

IFF results together with the SIDIS and e^+e^- .

• Precision measurement of A_{UT} and unpolarized FF, D_1 , is required to constrain $h_1^q(x)$. The extraction

- **STAR IFF Measurements:** of D_1 requires the measurement of the unpolarized cross section $(d\sigma_{III})$. Phys.Rev.D 97 (2018) 3, 032004 Phys.Rev.Lett. 115 (2015) 242501
- $d\sigma_{UU}$ provides access to the gluon FF, allowing model-independent extraction of $h_1^q(x)$.

STAR Experiment at RHIC

- Relativistic Heavy Ion Collider is the first polarized proton-proton collider in the world.
- It is capable of colliding polarized protons and heavy ions beams up to a center of mass energy, \sqrt{s} , of 510 GeV and 200 GeV.
- Time Projection Chamber (TPC) is the heart of STAR detector, which provides charged particle tracking and particle identification (PID).
- STAR PID relies on the measured ionization energy loss (dE/dx) by the TPC at low p_T .

Unfolding

- The TUnfoldDensity algorithm is used to unfold detector level $\pi^+\pi^-$ yields to the particle level in invariant mass bins subtracting backgrounds prior to the unfolding. The response matrix facilitates the unfolding connecting the detector to the particle level quantity.
- Corrections
 - Bin-by-bin corrections from the embedding sample are applied to the unfolded cross section, accounting for trigger efficiency, tracking efficiency, and PID.
- Result
 - The final cross section is the weighted average of JP0, JP1, and JP2 triggered cross sections differential in $M_{inv}^{\pi^+\pi^-}$.
 - The theory prediction [1, 4] and PYTHIA cross sections show promising agreement with the measured cross section.

- calculable hard scattering cross section. No jet reconstruction is required while preserving collinearity.
- Access to quark polarization $\sim \vec{s}_a \cdot \vec{R} \times \vec{p}_h$, where $\vec{R} = \frac{1}{2} (\vec{p}_{h_1} \vec{p}_{h_2})$, $\vec{p}_h = \vec{p}_{h_1} + \vec{p}_{h_2}$

Systematic uncertainty accounts for the trigger efficiency, trigger bias, PID, and simulation statistics.

[4] C. Cocuzza et. al., Private communication

A_{UT} projections for the STAR run 2015 + 2024

- STAR has scheduled for *pp* collision run at $\sqrt{s} = 200$ GeV with promising luminosity of $\sim 100 - 300 \text{ pb}^{-1}$ (projected) in 2024, higher than ever before.
- Combining run 2015 and 2024 data will provide the most precise h^+h^- azimuthal correlation asymmetry and cross section.
- Planned measurements using run 2015 and
 - Precision measurement of $\pi^+\pi^- A_{UT}$ Statistical uncertainty will be improved by more than 50%.
 - First measurement of $K^+K^-A_{UT}$ Decent statistics will be available by combining run 15 and 24 for the $K^+K^-A_{UT}$ measurement.

• The $K^+K^-A_{UT}$ probes the strange quark transversity.

0.6 1.6 M^{hh}_{inv} (GeV)

• All projections are purely statistical based on the run 2015 data.

Summary and Outlook

- The $\pi^+\pi^-$ azimuthal correlation asymmetry has been measured. Large forward signal is observed, with a resonance peak at $M_{\rho} \sim 0.8 \text{ GeV}/c^2$, consistent with the theory and previous STAR
- The unpolarized $\pi^+\pi^-$ cross section has been measured for the first time in pp collisions, showing good agreement with the PYTHIA cross section and theory prediction.
- The cross-section result provides constraints on the D_1 , specifically for the gluon fragmentation, enabling a model-independent extraction of $h_1(x)$.
- Precision measurement of A_{IIT} is planned combining the STAR run 15 and 24 data for the $\pi^+\pi^-$ and K^+K^- channel. K^+K^- channel probes the (anti-)strange quark transversity.