

Overview of STAR Results

Bingchu Huang (UIC) For the STAR Collaboration

Office of Science

Outline

- STAR detectors.
- Hard probes in Heavy Ion Collisions.
 - Electro-magnetic probes:
 - e⁺e⁻ and direct virtual photon production.
 - Heavy flavor measurements:
 - Photoproduced $J/\psi R_{AA}$.
 - Suppressions of J/ψ and Υ .
 - R_{AA} and elliptic flow v_2 of D mesons.
 - Jet observable:
 - Jet splitting function --- shared momentum fraction Z_g .
- Summary and Outlook

STAR detectors

PID: e, μ , and hadrons.

HFT: track pointing resolution \sim 50 µm at p_T \sim 0.8 GeV/c.

e⁺e⁻ production in U+U

- Observed significant excess w.r.t hadronic sources at ρ-like mass region (0.3-0.76 GeV/c²).
- Enhancement is consistent with a broadened ρ spectral function of theory expectation. [R.Rapp, Adv. High Energy phy. 2013 (2013) 148253]

Broadened p spectral function

STAR, PLB 750 (2015) 64

9/23/16

STAR

Connection to fireball lifetime

Integrated excess yield, normalized by dN_{ch}/dy, is proportional to lifetime of fireball from 17.3 – 200 GeV.

Given that total baryon density is nearly constant and emission rate is dominant in the near- T_c region.

R. Rapp, H. van Hees PLB 753 (2016) 586-590

9/23/16

L. E. Gordon and W. Vogelsang, Phys. Rev. D 48, 3136 (1993). PHENIX Collaboration, Phys.Rev.L 98, 012002 (2007). PHENIX Collaboration, Phys.Rev.L 104,132301(2010).

Compared to p+p reference, an excess is observed in low p_T

Direct virtual photon invariant yields

▷ p_T>6 GeV/c: dominated by initial hardparton scattering.

Paquet: (2+1)D hydrodynamic evolution. **Rapp:** Elliptic thermal fireball evolution.

- p_T 1-3 GeV/c: dominated by thermal radiation from models.
- Data are consistent with both models for all the centralities except 40-80%.

H. van Hees, C. Gale, and R. Rapp [Phys. Rev. C 84, 054906 (2011)] H. van Hees, M. He, and R. Rapp [Nucl. Phys. A 933, 256 (2015)] J.-F. Paquet et al., [Phys. Rev. C 93, 044906 (2016)]

TAR

 J/ψ yields in Au+Au and U+U are similar at $p_T < 0.1$ GeV/c.

9/23/16

Nuclear modification factor R_{AA}

- R_{AA} drops from 20 to 1 as centrality changes from peripheral to semi-central.
- Slope from STARLight prediction in UPC is 196 (GeV/c)⁻², which reflects the size and shape of nucleus.
 - Fit w/o first data point: 199+/-31 (GeV/c)⁻².

Possible new probe of QGP!

STAR

$J/\psi R_{AA}$ from $\mu\mu$ channel

Yi Yang Sat 16:00 Quarkonia

> Results from MTD. J/ ψ p_T coverage up to 14 GeV/c.

9/23/16

- Transport models with regeneration and dissociation are well consistent with data.
- Less regeneration and less dissociation at RHIC.

Data:

JHEP 05 (2016) 179 PRC 84 (2011) 054912 JHEP 05 (2012) 063 PLB 734 (2014) 314 Model:

PLB 678 (2009) 72, PRC 89 (2014) 054911 PRC 82 (2010) 064905, NPA 859 (2011) 114

Hard Probes 2016, Wuhan China, B. Huang

12

- > Measurement in U+U extends the N_{part} coverage.
- \blacktriangleright Free-energy-based model tends to underpredict the R_{AA}.
- > Internal-energy-based models agree with data.

9/23/16

2 3 4 5 6 7 Transverse Momentum p_{τ} (GeV/c)¹⁴

$D^0 R_{AA}$ and v_2

0.3 Au+Au 200GeV, 0-80% Non-flow est. D^0 0.25 D⁰ DUKE 0.2 0.15 2 0. 0.05 STAR Preliminary -0.05 5 2 3 6 Transverse Momentum p₊ (GeV/c) 1.8 Au+Au 200GeV, 0-10% • D⁰ 2014 1.6 ○ D⁰ 2010/11 1.4 - DUKE 1.2 Ч 0.8 p+p uncert. 0.6 0.4 0.2

STAR Preliminary

3

4

5

6

8

DUKE:

