Looking Forward for Color Glass Condensate signatures comparing Vs=200GeV p+p/d+Au

Ermes Braidot

Utrecht University & Nikhef Amsterdam

Quark Matter 2009

Outline

- Motivation
 - CGC and forward physics
- Run-8 FMS results
 - run-3 FPD emulation
 - π^0 +h[±] & π^0 + π^0 azimuthal correlation
 - multiplicity dependence
- Conclusions & Outlook

Color Glass Condensate

- BFKL and DGLAP divergence for gluon distributions at low-x suggests the presence of non-linear effects (parton recombination) to obey unitarity => SATURATION
- Color Glass Condensate is an effective field-theory for the low-x component of the τ_s(hadronic wavefunction
- SATURATION effects are associated with a new phase of the color field

Color Glass Condensate

 Simple kinematic distinction between components: small-x partons are described as classical gluon fields induced by a random source which are the large-x (valence) partons

Looking forward with mid-η correlations

- Enable determination of x_g in 2→2 picture
- Or, are there monojets from CGC?
- High rapidity regions is where gluons start to overlap (saturation)

Looking forward

- In d+Au, FPD/FMS faced d beam to see neutral pions produced by large-x partons with low-x nuclear gluons
- Exploratory run-3 measurements: West-South FPD module only
- Run-8 measurements: first FMS⁵/₂
 run (50x bigger acceptance)
- L_{run-8}=10*L_{run-3}

FPD results

published run-3 results

FMS – FPD comparison

- Emulate FPD from run-8 FMS:
 - FMS photons: x > 0cm;
 - • $|\eta_{_{TPC}}| < 0.75$; 3.8 < $\eta_{_{FMS}} < 4.1$;
 - $0.5 \text{GeV} < p_T^{(\text{TPC})}$
 - $|\alpha_{FMS}| = |E_1 E_2|/(E_1 + E_2) < 0.7$;
 - 30 < E_{FMS} < 55 GeV
 - \bullet leading (in $\textbf{p}_{_{T}})$ particles considered
- Reproduce gaussian width and many similarities
- Normalization requires more systematic studies:
 - pile-up correction
 - vertex efficiency
 - run-3/run-8 trigger

FMS results: π^0 +h[±] correlations

• Correlate forward π^0 with a mid-rapidity charged track (TPC)

pQCD inspired "GSV cuts" (Guzey, Strikman and Vogelsang, hep-ph/0407201):

- $|\eta_{TPC}| < 0.9$; 2.8 < $\eta_{FMS} < 3.8$;
- 2.5GeV < p_T^(FMS)
- 1.5GeV < p_T^(TPC) < p_T^(FMS) ;
- $|\alpha_{_{FMS}}| < 0.7$;
- $0.07 < M_{\gamma\gamma} < 0.30 \text{ GeV}$;
- only leading particle considered ;
- corrected for pile-up ;
- (as proposed in hep-ex/0502040)

p+p-> π^{0} +h[±]+X 0.1 0.075 $\sigma = 0.7840 \pm 0.086$ 0.05 0.025

2.5

 $\phi_{\pi} - \phi_{\mu CP}$

Ermes Braidot, QM09

Jncorrected Coincidence Probability (radian-1)

0

FMS results: π⁰+h[±] correlations comparison p+p & d+Au

• Same conditions ("GSV cut") were applied in d+Au

FMS results: $\pi^0 + \pi^0$ correlations

- Correlate forward π^0 with a midrapidity π^0 (bEMC)
- $|\eta_{EMC}| < 0.9$;
- $2.8 < \eta_{EMC} < 3.8$;
- 2.5GeV < p_T^(FMS);
- $1.5 \text{GeV} < p_T^{(\text{EMC})} < p_T^{(\text{FMS})}$;
- $|\alpha_{_{FMS/EMC}}|$ <0.7 ;
- $0.07 < M_{\gamma\gamma}^{(FMS)} < 0.30 \text{ GeV}$
- 0.07 < M_{γγ}^(EMC) < 0.20 GeV
- Only EMC towers used (no SMD)
- only leading particles considered

Gold-side multiplicity dependence

Gold-side multiplicity dependence

• Modification in background level in d+Au π^0 + π^0 correlations

Conclusions

- STAR Run-8 and FMS, a big success allowing $\ensuremath{p_{\text{T}}}$ scan;
- FMS reproduces Run-3 FPD gaussian widths;
- Comparison of $\Delta \Phi_{\pi 0(FMS)+\pi 0(EMC)}$ for pp and dAu indicates azimuthal broadening in dAu;
- Data are qualitatively consistent with a $p_{\rm T}$ dependent picture of gluon saturation of the gold nucleus.

Outlook

- Extract $\Delta \Phi_{\pi 0 + \pi 0}$ for two forward π^0
- Scanning the p_T range (from GSV to run-3)
- Scanning Δη: x dependence of nuclear parton density
- Clustering: towards π^0 +jet or jet+jet
- Absolute normalization and systematics studies

Gold-side multiplicity dependence

 Modification in background level in d+Au π⁰+h⁺ (FMS-TPC) correlations

Luminosity dependence I:

check for π^0 -h[±] correlations background ("GSV cuts")

Luminosity dependence II:

check for π^0 +h[±] correlations signal ("CSV cuts")

Luminosity dependence III:

check for π^0 +h[±] correlations width ("CSV cuts")

Luminosity dependence IV:

check for $\pi^0 + \pi^0$ correlations background ("CSV cuts")

