

STAR Results on Transversity and TMD-Related Observables

Bassam Aboona, on behalf of the STAR Collaboration (he/him/his)

bem4r@physics.tamu.edu

June 3rd -7th, 2024

Supported in part by:

Outline

Introduction

Sivers Effect

Transversity and the Collins Effect

Selected Future Work

Summary

RHIC: Relativistic Heavy Ion Collider

- The only machine in the world capable of colliding high-energy beams of polarized protons
- The beams travel in opposite directions around RHIC's 3.86 km two-lane racetrack
- Offers a wide range of center-of-mass energies (up to 510 GeV)

STAR: Solenoidal Tracker At RHIC

- FMS used to be where the current ECal and HCal are and covered 2.6 < η < 4.2

but at higher Q^2 when compared to **SIDIS**

Transverse Single-Spin Asymmetries (TSSA's) - A_N

- Since the 1970's, surprisingly, large TSSA's have been observed at forward rapidities in $p^{\uparrow}+p$ collisions
- Perturbative Quantum Chromodynamics (pQCD) predicts very small values for A_N
- Twist-3 and transverse
 momentum dependent (TMD)
 theoretical frameworks have
 been developed to describe this
 observed large TSSA

Plot reference: Elke Aschenauer et al., arXiv:1602.03922.

Sivers Effect: A Mechanism for A_N

- k_T : parton transverse momentum
- S_p : proton spin
- **P**: proton momentum

- $f_{1T}^{\perp}(x, k_T, Q^2)$: Describes the relationship between the transverse momentum distribution of unpolarized partons and the transverse spin polarization of the proton [1].
- Characterizes a scalar triple-vector correlation for an unpolarized parton and its polarized parent proton.
- Correlation between partonic orbital motion and proton's spin

[1] D. Sivers, Phys. Rev. D 41, 83 (1990).

Probing The Sivers Effect Using Dijet Production

- A transversely polarized proton going in the longitudinal direction can have partons with a spin-dependent transverse momentum $k_{\it T}$
- The k_T provides a kick to the dijet and makes it fold in the direction of the transverse momentum

Probing The Sivers Effect Using Dijet Production

- A transversely polarized proton going in the longitudinal direction can have partons with a spin-dependent transverse momentum $k_{\it T}$
- The k_T provides a kick to the dijet and makes it fold in the direction of the transverse momentum

Mean k_T Flavor Dependence

For the first time, there is evidence of non-zero Sivers effect using dijets.

- Jet charge tagging combined with unfolding used to determine the quark flavor.
- Tagged $\langle k_T \rangle$ represents a mixture of partons
- Obtaining parton fractions from simulation allows for measuring the individual parton $\langle k_T \rangle$

Results:

- d-quark $\langle k_T \rangle \approx -2 u$ -quark $\langle k_T \rangle$
- The $\langle k_T \rangle$ for gluon and sea quarks combined is consistent with zero

W^{\pm} Boson Reconstruction and A_N

Use TPC tracks and EMC hits to measure W^{\pm} recoil from collision:

$$\vec{p}_{T,W} = \vec{p}_{T,e} + \vec{p}_{T,v} = -\vec{p}_{T,recoil}$$

$$\vec{p}_{T,recoil} = \sum_{i} (\vec{p}_{T,TPC} + \vec{E}_{T,EMC})$$

- Left and right asymmetry of the W^\pm production with respect to the spin of the polarized proton
- Sensitive to the Sivers TMD function $Q^2 = M_W^2 \sim 6500 \text{ GeV}^2$
- A_N is measured via azimuthal angle

$$A_N \cdot cos(\phi) = \frac{1}{\langle P \rangle} \cdot \frac{\sqrt{N_{\uparrow}(\phi)N_{\downarrow}(\phi + \pi)} - \sqrt{N_{\uparrow}(\phi + \pi)N_{\downarrow}(\phi)}}{\sqrt{N_{\uparrow}(\phi)N_{\downarrow}(\phi + \pi)} + \sqrt{N_{\uparrow}(\phi + \pi)N_{\downarrow}(\phi)}}$$

 $\langle P \rangle$: Mean beam polarization $N_{\uparrow}(N_{\downarrow})$: Yield in spin up (down) state ϕ : Azimuthal angle

