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Ústav částicové a jaderné fyziky
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Chapter 1

The Relativistic Heavy Ion

Collider

1.1 The accelerator

The Relativistic Heavy Ion Collider [1] (RHIC) at Brookhaven National Lab-
oratory is currently the world’s highest energy accelerator of heavy nuclei
and the world’s first polarized proton collider. It began operation in the
year 2000, following 10 years of development and construction. The collider
consists of two independent concentric acceleration and storage rings with a
circumference of 3.8 km, which are made of 1740 super-conducting magnets.
There are six intersection points, of which four are currently instrumented
with experiments. RHIC can store and collide nuclei with masses ranging
from protons to Au and due to the independence of the storage rings it can
collide beams of unequal masses, such as deuterons with Au ions. The top
energy for Au–Au collisions is

√
sNN = 200 GeV per nucleon pair.

The layout of the RHIC accelerator complex is shown in Fig. 1.1. Heavy
ion beams originate as partially ionized Au atoms that are emitted from a
source, such as a high temperature gold filament. The positively charged
ions are accelerated by the Tandem van de Graaff accelerator and are passed
through thin sheets of gold foil which further ionize Au atoms. Successively
accelerated by the Booster Accelerator, heavy ion beams enter the Alternat-
ing Gradient Synchrotron (AGS), where they are accelerated to 10.8 GeV per
nucleon. The AGS employs a strong focusing technique with its 240 magnets
situated along the acceleration ring, focusing the beam in both the horizon-
tal and vertical direction. Here, ions are fully stripped of their electrons and
once at full AGS energy, they are injected into the main RHIC ring in both
the clockwise and counterclockwise direction. Once in the RHIC ring, Au
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1.2. STAR detector 2

Figure 1.1: The RHIC accelerator complex.

ions are accelerated to top energy 100 GeV per nucleon and stored for up to
10 hours. Polarized protons originate in the 200 MeV Linac. Accelerated by
the Booster and the AGS to 24.3 GeV, they are injected into RHIC.

The six intersection regions of the RHIC storage rings allow the beams
to be steered into head-on collisions. Currently, four intersection regions are
instrumented with two major detectors, STAR, PHENIX, and two smaller
ones, BRAHMS, PHOBOS.

1.2 STAR detector

The Solenoidal Tracker at RHIC (STAR) [2] is a detector located at the 6
o’clock position at the RHIC collider ring. STAR is designed to study the
behavior of strongly interacting matter at high energy density and to search
for signatures of Quark Gluon Plasma (QGP) formation.

It is an azimuthally symmetric, large acceptance, solenoidal detector,
shown in Fig. 1.2. The large acceptance of the detector enables measurement
of a large fraction of the thousands of charged hadrons produced in a heavy
ion collision. The detector is built of many subsystems, see Fig. 1.3.

The detector STAR is based on a large conventional solenoidal magnet
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Figure 1.2: A perspective view of the STAR detector.

which can produce a magnetic field of 0.5 Tesla, for charged particle momen-
tum analyses.

The main tracking detector is a large Time Projection Chamber (TPC).
It is located in the solenoidal magnet. The TPC is a gas chamber filled with
a mixture of 90% argon and 10% methane. It is 4.2 m long and it’s inner
and outer radii are 50 cm and 200 cm, respectively. The acceptance of the
TPC detector in the pseudo-rapidity is |η| < 1.8 and it has a full azimuthal
coverage −π < φ < π. Particles with momenta ranging from 100 MeV/c to
around 1 GeV/c can be identified here. The TPC is put in a uniform electric
field. As charged particles pass through the TPC, they interact with the gas
molecules and release secondary electrons. These electrons then drift to the
readout system at the both ends of the chamber, where the induced charge
is used to reconstruct the original position of the particle trajectories.

Additional tracking of charged particles is provided at mid-rapidity by a
Silicon Vertex Detector (SVT), surrounding the interaction region close to
the beam pipe, and two forward TPCs (FTPC) for tracking charged particles
at large rapidity 2.5 < |η| < 1.8.

Other subsystems include the Barrel and Endcap Electromagnetic Calorime-
ters (EMC) for measuring photons, electrons and the total transverse energy
of events, a Ring Imaging Cherenkov (RICH) for particle identification at
high transverse momenta.
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Figure 1.3: Cutaway side view of the STAR detector as configured in 2001.

Triggering is provided by the fast detectors, the Zero Degree Calorime-
ters (ZDC) and a Central Trigger Barrel (CTB). ZDCs are compact hadronic
calorimeters, capable of detecting uncharged particles emitted in the beam
direction. They are located near the beam axis, 18 m on either side from
the interaction region. ZDCs detect the beam fragmentation neutrons, called
the spectator neutrons, as they do not interact with other nucleons but in-
stead pass through the collision region. Measuring the number of spectator
neutrons allows to trigger events on collision centrality. CTB is a barrel of
scintillators surrounding the TPC. The signal from the scintillators is pro-
portional to the charged particle multiplicity. The Central trigger is based
on accepting events with high CTB signal and low ZDC signal.

My experience with the STAR detector is based on the opportunity that I
have had to participate in the STAR Run4 data-taking during the year 2004.
I have taken two gas shifts during the pre-run commissioning of the STAR
detector, when P-10 (90% argon, 10% methane) was reintroduced into the
STAR TPC. In the course of 15 shifts at the beginning of the Run4 data-
taking period, during the Au–Au run at full RHIC energy

√
sNN = 200 GeV,

I participated in operation and monitoring of the STAR detector as a shift
crew, where my responsibilities were monitoring the run-time indicators for
all subsystems of the detector. Also, being a runtime operator, I took part
in energizing STAR detector components and triggering events.
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1.3 Probing the QGP

Ultra-relativistic heavy ion collisions at RHIC not only produce matter at
the highest energy density ever achieved, but also provide a number of rare
observables that have not been accessible previously. Under sufficiently ex-
treme conditions, a transition to QGP, a new form of matter in which quarks
and gluons act as free particles, is expected [3, 4]. According to the QCD
lattice simulations, the transformation shall occur at a temperature of ap-
proximately 170 MeV [3, 4].

Detector STAR is able to measure many observables simultaneously to
study signatures of a possible QGP phase transition. Only a very few parti-
cle species, mainly leptons, can provide direct information about the initial
partonic stage of the collision, therefore the experimental confirmation of a
possibly created QGP is difficult. The characteristic observables of QGP
include the observed enhancement of strange hadron and low-mass dilepton
yields and measured J/Ψ-suppression [4].

In order to successfully determine whether or not the QGP is being formed
in the ultra-relativistic heavy ion collisions, a more detailed understanding
of the space-time geometry and dynamics of the evolving reaction zone is
required. This can be achieved with two- and three-particle correlations,
which provide the only known way to obtain directly information about the
space-time structure of the source from the measured particle momenta. The
size and shape of the reaction zone, evolution time and the emission duration
can then become accessible [5].



Chapter 2

Particle interferometry

Interferometry is an experimental method based on wave interference ef-
fects and can be used to gain information about source of radiation which
is unreachable by other means. In astrophysics, Michelson amplitude inter-
ferometry and HBT intensity interferometry are used to study the angular
size of distant stars. When applied to particle physics, GGLP interferome-
try, the analogy to HBT interferometry, is being successfully used to probe
the geometry of the particle emitting source established in the collisions of
elementary particles and heavy ions.

