

Differential measurements of dielectron and direct virtual photon productions at STAR

Bingchu Huang *(for the STAR Collaboration)* University of Illinois at Chicago

Di-leptons and photons

Dielectron physics

- Low Mass Range (LMR < 1 GeV/c²) in-medium modification of vector mesons. possible link to chiral symmetry restoration.
- Intermediate Mass Range (IMR 1.1-2.9 GeV/c²) QGP thermal radiation. Heavy-flavor modification.

Very Low Mass Range (0-0.3 GeV/c²)

Link to direct photon via internal conversion. Low p_T (1-5 GeV/c) production is related to thermal radiation.

High p_T (>5 GeV/c) production is from initial hard scattering, test of pQCD and PDF.

Dielectron in p+p at 200 GeV

Cocktail [STAR, Phys. Rev. C 86, 024906 (2012)] with updated charm cross section 0.797+0.3/- 0.36mb [STAR, Phys. Rev. D. 86, 072013(2012)] Run9 p+p: [STAR, Phys.Rev.C. 86, 24906 (2012)]

1

1.5

2

2.5

Mass(e⁺e⁻) (GeV/c²)

p+p results has been improved significantly with ~7 times more statistics. More precise baseline for Au+Au studies.

dN/dM (c²/GeV

 10^{-3}

10-6

0

0.5

Au+Au 200 GeV results

STAR, PRL. 113 (2014) 22301

Enhancement w.r.t cocktail at ρ like region(0.30-0.76 GeV/c²): 1.77±0.11(stat.)±0.24(sys.)±0.41(cocktail) in MinBias.

Data is compared with two models both based on a p broadening scenario: 1) Model I by Rapp et al. is an effective many-body model.[R. Rapp, PoS CPOD2013, 008 (2013)] 2) Model II is a microscopic transport model – Parton-Hadron String Dynamics (PHSD). [O. Linnyk et al., Phys. Rev. C 85, 024910 (2012)] Both models show good agreement with

data within uncertainty.

STA:

Centrality and p_T dependence

STAR, PRL. 113 (2014) 22301, arXiv:1504.01317 Increasing from peripheral to central and from low to high p_T . Consistent with model calculations.

centrality	yield $(\times 10^{-3})$	yield/cocktail
0 - 10%	$13.63 \pm 1.01 \pm 2.06$	$2.03 \pm 0.15 \pm 0.31$
10 - 40%	$4.81 \pm 0.22 \pm 0.71$	$1.63 \pm 0.08 \pm 0.24$
40 - 80%	$0.85 \pm 0.03 \pm 0.12$	$1.51 \pm 0.06 \pm 0.22$
0 - 80%	$3.87 \pm 0.13 \pm 0.57$	$1.76 \pm 0.06 \pm 0.26$

Yield in 0.3-0.76 GeV/ c^2

$p_{\rm T}~({ m GeV}/c)$	yield ($\times 10^{-3}$)	yield/cocktail
0 -0.5	$115 \pm 0.09 \pm 0.20$	$1.71 \pm 0.12 \pm 0.29$
0.5 - 1.0	$158 \pm 0.07 \pm 0.27$	$1.56 \pm 0.07 \pm 0.27$
1.0 - 1.5	$066 \pm 0.03 \pm 0.11$	$1.81 \pm 0.09 \pm 0.29$
1.5 - 2.0	$024 \pm 0.02 \pm 0.04$	$2.65 \pm 0.16 \pm 0.44$

Bingchu Huang

Hard Probes, Montreal Canada, Jun 29, 2015

STAR

Possible charm de-correlation

Ratio(Central/MinBias) shows 2.0 σ deviation from the N_{bin} scaling in 1.8<M_{ee}<2.8 GeV/c².

Possible charm de-correlation in Au+Au collision or other source from thermal radiation?

STAR, PRL. 113 (2014) 22301, arXiv:1504.01317

Dielectron in BES

LMR excesses over cocktail observed from 200 down to 19.6 GeV.

Bingchu Huang

Dielectron from RHIC BES-I

Model calculations[†] robustly describe the data from 200GeV to 19.6 GeV.

– model calculations by Rapp, based on in-media broadening of ρ spectra function, expected to depend on total baryon density.

- almost constant baryon density from 20-200GeV.

 – PHSD model predicts enhanced contributions at lower energies (<19.6 GeV).

†Model: Rapp & Wambach, priv. communication; Adv. Nucl.Phys. 25, 1 (2000) Phys. Rept. 363, 85 (2002)

Energy dependence of dilepton excess arXiv:1501.05341 ×10⁻⁶ d²N/dydM)/(dN ⁻¹ dy) (20 MeV)⁻¹ ⁻⁰¹ 10⁻⁰ ⁻⁰¹ 10⁻¹⁰ ⁻¹⁰ 10⁻¹¹ d V **Dielectron excess** 18 Au+Au 200 GeV 0-80% 10⁻⁵ Au+Au 19.6 GeV 0-80% Au+Au 200 GeV 16 dN/dy)/(dN Au+Au 200 GeV 0-80% Au+Au 19.6 GeV - _ _ In+In 17.3 GeV In+In 17.3 GeV dN_{cb}/dη>30 14 HG+QGP 12 10 10⁻⁸ • 0 8 10⁻⁹ h. lifetime 17.3 GeV Th. lifetime 19.6 GeV Th. lifetime 200 GeV **10**⁻¹⁰ 4 0.4<M₁<0.75 GeV/c² 200 400 600 800 2 dN_{ch}/dy M_{\parallel} (GeV/c²)

- 19.6 GeV consistent with SPS results.
- > Excess shape at low mass well described by rho in-medium broadening.
- Excess yields (after detector acceptance correction) are sensitive to early system lifetime: integrated over duration at the high temperature.

Direct virtual photon

Compare to the p+p reference, an excess is observed up to 4 GeV/c.

Bingchu Huang

PHENIX Collaboration, Phys.Rev.L 104,132301(2010).

Direct virtual photon yield

In high p_T region (5~10 GeV/c): – consistent with T_{AA} scaled function fit to PHENIX p+p data.

In low p_T region:

– an excess is observed in p_T range 2~4 GeV/c.

Rapp's model prediction:

→ Including QGP, ρ , meson gas, and primordial production contributions.

→ Well describing the low p_T excess in our data within uncertainty.

Bingchu Huang

Summary

- Dielectron productions measured in p+p 200 GeV and Au+Au from 19.6 to 200 GeV.
 - Dependences of LMR excess on kinematics, baryon densities, and energies have been studied.
 - Provide insights into vector meson in-medium modifications by comparing with model calculations.
 - Possible charm decorrelation in central Au+Au 200 GeV.
- Direct virtual photon measured in Au+Au at 200 GeV
 - High $p_{\rm T}$ yield consistent with $T_{\rm AA}$ scaled pQCD expectation.
 - Low p_T excess indicates thermal contribution from hot medium.

Backup

Bingchu Huang

Relation between real photon yield and the associated e⁺e⁻ pairs:

Bingchu Huang