Recent highlights on measurement of bulk properties from RHIC

7-10 Feb, PURI, INDIA

This work is supported by the grant from DOE office of science

- Subhash Singha (On behalf of STAR Collaboration) Institute of Modern Physics Chinese Academy of Sciences, Lanzhou
 - 8th International Conference on Physics and Astrophysics of Quark-Gluon Plasma (ICPAQGP-2023)

- Motivation
- Overview of bulk properties from STAR at RHIC
- **Collective flow** (directed, elliptic and triangular flow) 1.
- 2.
- **Spin dynamics:** (spin polarization, alignment) 3.
- Summary

Outline

Flow-fluctuation (flow decorrelation, flow-momentum correlations)

- Uniform acceptance, full azimuthal coverage, excellent PID capability
- **TPC (iTPC):** tracking, centrality and event plane
- EPD, ZDC, BBC: event plane
- **TPC+TOF:** particle identification

STAR detector

Motivation

Conjectured QCD Phase diagram

Explore QCD Phase diagram by varying beam energy, proxy for baryon chemical potential (μ_B)

BES Program:

BES-II upgrades: iTPC, EPD, eTOF

High statistics data and detector upgrade in BES-II enhances the capability of various measurements with excellent precision

Collective flow

Collective flow

A. Poskanzer el. al. arXiv: 0809.2949

of the medium

Collective flow can be measured from the Fourier expansion

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum 2v_{n}\cos n(\phi - \Psi_{n}^{EP})\right)$$
• v_{1} : Directed flow

- V_2 : EIIIPTIC TOW
- v₃ : Triangular flow

$v_n = \langle \cos n(\phi - \Psi_n^{EP}) \rangle / \Psi_{Resolution}$

• Flow coefficients are sensitive to the initial state and properties

Directed flow from initial strong electromagnetic field

STAR

- (eB ~10¹⁸ G)

• Hall effect:

- Faraday effect:

 - large **E** field
- Coulomb effect:

U. Gursoy el. al. Phys. Rev. C 98, 055201 (2018); Phys. Rev. C 89, 054905 (2014)

• The moving spectators can produce an enormously large **B** field

It can induce following competitive effects in rapidity-odd v1

Lorentz force exerts a sideways push on charged particles

In opposite directions at opposite rapidity

Rapid decay of **B** field induces Faraday current to generate

Induced Faraday current will oppose the drift due to **B** field

Coulomb field of the charged spectators

Charge dependent directed flow

Among p and \bar{p}

- in (mid) central collisions: positive v1-slope difference (Transported quark effect)
- energy (Could be due to the dominance of Faraday+Coulomb effect)

Indication of *EM* field driven effects in HIC

• in peripheral collisions: negative v_1 -slope difference (> 5 σ), which increases with decrease in beam

Charge dependent directed flow

Indication of *EM* field driven effects in HIC

v₁ splitting measured using combination of *transported-quark-free* hadrons

• v₁-slope difference observed as function of charge difference (Δq) and strangeness difference (ΔS)

• Larger v₁-slope difference at 27 GeV than 200 GeV

> See Poster (08/02): Ashik Ikbal (STAR)

Elliptic flow (v₂) of identified particles

- At low p_T: mass ordering in v₂
- At intermediate p_T: v₂ shows baryons vs. mesons ordering

10

NCQ scaling of v₂

• NCQ scaling of v_2 holds ~ 20% for particles; ~ 15% for anti-particles

• ϕ mesons follow an approximate NCQ scaling

Indication of *partonic* collectivity

See Poster (08/02): Prabhupada Dixit (STAR)

NCQ scaling of V₃

NCQ scaling for v₃ holds ~ 30% for particles; ~ 15% for anti-particles

Indication of *partonic* collectivity

BES-II

See Poster (08/02): Prabhupada Dixit (STAR)

Breaking of NCQ scaling of v₂

• NCQ scaling for v₂ breaks at 3 GeV

Indication of *disappearance* of partonic collectivity

STAR: Phys. Lett. B 827, 137003, (2021)

STAR

Elliptic flow (v₂) of light nuclei

• Light nuclei v₂ obey mass number scaling at ~ 30% level

Role of *coalescence mechanism* in light nuclei formation

Au+Au, √s_{NN} = 27 GeV COL (2018) 0-80% Au+Au, $\sqrt{s_{NN}} = 19.6 \text{ GeV COL}$ (2019) 0.2 |η|≤**1.0** 0000 **₹** 0.1 - A+Bx+Cx²+Dx³ < **STAR Preliminary STAR Preliminary** $\frac{v_2 / A}{v_2 (fit)}$ 0.5 1.5 2 p_/A (GeV/c) p_/A (GeV/c)