2.1 HBT and GGLP

The intensity interferometry, known as HBT, was proposed and developed
by the radio astronomers Robert Hanbury Brown and Richard Twiss to mea-
sure angular size of distant stars in the 1950’s [6]. Their aim was to overcome
the technical limitations of Michelson amplitude interferometry at that time,
where the resolution at a given wavelength is limited by the separation over
which amplitudes can be compared. While Michelson amplitude interferom-
etry measures the square of the sum of the two amplitudes ψA and ψB falling
on two detectors A and B, see Fig. 2.1,

〈IA+B〉 = 〈|ψA + ψB|2〉 , (2.1)

HBT intensity interferometry measures the average product of two intensities
IA and IB,

〈IAIB〉 = 〈|ψA|2|ψB|2〉 . (2.2)

To demonstrate the technique, Hanbury Brown and Twiss measured the
intensity correlations between two photon beams separated from a mercury
vapor lamp and they thus showed that photons in an apparently uncorrelated

6



2.1. HBT and GGLP 7

R

star R

R

(a) (b)

α

L/2

A

B

IA

IB

IABIA+B

C

Figure 2.1: The amplitude (a) and intensity (b) interferometry set-up
schematically.

thermal beam tend to be detected in close-by pairs [7]. This photon bunching
is known as the HBT effect in optics. The increased or decreased probability
to measure particle pairs can be considered as an analogue to the interference
patterns in amplitude interferometry.

The particle physics analogy of the HBT effect in optics was discovered
by G. Goldhaber, S. Goldhaber, W. Y. Lee and A. Pais in 1960 and is known
as the GGLP effect [8]. In the pp̄ annihilation experiments they studied the
angular correlations between identical pions. Fig. 2.2 shows the numerical
evaluation of the distribution functions of the pion pair angles for identical
and non-identical pions with comparison to the experimental distributions
of angles between pion pairs, as measured by the GGLP experiment [8]. For
the case of identical pions, the effect of raising the distribution of the pion
pair angles for small pair angles can be seen. The observed enhancement of
pairs at small relative momenta was explained in terms of the spatial extent
of the pp̄ system [8].

In the sequel of this work, it was gradually realized that the correlations
of identical particles emitted by highly excited nuclei are sensitive not only
to the geometry of the system, but also to its lifetime. G. I. Kopylov and
M. I. Podgoretsky [9, 10] suggested to study the interference effect in terms
of the correlation function and they settled the method of construction of the
correlation function. They clarified the role of the space-time characteristics
of particle production and analyzed the parametrizations of the correlation
function in various physical situations.

In ultra-relativistic heavy ion collisions, two-particle interferometry, as
proposed by GGLP, is a useful tool to study the the space-time geometry
of the particle emitting source. However, when going from HBT method in
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Figure 2.2: The numerical evaluation of the distribution functions of the
pion pair angles θ for like (a) and unlike (b) pions with comparison to the
experimental distributions of angles between pion pairs. Also shown is the
statistical distribution SM without the effect of Bose–Einstein correlations.
Figure taken from [8].

optics to its analogy in particle physics, the GGLP effect, the following point
needs to be considered. In particle physics one does not measure relative
distances r in order to deduce relative momenta q and thus angular sizes,
but one measures rather momenta in order to deduce distances [11].

2.2 BEC

Both the HBT and the GGLP effects are based on Bose–Einstein correlations
(BEC). Bose–Einstein correlation effects can be viewed as a consequence of
the symmetry properties of the wave function with respect to permutations
of two identical particles with integer spin and are thus intrinsic quantum
phenomena. Subsequently Fermi–Dirac correlations for nucleons have also
been observed, but due to the fact that the quantum coherence appears only
in BEC and that pions are the most abundantly produced secondaries in high-
energy reactions, BEC present the important heuristic and methodological
advantages over Fermi–Dirac correlations [12].

BEC are thus the identical particle momentum-spatial correlations which
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are of quantum statistical origin. As already mentioned, the basic concept
of GGLP interferometry is to draw conclusions about spatial component of
the phase space distribution of emitted particles by measuring its momentum
component. Therefore it is important to extract correlations due to quan-
tum statistics only. The main sources for other than quantum statistical
correlations are energy-momentum conservation constraints on momentum
distribution for low multiplicity reactions, final state interactions due to the
strong force between pions, long-range Coulomb interactions between two
pions and correlations due to the decay products of resonances [5].

2.3 The two-particle correlation function

The two-particle momentum correlation function of identical particles is de-
fined [5] as a normalized ratio of corresponding two- and single-particle dis-
tributions

C2(pi, pj) = N P2(pi, pj)

P1(pi)P1(pj)
, (2.3)

where the normalization factor N guarantees the behavior of the correlator
at large relative momenta q = pi − pj = ∞ as C2 = 1. The Lorentz invariant
two-particle distribution

P2(pi, pj) = EiEj
dN

d3pi d3pj

(2.4)

indicates the probability to measure two particles with momenta pi and pj

and it contains any two-particle momentum correlation of the production
process in a heavy ion reaction. The denominator in the ratio (2.3) is the
reference spectrum P1(pi)P1(pj) and it is the probability to measure two
particles with momenta pi and pj derived from single-particle distribution

P1(pi) = Ei
dN

d3pi

. (2.5)

The reference spectrum appears like the two-particle distribution except for
any two-particle correlations. Therefore, if there were no two-particle mo-
mentum correlations in the event, which is not true for the case of identical
pions satisfying the Bose–Einstein statistics, the correlation function would
have a constant value of 1 even for small relative momenta q.

The theory of the BE interferometry can be studied in the simplified case
using the wave-function approach. The more advanced way of approaching
the theory of BE interferometry is the classical current approach based on
quantum field theoretical formalism.
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Figure 2.3: The GGLP measurement schematically.

2.3.1 The wave-function approach

In the following example, the principle of the GGLP experiment [8] is demon-
strated. Assume two identical particles, pions, with momenta pi and pj are
incoherently produced at points x and y within a source volume characterized
by its density distribution of the emission points ρ(x). After their emission,
the particles are detected in the registration points ri and rj so that in ri

only particles of momentum pi and in rj only particles of momentum pj are
registered, as illustrated in Fig. 2.3. Because the particles are identical one
cannot decide which particle originates from x and which from y. This is
illustrated as particle paths that follow either full or dashed lines in Fig. 2.3.

Under the assumption that the particle propagation between the emission
and detection points can be described by a plane wave, the wave function of
particle with momentum pi emitted at point x and detected at point ri can
be written as

Ψi = A(x, pi)e
ipi·(x−ri) , (2.6)

where A(x, pi) describes the emission amplitude of particle i at point x.
The total probability to observe particle i carrying momentum pi which was
emitted from the source can then be written as

P1(pi) =

∫

d4x ρ(x) |Ψi|2 =

∫

d4x ρ(x) |A(x, pi)|2 . (2.7)

Similarly, the two-particle distribution (2.4) of identical particles obeying
Bose–Einstein statistics can be written as

P2(pi, pj) =

∫

d4x d4y ρ(x)ρ(y)|Ψij|2 , (2.8)
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where the two-particle wave function,

Ψij =
1√
2

(

A(x, pi)e
ipi·(x−ri)A(y, pj)e

ipj ·(y−rj)

+A(y, pi)e
ipi·(y−ri)A(x, pj)e

ipj ·(x−rj)
)

, (2.9)

is a symmetrized product of single-particle wave functions (2.6), see Fig. 2.3.
The calculation of integral (2.8) greatly simplifies if we use the smoothness

approximation, which assumes that the emission amplitude A(x, pi) has a
smooth momentum dependence,

A(x, pi)A(y, pj) = A(x, k +
1

2
q)A(y, k − 1

2
q) ≈ A(x, k)A(y, k) , (2.10)

where k = 1
2
(pi + pj) and q = pi−pj are the average pair momentum and the

relative momentum, respectively. This allows us to write the square modulus
of the two-particle wave function (2.9) in the form

|Ψij|2 = |A(x, k)|2 |A(y, k)|2
(

1 +
eiq·(x−y) + e−iq·(x−y)

2

)

. (2.11)

Now, using (2.11) with the two-particle distribution, Eq. (2.8), one obtains

P2(pi, pj) =

∫

d4x d4y ρ(x)ρ(y) |A(x, k)|2 |A(y, k)|2 (1 + cos(q · r)) , (2.12)

where r = x − y is the distance between emission points of pions.
The two-particle distribution, Eq. (2.12), leads to the two-particle corre-

lation function for bosons written as

C2(pi, pj) =
P2(pi, pj)

P1(pi)P1(pj)
= 1 + 〈cos(q · r)〉 , (2.13)

where the averaging 〈. . .〉 in the last term is understood over space-time
coordinates x and y. Eq. (2.13) is the basic relation for the standard method
of introducing Bose-Einstein correlations among identical bosons generated
via classical Monte Carlo simulations, the weighting method, discussed in
Ch. 4.