A_N Preliminary Results of W^{\pm}

- Results are generally consistent with the model predictions
- STAR results will have biggest impact on high-x region of the quark Sivers function

Z^0/γ^* Cross Section

STAR, Phys. Lett. B **854** (2024) 138715

• Z^0 events are reconstructed via:

$$p + p \rightarrow Z^0 \rightarrow e^+ + e^-$$

- Serves as a test of the universality of unpolarized TMDs
- Provides insights into the x and Q^2 evolution of unpolarized TMDs
 - RHIC energies provide access to higher x compared to the Tevatron and LHC

$Z^0/\gamma^* A_N$

STAR, Phys. Lett. B **854** (2024) 138715

- $p_T^{Z^0}$ is limited to < 10 GeV/c to stay within the kinematic region where the polarized TMD approach is applicable
- This result will allow for the extraction of the Sivers TMD PDF, and especially for valence quarks in the region $x \ge 0.1$
- Unable to provide a conclusive statement regarding the sign-change hypothesis of the Sivers function

$$Sivers_{DIS} = -Sivers_{DY} \text{ or } Sivers_{W^{\pm},Z^{0}}$$

 V^{Z^0}

Collins Effect: A Mechanism for A_N

• The relationship between the leading-twist (twist-2) collinear transversity, $h_1^a(x_1,Q^2)$, and the TMD Collins fragmentation function, $H_{1\pi/c}^{\perp}(z_\pi,j_T,Q^2)$

$$\frac{d\sigma^{\uparrow}(\phi_{S},\phi_{H}) - d\sigma^{\downarrow}(\phi_{S},\phi_{H})}{d\sigma^{\uparrow}(\phi_{S},\phi_{H}) + d\sigma^{\downarrow}(\phi_{S},\phi_{H})} \propto A_{UT}^{\sin(\phi_{S})}\sin(\phi_{S}) + A_{UT}^{\sin(\phi_{S}-\phi_{H})}\sin(\phi_{S}-\phi_{H})$$

- J. C. Collins, Nucl. Phys. B 396, 161 (1993).
- Z.-B. Kang et al., JHEP **11**, 068 (2017).
- Z.-B. Kang *et al.*, Phys. Lett. B **774**, 635 (2017).
- U. D'Aesio *et al.*, Phys. Rev. D **83**, 034021 (2011).

π^{\pm} Collins Asymmetry at $\sqrt{s}=200$ GeV

- Integrated over a wide range of z and j_T to provide sensitivity to the collinear transversity, $h_1^a(x,Q^2)$
- The hadron j_T and zbinning allows sensitivity to the Collins FF, $H_{1\pi/c}^{\perp}(z_{\pi}, j_{T}, Q^{2})$
- In general, model calculations underestimate experimental data

STAR, Phys. Rev. D 106, 072010 (2022).

π^{\pm} Collins Asymmetry at $\sqrt{s}=200$ and 510 GeV

- Results from the two beam energies match each other very well
- Little, if any, energy dependence when comparing the 200 GeV results to the 510 GeV results
 - Q^2 values differ by a factor of 6 between 200 GeV and 510 GeV results
- Sets constrains on evolution effects

π^{\pm} Collins Asymmetry at $\sqrt{s}=200$ and 510 GeV

z: longitudinal momentum fraction of the pion

 j_T : transverse momentum of the pion with respect to the jet axis

- z and j_T binning allows sensitivity to the Collins FF, $H_{1\pi/c}^{\perp}(z_{\pi},j_T,Q^2)$
- Good agreement between the 200 and 510 GeV results
- Little to no energy dependence

Di-pion Asymmetries and Cross-Section Measurements

- a) New measurements of A_{UT} at 200 and 510 GeV
- b) First measurement of unpolarized $\pi^+\pi^-$ cross section at 200 GeV
- (a) + (b) \rightarrow model independent extraction of $h_1^q(x)$

Learn more during Bernd Surrow's talk this afternoon!