Flow fluctuation

Longitudinal flow decorrelation

Observable

Ratios of v₂, v₃ and $\langle p_T \rangle$ -variances in isobar collisions **STAR**

Initial Shape

Harmonic flow

Can probe shape and size fluctuations via v₂, v₃, $\langle p_{\rm T} \rangle$ variances

C. Zhang el. al., Phys. Rev. Lett. 128, 022301 (2022)

Can constrain nuclear deformation parameters

• Estimate from AMPT: $\beta_{2,Ru} \sim 0.16 \pm 0.02$, $\beta_{3,Zr} \sim 0.20 \pm 0.02$

Flow momentum correlation

Pearson coefficients

Correlation between flow harmonics and transverse momentum

$$\rho(\mathbf{v}_{n}^{2}, [\mathbf{p}_{T}]) = \frac{\operatorname{cov}\left(\mathbf{v}_{n}^{2}, [\mathbf{p}_{T}]\right)}{\operatorname{Var}(\mathbf{v}_{n}^{2})_{dyn} \left\langle \delta \mathbf{p}_{T} \delta \mathbf{p}_{T} \right\rangle}$$

Can probe shape and size fluctuations, nuclear deformations

P. Bozek, Phys. Rev. C 93, 044908 (2016)

- B. Schenke et. al., Phys. Rev. C 102, 034905 (2020)
- G. Giacalone et. al., Phys. Rev. Lett. 128, 042301 (2022)

Estimate based on data and IP-Glasma + Hydro model comparison: $\beta_{2,U} \sim 0.28 \pm 0.03$

Spin dynamics

Global spin polarization of Λ

STAR: Phys. Rev. C 76, 024915 (2007); Nature 548, 62 (2017); Phys. Rev. C 101, 044611 (2020); Phys. Rev. C 104, 061901 (2021) ALICE: Phys. Rev. C 101, 044611 (2020); HADES: Phys. Lett. B 137506 (2022)

• Global Λ polarization increases monotonically with decreasing beam energy

Does the hadronic dominant matter retain more vorticity (?)

Where do we observe highest polarization?

Local spin polarization of Λ

STAR: Phys. Rev. Lett. 123, 132301 (2019) F. Becattini et. al., Phys. Rev. Lett. 120, 012302 (2018)

 Complex vortical structures emerged with respect to second and third order event planes

 $P_z(\Psi_3) \sim P_z(\Psi_2)$

Baryonic Spin Hall effect (SHE)

Condensed matter Heavy Ion Collisions $s \propto \pm p \times \nabla \mu_{\rm B}$ $s \propto \pm p \times E$

Predicted Spin Hall type effect driven by gradient of baryonic density ($\nabla \mu_B$)

Can be accessed by splitting in local polarization of Λ and $\overline{\Lambda}: P^{\Lambda}_{7} - P^{\Lambda}_{7}$

Fu et., al., arXiv: 2201.12970

Polarization ~ vorticity $\bigoplus \nabla T \bigoplus$ Shear $\bigoplus \nabla \mu_B$

 $P_z^{\Lambda} - P_z^{\Lambda} \sim < 0$: No indication of baryonic SHE

Global spin alignment (ρ₀₀) of φ and K*⁰

STAR: Nature, 614, 244-248, (2023) https://www.nature.com/articles/s41586-022-05557-5

$$\frac{dN}{d\cos\theta^*} = N_0 ((1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^*)$$

- Surprisingly, $\phi \rho_{00} >> 1/3$ but K^{*0} $\rho_{00} \sim 1/3$
- Can not be explained by conventional polarization mechanisms
- ϕ meson results can be accommodated by a model invoking a strong force field of vector meson

$$\rho_{00}(\phi) \approx \frac{1}{3} + c_{\Lambda} + c_{\epsilon} + c_{E} + c_{\phi}$$

Sheng el. al., Phys Rev D 101, 096005 (2020) Sheng el. al., Phys Rev D 102, 056013 (2020)

using NCQ scaling of v_n

• Flow fluctuation: new decorrelation and flow-momentum correlation Provide constraints on initial state and hydrodynamic models

puzzling) signal of spin alignment of vector mesons

Summary

• **Collective motion:** Precision flow measurement from BES-II is ongoing; Charge dependent v₁ results indicate EM induced effects; Probing partonic collectivity

- measurements provide new constraints on nuclear shape and size fluctuations;

• Spin polarization: Complex vortical patterns emerged for Λ ; Surprising (and

Thank you for your attention