Equivalently, using (2.11) with (2.8), the following relation can be written
for the two-particle distribution,

P2(pi, pj) = P1(pi)P1(pj) +

∣

∣

∣

∣

∫

d4x eiq·xρ(x)|A(x, k)|2
∣

∣

∣

∣

2

. (2.14)
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Introducing the effective source density distribution,

ρeff(x, k) = ρ(x)
|A(x, k)|2

P1(k)
, (2.15)

and its Fourier transform with the relative four-momentum q,

ρ̃eff(q, k) =

∫

d4x eiq·xρeff(x, k) , (2.16)

yields the two-particle distribution, Eq. (2.14), in the form

P2(pi, pj) = P1(pi)P1(pj)
(

1 + |ρ̃eff(q, k)|2
)

. (2.17)

Eq. (2.17) enables us to relate the second-order correlation function (2.3) for
bosons to the source density. Assuming that the individual emission points
of the source act incoherently, the two-particle correlation function can be
written as

C2(pi, pj) =
P2(pi, pj)

P1(pi)P1(pj)
= 1 + |ρ̃eff(q, k)|2 . (2.18)

Extracting the spatial information of the source ρeff(x) from the measured
relative momentum spectra is then a Fourier inversion problem. Therefore,
Eq. (2.18) is the basic relation of Bose–Einstein interferometry and it shows
how momentum correlation measurements in particle physics can provide in-
formation about the space-time structure of the particle emitting source [12].

It is known from quantum optics, that in spite of Bose–Einstein statistics,
the HBT effect does not exist for particles emitted with phase coherence, but
only for chaotic sources [5]. As a consequence of coherent emission of particles
from the source, the correlation function decreases at small relative momenta
q below the maximum value C2 = 2 permitted by Eq. (2.18). To take this
effect empirically into account, a correction factor λ is introduced into the
correlation function, which is then modified into form

C2(pi, pj) = 1 + λ |ρ̃eff(q, k)|2 . (2.19)

Because formally this generalization offers also the possibility to describe
partially coherent sources, the corresponding parameter λ is often referred
to as the correlation strength or the coherence parameter. By postulation
the correlation strength λ is limited by (0, 1), where indeed λ = 0 leads to
a totally coherent source and λ = 1 to a totally chaotic particle emitting
source.

Note however that there is a number of other reasons leading to the
correlation strength λ < 1 [13]. Taking aside the purely experimental reasons,
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like particle impurities and detector resolution, these include the decays of
the long-lived particles or resonances and the presence of the production
processes characterized by quite different radii.

Even though the wave-function formalism allows a simplified and perhaps
a more intuitive understanding of concepts of the theory of interferometry, it
has several shortcomings [12]. The wave-function formalism is not appropri-
ate for high average multiplicities reactions in high-energy physics, because
Eq. (2.9) is just a wave function of the two-boson system. The assumption
that only two bosons are produced is satisfied at low energies or low average
multiplicities, as was the case of the exclusive reactions in the GGLP exper-
iment [8], contrary to the high-energy nuclear collisions containing several
thousands of particles in final states. Moreover, this formalism cannot treat
adequately the coherence. The correlation function derived by the wave-
function approach refers to chaotic or incoherent sources and takes the effect
of coherence into account only empirically with correction factor λ in the ad
hoc parametrization (2.19).

A more complete and more correct treatment of BEC is provided by the
following space-time formalism of classical currents.

2.3.2 Classical current formalism

The most satisfactory approach to BEC at present is the classical current
formalism which is based on quantum field theory, where the pion production
in the nuclear collision is described by the the field equations for the pion
field φ(x),

(

2 + m2
)

φ̂(x) = Ĵ(x) . (2.20)

In this equation, Ĵ(x) represents the nuclear current operator acting as the
source of pions and m is the pion mass.

The classical current parametrization [14] approximates the nuclear cur-
rent operator Ĵ(x) defining sources of pions at freeze-out by a classical space-
time function J(x). This model is based on the assumption that at kinetic
freeze-out, when pions stop loosing their kinetic energy and the shape of
their transverse momentum spectrum does not change anymore, the particle
emitting source is not affected by the emission of a single pion. The final pion
state for a classical source J(x) is a coherent state |J〉 which is by definition
an eigenstate of the annihilation operator â~pi

,

â~pi
|J〉 = iJ̃(~pi)|J〉 , (2.21)

where J̃(~pi) is the Fourier transform of the classical current J(x) satisfying
the on-shell constraint Ei =

√

m2 + ~p 2
i for all emitted particles.
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The single- and two-particle momentum distributions for pions are defined
by

P1(~pi) = Ei
dN

d3pi

= Ei〈â†

~pi
â~pi

〉 , (2.22)

P2(~pi, ~pj) = EiEj
dN

d3pi d3pj

= EiEj〈â†

~pi
â†

~pj
â~pj

â~pi
〉 , (2.23)

where â†

~pi
and â~pi

represent the creation and annihilation operators for a
particle with momentum ~pi acting on the coherent state |J〉, the solution to
Eq. (2.20). While the single-particle spectrum is normalized to the average
number of particles, 〈N〉, per collision,

∫

d3pi

Ei

P1(~pi) = 〈N〉 , (2.24)

the two-particle spectrum is normalized to the number of particles in pairs,
〈N(N − 1)〉, per event,

∫

d3pi

Ei

d3pj

Ej

P2(~pi, ~pj) = 〈N(N − 1)〉 . (2.25)

In order to calculate the effect of pions emitted from a chaotic source, it
is necessary to use a superposition of classical sources. The classical current
J̃(~pi) is approximated by a superposition of N independent elementary source
functions J0 centered around phase-space points xk, pk with phases φk ,

J̃(~pi) =
N

∑

k=1

eiφkeipi·xk J̃0(pi − pk) , (2.26)

where the assumed chaotic particle emission from the source is characterized
by random phases φk [14]. On the other hand, in more general settings
one may choose a distribution of the phases φk which is not completely
random, thereby mimicking the partial coherence of the particle emitting
source. In the extreme case of completely coherent source, the correlation
strength λ drops to 0 and correlations vanish. Alternatively, the effect of
partially coherent source can be described by classical current J(x) which
is a composition of a chaotic component Jcha(x) and a coherent component
Jcoh(x),

J(x) = Jcha(x) + Jcoh(x) . (2.27)

The correlation strength λ can be written in the form [5]

λ(~k) = 1 −
(

ncoh(~k)

ncha(~k) + ncoh(~k)

)2

, (2.28)
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where ncha(~k) and ncoh(~k) are the number of chaotically and coherently emit-

ted particles with momentum ~k, respectively. It can be seen, that as the
number of coherently emitted particles increases, the correlation strength λ
decreases below unity.

