when the beam polarization is up (down).  $\rightarrow \phi_{RS} = \phi_{R} - \phi_{S}$
- The transversity distribution  $(h^q(x))$ for quark flavor q and momentum fraction x, is not well known. •  $h^{q}(x)$  couples with its chiral odd partner: di-hadron interference fragmentation function  $H_1^{\measuredangle}(z, M)$ , which can be measured independently to extract  $h^q(x)$ .



# Run 2006 Analysis Summary

(L. Adamczyk, et al., Observation of Transverse Spin-Dependent Azimuthal Correlations

# Updates: Run 2015 Analysis

• A small sample of Run 2015 data has been looked at (  $\approx 0.1\%$  ). • Sample plots are produced with limited selection cuts.

| Track selection use<br>nSigmaPion , | ed:<br>$-2 < n\sigma_{\pi} < 2$ | FitRatio = 0.52<br>nHitMin = 15 |
|-------------------------------------|---------------------------------|---------------------------------|
| Pseudo rapidity,                    | -1< η < 1                       | nHitMax = 100                   |
| Z-Vertex,                           | ±60 cm                          | nHitPossMin = 5                 |
| TOF β*                              | < 0.03 (only if available)      |                                 |
|                                     |                                 |                                 |









### • Azimuthal di-hadron correlation asymmetries are proportional to the product of transversity $h_{q_1}(x)$ and IFF $H_1^{\measuredangle}(z, M)$ .

- Transverse spin dependent charged pion pair correlation asymmetries (A<sub>UT</sub>) were observed in run 2006 analysis in which  $A_{UT}$  is enhanced for M around  $\rho$  mass region and rises with  $p_t$  and  $\eta$ .
- With reference to previous analysis, the single spin asymmetry will be measured using run 2015 polarized proton-proton data.

• With small data sample, plots are produced for pion identification applying quality cuts in order to test analysis code.

Summary

#### Figure Of Merit (FOM):

<u>Run 2006</u> Run 2015 Avg. Polz.( $P_{15}$ )  $\approx 55\%$ Avg. Polz.  $(P_{06}) \approx 60\%$  $L_{15} = \int Ldt = 64 \ (pb)^{-1}$  $L_{06} = \int Ldt = 1.8 \ (pb)^{-1}$  $\text{FOM}_{(06)} = \text{P}_{06}^2 \cdot \text{L}_{06} \approx 0.5 \quad \text{FOM}_{(15)} = \text{P}_{15}^2 \cdot \text{L}_{15} \approx 19$ Ratio =  $FOM_{(15)}/FOM_{(06)} \approx 40$ 

• FOM shows that uncertainty in asymmetry measurement will be improved significantly.

• Since run 2015 collected significantly more data, this analysis will have better precision and improve our understanding of transversity.

• Analysis will provide a test for IFF's universality in comparison with SIDIS, e<sup>+</sup>e<sup>-</sup> and other available measurements.