Λ and $\overline{\Lambda}$ Hyperon Transverse Spin Transfer - D_{TT}

$$\begin{split} D_{TT}^{\Lambda} &= \frac{d\sigma(p^{\uparrow}p \to \Lambda^{\uparrow}X) - d\sigma(p^{\uparrow}p \to \Lambda^{\downarrow}X)}{d\sigma(p^{\uparrow}p \to \Lambda^{\uparrow}X) + d\sigma(p^{\uparrow}p \to \Lambda^{\downarrow}X)} = \frac{d\delta\sigma^{\Lambda}}{d\sigma^{\Lambda}} \\ d\delta\sigma^{\Lambda} &= \sum \int\! dx_a dx_b dz \underline{\delta f_a(x_a) f_b(x_b)} \underline{\delta \sigma(ab \to cd)} \underline{\delta D^{\Lambda}(z)} \\ &\text{transversity} \qquad \text{pQCD calculable polarized FF} \end{split}$$

- $\Lambda(\overline{\Lambda})$ D_{TT} is sensitive to the (anti-)strange quark transversity in the proton
- Λ and $\overline{\Lambda}$ results are consistent with each other within uncertainties
- D_{TT} is consistent with zero

STAR, Phys. Rev. D **109**, 012004 (2024).

Theory: Q. H. Xu et al., Phys. Rev. D, 73(7), 077503 (2006).

Previous STAR Results

x_F Theory: L. Gamberg *et al.*, Phys. Rev. Lett. 110, 232301 (2013)

Observations and Measurements: (STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021).

- Small A_N is observed for non-isolated π^0 in EM-jets (non-isolated = other photons are allowed in the jet)
- Small Collins asymmetry for π^0 in EM-jet
- Small jet A_N for inclusive EM-jets
- For $x_F \lesssim 0.3$: DIS-based model for the Sivers effect describes the non-isolated π^0 results well, but not the isolated results
- Large A_N is observed for isolated π^0 in EM-jets (isolated = no other photons in the jet)

Conclusion

Collins effect can't account for the large TSSA

Sivers effect can't account for large TSSA

Diffractive process?

Relevant Event Classes

Inclusive EM-Jet Event:

Relevant Event Classes

Rapidity Gap (RG) Event:

Vetoing hadrons in the BBC η range suppresses a large fraction of the non-diffractive events – RG events are highly enriched in diffractive processes

East BBC: $-5 < \eta < -2$

Relevant Event Classes

Forward Rapidity: A_N for Inclusive EM-Jets

- EM-jets are reconstructed using only photons
- Photon candidates are obtained from the Forward Meson Spectrometer (FMS) on the west side of STAR

- Three different photon multiplicity scenarios are considered
 - Multiplicity dependence is observed
- EM-jets with only 1 or 2 photons have the largest A_N
 - Could this point to a contribution to the observed A_N from diffractive processes?

Diffractive Process and A_N

 $p+p \rightarrow \text{EM-jet} + X$ Inclusive EM-jet $p+p \rightarrow \text{EM-jet} + X$ RG events (at least 50% of RG events are single diffractive) $p+p \rightarrow p + \text{EM-jet} + X$ Single diffractive process

- A_N consistent within uncertainties for all three processes
- If A_N has significant contributions from diffractive processes, then A_N from diffractive events is expected to have a large magnitude
- Current results do not provide evidence in favor of a diffractive process having a large contribution to A_N

Mid-Rapidity: Inclusive Jet Asymmetry at 200 and 510 GeV

- At low p_T , the inclusive jet asymmetry is sensitive to the twist-3 correlators associated with the gluon Sivers function
- 510 GeV results extend the measurement to lower values of x
- Results are consistent with zero within uncertainties

Mid-Rapidity: Pion Tagged Jet Asymmetry at 200 and 510 GeV

u (for π^+) and d (for π^-) quark functions are enhanced by performing the pion tagging, providing sensitivity to the twist-3 correlators associated with the quark Sivers function

KPRY: Z.-B. Kang, A. Prokudin, F. Ringer, and F. Yuan, Phys.