By averaging over the chaotic superposition of large number N of ele-
mentary sources of particle emission, the two-particle momentum distribu-
tion (2.23) can be factorized as

P2(~pi, ~pj) = EiEj〈â†

~pi
â†

~pj
â~pj

â~pi
〉 = EiEj

(

〈â†

~pi
â~pi

〉〈â†

~pj
â~pj

〉 + 〈â†

~pi
â~pj

〉〈â†

~pj
â~pi

〉
)

.

(2.29)
Now, using the single- and two-particle distributions (2.22) and (2.29), re-
spectively, one can obtain according to (2.3) the two-particle correlator for
the chaotic source,

C2(~pi, ~pj) =
P2(~pi, ~pj)

P1(~pi)P1(~pj)
= 1 +

∣

∣

∣
〈â†

~pi
â~pj

〉
∣

∣

∣

2

〈â†

~pi
â~pi

〉〈â†

~pj
â~pj

〉
. (2.30)

The quantum mechanical analogues of classical phase-space particle dis-
tribution functions are the Wigner functions. In the Wigner formalism, the
single-particle momentum spectrum is determined as the space-time integral
of the emission function S(x, pi),

P1(~pi) = Ei〈â†

~pi
â~pi

〉 =

∫

d4xS(x, pi) . (2.31)

The corresponding two-particle momentum distribution (2.29) can be written
as

P2(~pi, ~pj) = P1(~pi)P1(~pj) +
∣

∣S̄J(~pi, ~pj)
∣

∣

2
, (2.32)

where the covariant quantity S̄J(~pi, ~pj) is given by

S̄J(~pi, ~pj) =
√

EiEj 〈â†

~pi
â~pj

〉 =
√

EiEj 〈J̃∗(~pi)J̃(~pj)〉 =

∫

d4xS(x, k)eiq·x ,

(2.33)
where k = 1

2
(pi + pj) and q = pi − pj are the average pair momentum and

the relative momentum of the pion pair, respectively. The covariant quantity
S̄J(~pi, ~pj) is the Wigner transform of the density matrix associated with the
classical currents [5]. In the Eq. (2.33), the emission function S(x, k), that is
the Fourier transform of S̄J(~pi, ~pj), can be identified with the Wigner phase-
space density of the particle emitting source.

The equations for single- and two-particle momentum distributions (2.31)
and (2.32), respectively, can be used with Eq. (2.30) in order to express the
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two-pion correlation function in terms of the Wigner phase-space density,

C2(~q,~k) = 1 +

∣

∣

∫

d4xS(x, k)eiq·x
∣

∣

2

∫

d4xS(x, pi)
∫

d4y S(y, pj)
. (2.34)

Using the smoothness approximation, which assumes that the emission
function has a sufficiently smooth momentum dependence

S(x, pi)S(y, pj) = S(x, k +
1

2
q)S(y, k − 1

2
q) ≈ S(x, k)S(y, k) , (2.35)

the two-particle correlation function (2.34) can be reduced to expression [5]

C2(~q,~k) = 1 +

∣

∣

∫

d4xS(x, k)eiq·x
∣

∣

2

∣

∣

∫

d4xS(x, k)
∣

∣

2 . (2.36)

The on-shell and mass-shell constraints for the identical particle produc-
tion

Ei =
√

m2 + ~p 2
i , (2.37)

k · q =
1

2

(

p2
i − p2

j

)

=
1

2

(

m2
i − m2

j

)

= 0 , (2.38)

respectively, imply that only three of the four relative momentum compo-
nents are kinematically independent. Therefore, the dependence of the two-
particle correlation function C2(~q,~k) on the relative momentum q allows to
test only three of the four independent space-time directions of the emission
function [5].

The main aim of the particle interferometry is to extract as much informa-
tion as possible about the emission function S(x, k) found in the Eq. (2.36),
which is the Wigner phase-space density of the particle emitting source cre-
ated in the heavy ion collision.

2.4 Gaussian parametrization

In order to connect the theoretical form of the correlator (2.36) to the exper-
iment one usually uses various Gaussian parametrizations of the correlation
function, generally written in the form

C2(~q,~k) = 1 + λ(~k) exp

(

−
∑

ij

R2
ij(

~k)qiqj

)

, (2.39)
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where the radius parameters Rij(~k) equal the space-time variances of the
emission function S(x, k). As a result of elimination of one of the four rel-
ative momentum components via the mass-shell constraint (2.38), qi denote
the different choices of the three kinematically independent components of
the relative momentum q. The relation (2.39) is based on a Gaussian approxi-
mation to the true space-time dependence of the emission function S(x, k) [5].

In general, radii Rij(~k), which are the RMS widths of the effective source

of particles with average pair momentum vector ~k, do not characterize the
total extension of the source established in heavy ion collision. They can be
better identified with the sizes of the region of homogeneity, the region from
which particle pairs with average pair momentum ~k are most likely emitted.

2.4.1 1D qinv parametrization

In practice, the functional dependence of the correlator C2(~q,~k) on relative
momentum q is most often described by the one-dimensional qinv parametriza-
tion of the correlation function [5, 8, 12]

C2(~q,~k) = 1 + λ(~k) exp
(

−R2
inv(

~k)q2
inv

)

, (2.40)

where q2
inv = −q2 = (~pi−~pj)

2− (Ei−Ej)
2 and λ(~k) are the squared invariant

momentum difference and the correlation strength, respectively. The pa-
rameter Rinv(~k) characterizes the width of the source distribution function.
Traditionally, this qinv parametrization is being used since the pioneering
two-particle correlations measurement by the GGLP experiment [8].

Among the advantages of the qinv parametrization of the correlation func-
tion is the fact that qinv is a relativistic invariant which involves all four
components of the relative momentum q. This allows to obtain the corre-
lation strength λ(~k) as a fit parameter that coincides with the intercept of
the correlation function at qinv = 0. By fitting the experimental correlation
function with Eq. (2.40) one can obtain the fit parameter Rinv(~k). Since the
correlation function is one-dimensional, very few statistics are needed to ob-
tain a high quality fit to the data. However, the main disadvantage of the
qinv parametrization is that the parameter Rinv(~k) is neither a radius nor a
lifetime, but a combination of these. There is no possibility to unfold the
spatial and temporal information of the source emission function which is
mixed in a single variable Rinv(~k) and therefore it is difficult to to draw a
conclusion about the properties of the source.
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~p>i

~p>j

~q>

~k>

~qout

~qside

x

y

Figure 2.4: The composition of relative momentum ~q = (qout, qside, qlong)
components in transverse plane.

2.4.2 3D Bertsch–Pratt parametrization

More general description of C2(~q,~k) is based on the so-called Bertsch–Pratt
parametrization [15, 16, 17], which uses decomposition of the relative mo-
mentum vector of the pair ~q into the out-side-longitudinal coordinate system,
~q = (qout, qside, qlong) with the three Cartesian spatial components

qout =
|~q> · ~k>|
|~k>|

, qside =
|~q> × ~k>|

|~k>|
, qlong = pz,i − pz,j , (2.41)

where ~k> = 1
2
(~p>i + ~p>j) and ~q> = ~p>i − ~p>j are transverse pair momentum

and transverse relative momentum, respectively. Fig. 2.4 illustrates the de-
composition of the transverse components. In this parametrization the vector
~q is decomposed into a longitudinal direction along the beam axis, qlong, an
outward direction parallel to the transverse pair momentum, qout, and a side-
ward direction perpendicular to those two, qside. Choosing the Bertsch–Pratt
parametrization leads to the three-dimensional correlation function of the
form

C2(~q,~k) = 1 + λ(~k) exp
(

− R2
out(

~k)q2
out − R2

side(
~k)q2

side

−R2
long(

~k)q2
long − 2R2

ol(
~k)qoutqlong

)

. (2.42)

Corresponding width parameters Rout(~k), Rside(~k) and Rlong(~k) are referred
as interferometry radii and they are related with the space-time structure of
the source.
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Figure 2.5: One-dimensional qinv parametrization of two-particle correla-
tion function constructed separately for positive, negative and neutral pion
pairs with k> ∈ (0.1, 0.2) GeV/c for Au–Au collisions. Correlations are
modeled from the output of classical Monte Carlo simulations via weighting
method (4.1) described in Ch. 4.