- (2+1)-D viscous hydro + hybrid coalescence and fragmentation model
- Input value for diffusion coefficient $2\pi T \ge D = 7$ fixed to fit LHC results
- Underestimate the magnitude of v_2 in experimental data

Theory: arXiv:1505.01413 & private comm. STAR: PRL 113 (2014) 142301

 $\label{eq:Transverse Momentum p_T} \mbox{ (GeV/c)}_{15} \mbox{ Quark Matter 2015, Kobe, Japan}$

$D^0 R_{AA}$ and v_2

TAMU:

- Full T-matrix treatment, nonperturbative model with internal energy potential
- Good agreement with D^0 meson v₂, data favor model including c quark diffusion in the medium.
- Qualitatively describe R_{AA}.
- Diffusion coefficient extracted from calculation $2\pi T \ge 0.517$

Theory: arXiv:1506.03981 (2015) & private comm. STAR: PRL 113 (2014) 142301

$D^0 R_{AA}$ and v_2

SUBATECH:

- MC@sHQ calculation with latest EPOS3 initial conditions
- Good agreement between model and experiment for both v_2 and R_{AA} in entire p_T range
- Diffusion coefficient extracted from calculations $2\pi T \ge D \sim 2-4$

Theory: arXiv:1506.03981 (2015) & private comm. STAR: PRL 113 (2014) 142301

Conclusion for $D^0 R_{AA}$ and v_2 :

- > Data favor model that charm quark flows.
- D⁰ v₂ and R_{AA} can be simultaneously described by models with diffusion coefficient between 2-12, and differences between models need to be resolved.

Quark Matter 2015, Kobe, Japan

$D_s R_{AA}$ and elliptic flow v_2

Long Zhou Sat 08:30 HF

- \triangleright D_s R_{AA} may be higher than D⁰.
- > Higher D_s/D^0 ratio wrt. PYTHIA?
- Will follow up with better precision measurements.

9/23/16

TAR

Jet splitting function

Based on declustering an angular-ordered tree

"Groomed Momentum Sharing"

$$z_g = \frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}}$$

J. Thaler ALICE Jet Workshop, Yale Larkoski et al., Phys. Rev. D 91, 111501 (2015)

 P_i : Altarelli-Parisi splitting functions (symmetrized) q→qg, g→gg, g→qg (Kernels in DGLAP)

9/23/16

Z_a measurements in p+p and Au+Au

First measurement of z_g at RHIC z_g for di-jets with "hard cores".

STAR

STAR

Kolja Kauder Sun 11:00 Jets

CMS

▶ p+p HT Run6 **Results from trigger and recoil jets are** consistent with PYTHIA.

> No significant modification of the splitting function found in Au+Au.

CMS observed signification modification in most central, but in quite different kinetic range.

Constrains E-loss models, more theory input needed.

9/23/16

Summary

What we learned so far:

- Hot medium modifies ρ meson and emits radiation via lepton pairs.
- Photoproduced J/ψ is observed in the peripheral heavy ion collisions.
- Quarkonium appears suppression and regeneration effects in the medium.
- Charm quark has suppression and collective flow in the QGP.
- Jet splitting function has no significant modification for jet p_T 10-30 GeV/c at RHIC.

9/23/16

Outlook

- Y2014: with improved HFT efficiency after fixing a decoder issue, a factor of 2-4 improvement is expected in Au+Au.
- Y2015-2016: p+p, p+Au, and Au+Au at 200 GeV.

2014-2016	2019-2020
HF and Jet program.	BES-II, dilepton program.
sQGP properties with precision measurements.	High statistics data in low beam energieswill be collected.QCD phase structure including chirality anddisappearance of QGP signatures.

Parallel talks from STAR

EM probes: Chi Yang, Direct virtual photon production. Sat 09:10 e⁺e⁻ production in heavy ion collisions. Joey Butterworth, Sat 14:00 Heavy flavor probes: D^0 production and azimuthal anisotropy. Guannan Xie, Sat 08:30 Long Zhou, D_s production in Au+Au. Sat 14:00 D meson correlation in p+p. Long Ma, Sat 15:20 Yi Yang, J/ψ production in p+p and A+A. Sat 16:00 Electron from heavy flavor decays in p+p and Au+Au. Yaping Wang, Sat 17:00 Zaochen Ye, Υ production in Au+Au. Sun 08:50 Excess of very low $p_T J/\psi$ yield in A+A. Sun 11:40 Wangmei Zha, Jet probes:

Kun Jiang,	Away-side jet background subtraction.	Sun 09:30
Kolja Kauder,	Shared momentum fraction z _g of Jets in p+p and Au+Au.	Sun 11:00