Lett. B 774, 635 (2017), arXiv:1707.00913

06/03/24

Results are consistent with zero within uncertainties

Outlook

STAR Forward Upgrade:

- Installed and commissioned before 2022
- $2.5 < \eta < 4$
- Charged particle tracking using Si detectors and small-strip Thin Gap Chambers (sTGC)
- Electromagnetic and hadronic calorimetry
- Capable of measuring:
 - h^{\pm} , e^{\pm} (with good e/h discrimination) Photons, π^0
 - Jets, hadrons in jets
 - Lambda's
 - Drell-Yan and J/ψ di-electrons
 - Mid-forward and forward-forward correlations
- Quarks up to $x \sim 0.5$ and gluons down to $x \sim 0.001$

28/31

Outlook

- The mid + forward rapidity capabilities of STAR complement the future EIC kinematic coverage
- The forward upgrade will bridge the kinematic region between mid-rapidity STAR and SIDIS
 - great for future Collins measurements

Outlook

- A_N for full jet reconstruction, combined with charge-sign tagging of a hadron fragment with $z>0.5\,$
- Up to 10σ separation between plus-tagged and minus-tagged jet A_N

Summary

- EM-jet A_N results at forward rapidity for single diffractive processes show no large contribution for the observed large TSSA in the forward direction
- Spin-dependent $\langle k_T \rangle$ from dijet production and A_N from W^\pm/Z^0 studies at STAR provide probes for the Sivers effect
- The Z^0 cross section gives insights into the evolution of the unpolarized TMDs
- The Collins effect is studied at two energy levels and show little to no energy dependence
- Di-pion asymmetries and cross-section results from STAR can provide the initial steps to model-independent transversity extractions
- $\Lambda(\overline{\Lambda})$ D_{TT} is sensitive to the (anti-)strange quark transversity in the proton
- The Forward Upgrade extends the kinematic range of the measurements at STAR, which are essential for universality studies at the future EIC

Backup

Probing The Sivers Effect Using Dijet Production

- φ_b : dijet bisector angle
- $\zeta > \pi$ if $\cos(\varphi_h) > 0$
- $\zeta < \pi \text{ if } \cos(\varphi_b) < 0$

- The signed opening angle, ζ , is sensitive to the spin-dependent partonic k_T involved in characterizing the Sivers effect.
- A Conversion from the spin-dependent ζ asymmetries ($\Delta \zeta$) to Sivers $\langle k_T \rangle$ can be achieved

$$\Delta \zeta = \frac{\langle \zeta \rangle^{+} - \langle \zeta \rangle^{-}}{P}$$

 $\langle \zeta \rangle^{\pm}$: the centroid of the distribution for spin-up/spin-down proton beams

P: magnitude of beam polarization

Tagged $\Delta \zeta$ and $\langle k_T \rangle$ From Tagged Dijet Production

- $\sim 3.1\sigma$ separation between + and tagging
- Asymmetry shifts from positive to negative when going from + to − tagging → strong evidence that Sivers $\langle k_T \rangle$ in u and d are opposite

Kinematic model (transverse plane)

 0^- : less enhancement in the d fraction —: enhancing the fraction of d

06/03/24

Bassam Aboona - STAR Transversity and TMD Studies

Collins Asymmetry vs. z from 510 GeV

Collins Asymmetry from 510 GeV vs. Theory

Theory curves:

- KPRY: Z.-B. Kang, A. Prokudin,
 F. Ringer, and F. Yuan, Phys.
 Lett. B 774, 635 (2017),
 arXiv:1707.00913
- DMP+2013: U. D'Alesio, F.
 Murgia, and C. Pisano, Phys.
 Lett. B 773, 300 (2017),
 arXiv:1707.00914

- The 2011 and 2017 experimental results for A_{IJT} agree with each other
- Overall, the theoretical models underestimate the experimental results

Detailed Future Work

- EM-Jet A_N :
 - Data from Run 2022 and 2024 using the Forward Upgrade will improve precision of measurement
- Dijet Sivers:
 - Combining existing results with data from 2017 and 2022 at 510 and 508 GeV, respectively, to explore the x-dependence of the measurement
- W^{\pm} and $Z^0 A_N$:
 - STAR recorded 400 pb^{-1} during Run 2022 utilizing the Forward Upgrade detectors
 - iTPC extends the η coverage
- Collins Asymmetries:
 - Use polarized p + Au data from 2015 to measure the Collins asymmetry
 - Use 2022 and 2024 data with the Forward Upgrade for Collins measurements in the forward direction
- Di-pion Asymmetries:
 - Use data from Run 2022 and 2024 to perform a precision measurement of IFF asymmetries of pion and kaons