In the experiment, the interferometry radii can be obtained as fit pa-
rameters by fitting the measured correlation function with Eq. (2.42). In an

azimuthally integrated analyses, the parameter Rol(~k) is small and can be

neglected. While the radius Rside(~k) can be interpreted as a width of the

emission region in the side direction, the radius Rout(~k) measures the corre-
sponding width in the out direction plus a contribution from the emission
duration. The longitudinal radius Rlong(~k) can be described in the longitu-
dinal comoving system (LCMS) frame of the particle pair as a longitudinal
extension of the region of homogeneity [5].
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2.5 Construction of the correlation function

in the experiment

2.5.1 The two-particle correlation function

Experimentally, two-particle correlations are studied by constructing the cor-
relation function as a ratio

C2(~q) =
A(~q)

B(~q)
, (2.43)

where A(~q) is the measured distribution of the momentum difference ~q =
~pi − ~pj for the so-called real pairs of particles and B(~q) is the corresponding
reference distribution for mixed pairs of particles [5].

Starting point is the selection of events from the primary data set. Here
one can apply selection criteria that selected events have to pass, including
cuts on collision vertex position and cuts on centrality that is characterized
by measured multiplicity of charged hadrons at mid-rapidity.

The real pairs are pairs of particles that belong to the same event. In the
analysis, one goes through all of the selected events, choosing all particle pairs
that satisfy the particle selection criteria for each selected event. The parti-
cle selection criteria include particle identification cut that selects pions only,
cuts on pseudo-rapidity and pair cuts, where pion pairs are divided into four
k> bins according to their average transverse momentum k> = 1

2
|~p>i + ~p>j|.

Each pair of such selected particles is characterized by relative momentum
vector ~q. If one wants to describe the functional dependence of the correlation
function on relative momentum q by the one-dimensional qinv parametriza-
tion with Eq. (2.40), relative momentum invariant qinv =

√

−q2 is computed
and filed in the corresponding one-dimensional histogram. For the case of
the three-dimensional Bertsch–Pratt parametrization of the correlation func-
tion, Eq. (2.42), one computes the out-side-longitudinal components of the
relative momentum vector ~q = (qout, qside, qlong) according to (2.41) and fills
the corresponding three-dimensional histogram. This measured distribution
of momentum difference for real particle pairs is noted as A(~q) in Eq. (2.43).

The so-called mixed pairs are particle pairs, where partners are picked
randomly from different events within the set of events that yielded the real
pairs. Firstly, a buffer with capacity of holding 100 events is created and filled
with the first 100 events from the set of selected events. The mixed particle
pair is constructed by choosing two random particles within the events in
the buffer. This is done via four random numbers, where the two are used to
choose the two different events and the remaining two random numbers are
used to choose a particle from each random event. Of course, mixed pairs of
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particles must satisfy the same conditions of using the same set of cuts and
particle selection criteria as the real pairs mentioned above. The number of
mixed pairs for each real pair is the so-called mixing factor and it is typically
between 10 and 50. To ensure a statistically independent reference mixed pair
sample, the mixing factor has to be chosen sufficiently large, while for the
numerical implementation it still has to be chosen sufficiently small. Same as
for real pairs, for each mixed pair one has the relative momentum vector ~q,
which is used to compute the relative momentum invariant qinv and relative
momentum vector components qout, qside and qlong that are filled in the cor-
responding one- and three-dimensional histograms. One continues to choose
mixed pairs over and over, until the number of entries in the histogram, that
contains the relative momentum distribution, reaches the number of entries
per 100 events in the histogram of the real pairs multiplied by the mixing
factor. All of the events in the buffer are then replaced with the next 100
events, until the whole set of selected events is used. This process leads to
the distribution of momentum difference for mixed particle pairs, noted as
B(~q) in Eq. (2.43).

In order to construct the ratio (2.43), relative momentum distributions
A(~q) and B(~q) need to be appropriately normalized. Each of the histograms
that contain the relative momentum distributions is separately normalized
to the number of entries in the bins ranging from 2/3 to the end of the
histogram axis range.

Finally, the correlation function is constructed by taking the ratio, bin
by bin, of the distribution A(~q) of the real pairs with the distribution B(~q)
of the mixed pairs. The normalization at the end of the axis range ensures
that the correlation function is properly normalized to unity in the range
excluding the correlation peak, satisfying the condition C2(~q) = 1 for large
relative momenta ~q.

There is a reasonable agreement between the results for correlation func-
tions constructed using positively charged pion pairs, negatively charged pion
pairs, and correlation functions constructed out of neutrally charged pion
pairs, see Fig. 2.5. Therefore, the correlation functions for the positive, neg-
ative and neutral pions can be added together in order to improve statistics.
This is done by adding the histograms of positive, negative and neutral real
pairs in the numerator and similarly adding the reference histograms of mixed
pairs in the denominator of (2.43).

2.5.2 The three-particle correlation function

In this thesis, a new algorithm that provides multi-particle Bose–Einstein
correlations is tested. Therefore, we try to construct the three-particle cor-
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relation function in addition to the previously mentioned two-particle cor-
relation function. These three-particle correlations are sensitive to asym-
metries in the particle production mechanism, which cannot be studied by
two-particle correlations. The combination of the two- and three-particle cor-
relation analyses gives access to the degree of coherence of pion production
by means of the correlation strength λ(~k). This is difficult to investigate from
the two-particle correlations alone due to the effect of decay contributions
from long-lived resonances on the correlation function [18].

The three-particle momentum correlation function of identical particles
can be defined as a normalized ratio of corresponding three- and single-
particle momentum distributions

C3(pi, pj, pk) = N P3(pi, pj, pk)

P1(pi)P1(pj)P1(pk)
. (2.44)

Assuming totally incoherent source with space-time density distribution of
emission points ρ(x) and neglecting the momentum dependence of the emis-
sion amplitude A(x), the two-particle, three-particle and genuine three-particle
Bose–Einstein correlation functions are related to the source density, respec-
tively, by [18]

C2(qij) = 1 + |ρ̃eff(qij)|2 , (2.45)

C3(qij, qjk, qki) = 1 + |ρ̃eff(qij)|2 + |ρ̃eff(qjk)|2 + |ρ̃eff(qki)|2

+ 2Re {ρ̃eff(qij)ρ̃eff(qjk)ρ̃eff(qki)} , (2.46)

Cgen
3 (qij, qjk, qki) = 1 + 2Re {ρ̃eff(qij)ρ̃eff(qjk)ρ̃eff(qki)} , (2.47)

where qij = pi − pj is the relative momentum between two particles and
ρ̃eff(qij) is the Fourier transform of the effective source density (2.15).

For the computation of the three-particle correlations in the experiment,
each possible triplet of identical pions i, j and k is used to compute the
variable

q3 =
√

−(q2
ij + q2

jk + q2
ki) . (2.48)

In analogy with the two-particle ratio (2.43), three-particle Bose–Einstein
correlations are studied by constructing the three-particle correlation func-
tion as a ratio

C3(q3) =
A(q3)

B(q3)
, (2.49)

where A(q3) is the measured distribution of the invariant three-particle mo-
mentum difference q3 as defined by (2.48) for the real triplets of identical
pions and B(q3) is the corresponding reference distribution for mixed triplets
of identical pions [18].
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The measured three-particle momentum difference distribution for real
triplets is obtained via choosing all possible triplets of identical pions that
pass the particle selection cuts for each selected event and computing variable
q3 for each selected triplet, filling it in the one-dimensional histogram A(q3).

The reference distribution of q3 for mixed triplets B(q3) is determined
by the same event mixing technique, as defined for mixed pairs in previous
section. The only modification is that now we need to randomly select three
identical pions from different events for which the variable q3 is calculated.

After separately normalizing real and mixed distributions A(q3) and B(q3),
respectively, the three-particle momentum correlation function can be con-
structed as their ratio, bin by bin. The normalization to the number of entries
is done for the bins ranging from 2/3 to the end of the histogram axis range,
in a region where the correlation peak is not expected. The three-particle
correlator C3(q3) is then normalized to unity for large q3.

What is more, the three-particle correlation function C3(q3) defined by
Eq. (2.44) and experimentally obtained as a ratio (2.49) contains also a con-
tribution from the two-particle correlations that are present among identical
particle triplets. In order to obtain the genuine three-particle Bose–Einstein
correlation function Cgen

3 (q3), one needs to subtract all possible two-particle
correlations first. The genuine three-particle Bose–Einstein correlation func-
tion is obtained via [18]

Cgen
3 (q3) = C3(q3) − C1,2(q3) + 1 , (2.50)

where C1,2(q3) is the contribution due to two-particle correlations, as may
be seen from Eqs. (2.45) and (2.46). The contribution due to two-particle
correlations C1,2(q3) to the three-particle correlator can be written using the
two- and single-particle momentum distributions in the form

C1,2(q3) = N P2(pi, pj)P1(pk) + P2(pj, pk)P1(pi) + P2(pk, pi)P1(pj)

P1(pi)P1(pj)P1(pk)
− 2 .

(2.51)
The products of two- and single-particle momentum distributions in the

numerator of the first term in Eq. (2.51) are determined by a similar mixing
procedure, as defined earlier, where two identical pions from the same event
are combined with one random pion having the same charge from a differ-
ent event. Thus for each real triplet of particles i, j and k with invariant
three-particle relative momentum difference q3, three combined triplets are
produced. For each combined triplet, variable q3 is calculated and filled in
the corresponding one-dimensional histogram that contains the distribution
of the momentum difference q3 for combined triplets. One ends with three-
particle distributions of q3 which are the combination of real pairs mixed
with a third particle.
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The reference three-particle momentum distribution present in the de-
nominator of the first term in Eq. (2.51) is equivalent to B(q3) in Eq. (2.49)
and it is the reference distribution of q3 for mixed triplets of identical pions.

Normalization of the ratio in Eq. (2.51) is done in the region excluding the
correlation peak, for the bins ranging from 2/3 to the end of the histogram
axis range, satisfying the condition C1,2(q3) = 1 for large q3.



Chapter 3

Simulating p–p and Au–Au

collisions

3.1 UrQMD

The Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model [19]
is a microscopic transport model, which has an application in simulating
heavy ion collisions in the wide range of energies from the SIS energy region,√

sNN ≈ 2 GeV, to the RHIC energy,
√

sNN = 200 GeV.
A microscopic dynamics description of heavy ion collisions is usually based

on transport theory, where a sequence of particle propagations is simulated
numerically. This sequence is represented by individual hadron–hadron col-
lisions. In such a hadron–hadron collision, particles can be produced and
can further interact with each other. This model attempts to describe the
full time-evolution from the initial state of the heavy ion reaction up to the
freeze-out of all initial and produced particles after the reaction, yielding the
observables.

The theory of UrQMD model is based on the covariant propagation of
all hadrons on classical trajectories in combination with stochastic binary
scatterings, color string formation and resonance decay [19]. The model
represents a Monte Carlo solution of a large set of coupled partial integro-
differential equations for the time evolution of the phase-space densities of
various particle species. At low and intermediate energies,

√
sNN < 5 GeV,

UrQMD model describes hadron–hadron and nucleus–nucleus collisions in
terms of the interactions between known hadrons and their excited states,
resonances. For higher energies, where the quark and gluon degrees of free-
dom cannot be neglected, UrQMD model introduces a concept of color string
excitations with their subsequent fragmentation into hadrons [19, 20].

25
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The basic input into the microscopic transport models are the cross-
sections of hadron–hadron interactions and decay widths. In the UrQMD
model, the total cross-section σtot of hadron–hadron interaction depends on
the isospin of colliding particles, their flavor and CMS energy. Total cross-
section is interpreted geometrically, which means that a collision between
two hadrons will occur if b <

√

σtot/π, where b is the impact parameter
of two hadrons. The relative weights for different channels of the collision
are then calculated via partial cross-sections. In order to describe more
than 99% of the total number of hadron–hadron collisions predicted in the
UrQMD model, several thousand different hadron–hadron combinations and
corresponding cross-sections are needed. Since only a few of these hadronic
cross-sections are experimentally measured, one relies on extrapolations of
known processes.

Designed as a multipurpose tool, UrQMD can be used for studying a wide
variety of heavy ion related effects, including particle production and corre-
lations. UrQMD transport code does not model Bose–Einstein correlations,
their eventual modeling is usually based on modifying the UrQMD output of
the four-momenta and freeze-out coordinates of particles in order to account
for the correlation effects.

3.1.1 Configuration and event simulation

This thesis aims at modeling Bose–Einstein correlations among identical pi-
ons produced in heavy ion collisions at RHIC energy. In order to do so, we
had to simulate a set of p–p and Au–Au events first. We choose the UrQMD
event generator, because of its ability to model heavy ion reactions at RHIC
energy. The advantage of the UrQMD transport model is its event output,
compliant with the well defined OSCAR 1997A format, containing particle
identification code, four-momenta and freeze-out coordinates for each one of
the produced particles. These particle entries are used as the main input for
the algorithm that models BEC.

The UrQMD source code, available for a download at [21], is written in
FORTRAN programing language and it needs to be compiled in order to
obtain the executable binary. Running the UrQMD model requires defining
the running parameters with an input configuration file. A typical UrQMD
configuration file is shown in Fig. 3.1, the same input file is used in this thesis
for simulating Au–Au collisions.

For the task of modeling Au–Au events, following configuration of the
UrQMD transport model was used. Central Au–Au collisions were simu-
lated at CMS energy per nucleon pair

√
sNN = 200 GeV with maximum

impact parameter bmax = 3 fm, where the impact parameter is defined as
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# projectile

#Ap Zp

pro 197 79

# target

#At Zt

tar 197 79

# number of events

nev 100

# time to propagate and output time-interval (in fm/c)

tim 500 500

# center of mass energy in AGeV

ecm 200

# equation of state

eos 0 #CASCADE mode

# some options and parameters

#cto 4 1 # ouptut of initialization

#ctp 1 1.d0 # scaling for decay width resonaces

# impact parameter range

IMP 0. 3.

#

f13 # no output to file13

f14 # no output to file14

f15 # no output to file15

f16 # no output to file16

#f19 # no output to file19=OSCAR1997A

f20 # no output to file20

# end of file

Figure 3.1: Sample UrQMD input file. Configured for simulating 100 events
of central Au–Au collisions at

√
sNN = 200 GeV with impact parameter

b ≤ 3 fm, evolution time t0 = 500 fm/c. The output to files other than
OSCAR 1997A format is suppressed.

a minimal distance between the centers of colliding nuclei. The maximum
CMS evolution time was set to t0 = 500 fm/c [22]. This is a maximum
time that the UrQMD model calculates the evolution from the beginning of
each heavy ion reaction up to the freeze-out of all secondaries. Up to this
maximum evolution time, all of the particles and resonances created in the
reaction are propagated in the space-time with numerous rescatterings and
resonance decays, their four-momenta are being computed and together with
their freeze-out coordinates written in the output file. The total number
of 4000 central Au–Au events was generated. Because we experienced a few
computational problems when running UrQMD, where the model would take
unusual long time in the order of days to calculate an event and finally had to
be aborted, the simulation of 4000 events was for easier manipulation divided
in 40 independent sessions per 100 simulated events in a row.

The UrQMD transport model was also configured to simulate p–p events
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at CMS energy per nucleon pair
√

sNN = 200 GeV. Here, the impact param-
eter was set to b = 0 fm, and the maximum CMS evolution time was set to
t0 = 500 fm/c. For the case of simulating p–p collisions, the total number of
21.2× 106 UrQMD events was generated. The p–p collisions were simulated
in sessions per 105 events.

For a comparison of a complexity of numerical calculation of heavy ion
collision to a collision of two protons, note that when using a PC equipped
with dual Intel Xeon 3.06 GHz CPU, the CPU time to generate one central
Au–Au event was about 300 s compared to average 0.025 s for a simulation
of the p–p event.

3.1.2 Particle selection

Firstly, a set of single-particle cuts is applied to all secondary particles at
freeze-out that are produced in p–p and Au–Au collisions. The particle
identification cut makes sure that we select only pions from the produced
secondaries in the event. There is a large number of pions, almost 80%,
among secondaries. A cut on pseudo-rapidity is applied, where only pions
in the mid-rapidity region |η| < 1 are selected. This pseudo-rapidity cut
further reduces pion multiplicity for p–p collisions by 81%, which results in
an average number of 4 pions per one p–p event. For the case of central Au–
Au collisions, the pseudo-rapidity cut results in 75% reduction of the pion
multiplicity. Here, the average multiplicity of pions is reduced to 1851 pions
per event.

The following pair cuts are applied for the two-particle analysis. Like-
charged pairs of identical pions are constructed from the set of previously
selected pions. In order to study the k> dependence of the correlation func-
tion, we divide pion pairs into four k>-bins with transverse pair momentum
k> ∈ (0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5) GeV/c. Moreover, an additional cut
|r| < 50 fm is used for all pion pairs. This cut limits the maximum space-
time distance between pions that can possibly have their momenta correlated
and therefore it lowers the background of uncorrelated pions.

The pion triplets that contribute to the three-particle correlation function
are required to pass the following cuts. Pions are constrained to have the
transverse momentum p> in the range 0.125 < p> < 0.5 GeV/c. Identically
charged pion triplets are then selected in the range q3 < 0.24 GeV/c. Addi-
tionally, the cut on the maximum space-time distance |r| < 50 fm between
pions is applied.
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Figure 3.2: Multiplicity distribution for central Au–Au collisions (b ≤ 3 fm)
at

√
sNN = 200 GeV.
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Figure 3.3: Multiplicity distribution for p–p collisions
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sNN = 200 GeV.
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Figure 3.4: Pseudo-rapidity distributions of pions for central Au–Au (solid
line) and p–p (dashed line) collisions. Both distributions are normalized to
the unit area.
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Figure 3.5: Pseudo-rapidity distributions of pions in the mid-rapidity region
for central Au–Au (solid line) and p–p (dashed line) collisions.
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Figure 3.6: Transverse momentum distributions of pions in mid-rapidity
region for central Au–Au (solid line) and p–p (dashed line) collisions. Both
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Figure 3.10: Mean number of inelastic collisions 〈Ninel〉 simulated by UrQMD
for central Au–Au events as function of evolution time t0.

3.1.3 UrQMD dynamics

Fig. 3.2 shows the particle multiplicity distribution for simulated central Au–
Au collisions. We find that the UrQMD model gives an average multiplicity
of 9531 particles at freeze-out per one central Au–Au event at the CMS
energy per nucleon pair

√
sNN = 200 GeV. Pions outnumber kaons, which

are the second most frequent among particle species at freeze-out, with the
average pion multiplicity of 7435 pions per event. That is 78% of the total
particle multiplicity. Among pions, each charge is represented with 1/3 of
the total pion multiplicity.

Simulated p–p events have their particle multiplicity distribution shown
in Fig. 3.3. The p–p event is characterized with average multiplicity of 28
particles at freeze-out. Out of these particles, pions make the largest frac-
tion, 75%, resulting in the average pion multiplicity of 21 pions per event.
Negative, positive and neutral pion multiplicities each equal 1/3 of the total
pion multiplicity.

One of the key kinematic variables that relate particle momentum to the
dynamics that is occurring in the heavy-ion reaction is the rapidity y, defined
as y = 1

2
ln(E+pz

E−pz
). The introduction of the rapidity y allows to considerably

simplify the selection and changing of the reference frame, due to the fact
that rapidity y is additive under successive Lorentz transformations along
the same direction. When the mass of the particle is small relative to the
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momentum, E ≈ p, a simpler variable, the pseudo-rapidity η is considered,
defined as η = 1

2
ln(p+pz

p−pz
). Fig. 3.4 shows the pseudo-rapidity distribution

of pions at freeze-out for central Au–Au and p–p collisions, normalized to
the unit area. The pseudo-rapidity distribution exhibits a general feature,
a plato at mid-rapidity. Fig. 3.5 shows the pseudo-rapidity distribution of
selected pions for central Au–Au and p–p events. Pions are selected in the
mid-rapidity region |η| < 1.

The transverse momentum distributions of selected pions for central Au–
Au and p–p collisions, normalized to the number of simulated events, are
shown in Fig. 3.6. Fig. 3.7 shows the ratio of these transverse momentum dis-
tributions, defined as RAuAu/pp(p>) = ( 1

2πp>Nev

d2N
dp> dy

)AuAu/(
1

2πp>Nev

d2N
dp> dy

)pp ,
where the distribution for Au–Au events is divided by the distribution for
p–p events. The ratio exhibits an enhancement of pions at low- and high-p>
regions. While the low-p> enhancement can be accounted to the pions that
origin in the decay of resonances, the high-p> enhancement is due to the pion
rescattering, which is present in the model.

Using the space-time four-coordinates of pions, one can calculate the
freeze-out proper time τ , defined as τ =

√

t2 − (x2 + y2 + z2), that can be
interpreted as the freeze-out time in the pion rest frame. Fig. 3.8 displays
the mean freeze-out proper time 〈τ〉 of selected pions as a function of their
transverse momentum p>, though revealing the dependence of the invariant
which involves space-time coordinates on momentum of the particle. It can
be seen that the hard pions with high transverse momenta p> origin sooner
since the beginning of the collision than soft pions in the low-p> region. A
distribution of the freeze-out proper time τ of selected pions is plotted in
Fig. 3.9.

By running the UrQMD simulations of central Au–Au collisions for dif-
ferent values of the evolution time t0, the time of the collision duration, we
are able to plot Fig. 3.10. Here, the dependence of the mean number of in-
elastic collisions 〈Ninel〉 on the evolution time t0 is shown, as it is simulated
by UrQMD for central Au–Au events. A plato ranging from the evolution
time t0 ≈ 0.2 fm/c, that coincides with the time from the beginning of the
reaction until the Lorentz contracted nuclei passed through each other, up
to the evolution time t0 ≈ 2.5 fm/c can be seen with the mean number of
inelastic collisions 〈Ninel〉 ≈ 1000, which is in agreement with the number
of binary collisions Nbin for central Au-Au events (b ≤ 3 fm). A plato at
the rightmost region of the evolution time t0 > 200 fm/c signals that the
source created in the collision is not expanding anymore and that all of the
secondaries are already created. Therefore, our choice of the evolution time
t0 = 500 fm for UrQMD simulations is justified [22].
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3.1.4 UrQMD output

Several different output files are provided by the UrQMD model. For our
purpose of modeling correlations among produced particles, where the out-
put from the event generator is further used as the input for the correlation
algorithm, we found the OSC output file being the most convenient choice.
OSC output file is compliant with OSCAR 1997A format [23], which is a stan-
dard format for the output of the transport models. One can choose between
different output formats in the UrQMD configuration file, see Fig. 3.1. Each
format of the output files is well documented in the UrQMD user guide [21].

The OSC output file contains information about particles at freeze-out
from the UrQMD model. It is an ASCII file which has an easy readable struc-
ture fixed by the OSCAR 1997A requirements. Particle entries of the event-
body, line by line, contain the particle listing number, particle ID adopted
from the Particle Data Group name scheme for Monte Carlo event gener-
ators [24], four-momentum vector (px, py, pz, E), mass m, all in GeV, and
freeze-out four-coordinates of the particle (x, y, z, t), in fm and fm/c.

In order to facilitate further processing within ROOT [25], an object ori-
ented data analyses framework, a small code was written to convert the out-
put OSCAR-file into the ROOT-file. This conversion between two different
output formats is performed by the program O2Root.cxx [34]. By reading
the ASCII file line by line, the gathered particle information is copied to the
simultaneously created MyParticle objects. This MyParticle object is an
inherited TParticle [25] object, that is designed to serve as a data storage
for description of one particle and it is especially convenient to store infor-
mation taken from event generators. It has been modified to carry an extra
information of the particle pseudo-rapidity, the polar angle of the particle
momentum and Bose–Einstein weight assigned to the particle in the corre-
lation algorithm. All of the particles created in the same event, an array of
MyParticle objects, are then saved as the contents of the MyEvent object.
This object also stores some information at the level of the event, including
event multiplicity and collision impact parameter. Additionally, all of the
simulated events with secondaries are stored in the newly created TTree [25]
object that has an easily accessible tree structure of objects and represents
the set of simulated events.

A storage capacity of 2.7 Gb is needed to store ROOT-files of 4000 Au–Au
UrQMD events. The ROOT-files containing 21.2 × 106 UrQMD simulated
p–p events require 34.3 Gb disk space.



Chapter 4

Modeling Bose–Einstein

correlations

4.1 Numerical modeling of BEC

The probabilistic structure of Monte Carlo event generators prevents oc-
curring of genuine Bose–Einstein correlations, which are of purely quantum
statistical origin. This can be seen in Fig. 4.1, where the two-particle corre-
lation function of identical pions is constructed using the output of UrQMD
transport model for simulations of central Au–Au and p–p events. In this
figure, the characteristic peak in the correlation function, the signal of BEC,
is missing. The best one can do is to model Bose–Einstein correlations by
changing the output of the generator in such a way as to reproduce the char-
acteristic signals of BEC obtained experimentally, the correlation function.

4.1.1 Weighting method

The standard method of introducing Bose–Einstein correlations among iden-
tical pions generated via classical Monte Carlo simulations is the weighting
method [26, 27] with the two-particle weight based on Eq. (2.12),

wij = 1 + cos(q · r) , (4.1)

where q = pi − pj and r = xi − xj are the relative momentum of the pion
pair and the space-time distance between two pions, respectively. The input
variables for the weighting method are thus the particle momenta and coor-
dinates at the freeze-out, found in the output file from the UrQMD transport
model simulations.

36
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Figure 4.1: Correlations function obtained directly from the UrQMD trans-
port model simulations of central Au–Au (a) and p–p (b) events, showing no
BEC correlations among identical pions.

In order to introduce position-momentum correlations to the otherwise
uncorrelated UrQMD events, Fig. 4.1, the corresponding two-particle mo-
mentum distribution of real pairs constructed from the UrQMD output needs
to be appropriately weighted to reflect the form of the distribution (2.12)
where BEC are present. This is done by binning the corresponding distri-
bution of relative momentum for the real pairs in the histogram with the
two-particle weight, Eq. (4.1), which is computed for each real pair of pions.

The two-particle correlation function can be experimentally constructed
as a ratio (2.43) of the distribution of the relative momentum for the real
pairs of pions to the reference distribution of the relative momentum for
the mixed pairs of pions, as it is explained in detail in Sec. 2.5.1. The
difference between real and mixed pairs is that the former is made of pions
from the same event wile the latter is made of pions from different events.
Distributions of relative momentum for real and mixed pairs of pions that
we need for constructing the two-pion correlation function are computed by
the programs CF2real.cxx and CF2mixed.cxx [34], respectively.

The results of introducing BEC among pions for central Au–Au events via
weighting method are shown in Fig. 4.2 in the form of the qinv and Bertsch–
Pratt parametrizations of the two-particle correlation function. Fig. 4.3
shows the results of modeling BEC via weighting method for p–p collisions,
where the qinv and Bertsch–Pratt parametrizations are used to plot the cor-
relation functions. These results are summarized in Tab. 4.1 in the form
of the fit parameters, correlation strength λ and radii, obtained by fitting
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Figure 4.2: Two-particle correlations obtained via weighting method (4.1)
for central Au–Au collisions. One-dimensional qinv (a) parametrization and
|qout| (b), qside (c), |qlong| (d) projections of three-dimensional Bertsch–Pratt
parametrization (cut 0 < |qout|, qside, |qlong| < 0.03 GeV/c is applied to
each unprojected variable) of the correlation function for identical pions in
the k> ∈ (0.1, 0.2) GeV/c bin. Shown are parameters of one- and three-
dimensional Gaussian fit, Eq. (2.40) and (2.42), respectively.
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Figure 4.3: Two-particle correlations modeled via weighting method (4.1)
for p–p events. qinv (a) parametrization and |qout| (b), qside (c), |qlong| (d)
projections of Bertsch–Pratt parametrization (cut 0 < |qout|, qside, |qlong| <
0.03 GeV/c is applied to each unprojected variable) of the correlation func-
tion for identical pions in the k> ∈ (0.1, 0.2) GeV/c bin. Shown are fit
parameters of Eq. (2.40) and (2.42).
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events λ Rinv (fm)
Au–Au 0.52 ± 0.01 6.81 ± 0.04

p–p 0.41 ± 0.03 5.44 ± 0.19

events λ Rout (fm) Rside (fm) Rlong (fm)
Au–Au 0.60 ± 0.01 6.89 ± 0.06 4.45 ± 0.04 7.01 ± 0.07

p–p 0.47 ± 0.03 5.21 ± 0.21 2.65 ± 0.12 6.19 ± 0.27

Table 4.1: Modeling BEC among pions for central Au–Au and p–p events
via weighting method with two-particle weight wij = 1+cos(q · r), Eq. (4.1).
Shown are fit parameters, correlation strength λ and interferometry radii,
for qinv parametrization (top) and Bertsch–Pratt parametrization (bottom)
of the correlation function.

qinv and Bertsch–Pratt parametrizations of the one- and three-dimensional
two-particle correlation function by Eq. (2.40) and (2.42), respectively.

The correlation function, a signal of BEC, is a consequence of the two-
pion weight. Our use of the weighting method is well justified, because the
phase-space densities generated by transport models are rather low. However,
the main drawback of this method is that it can not simulate multi-boson
correlations.

4.1.2 Charge reassigning algorithm

Recently, a new algorithm has been suggested [28], which claims to overcome
this limitation. It makes direct use of the fact that the identical bosons
have, by definition, very strong tendency to bunch themselves in a maximal
possible way in the same cells in phase-space.

Among all particles produced by the event generator one can always find
clusters of pions located near each other in phase-space in a way resembling,
to a some degree, Bose–Einstein statistics. In general, pions in such cluster
have different charges allocated to them by the event generator. Identical
pions are thus uniformly distributed in phase-space and show no BEC pat-
tern. Therefore, in order to implement the character of identical bosons one
has to equalize charges of as many as possible pions in each such cluster.

This algorithm is based on reassigning charges of produced pions and
results in formation of quantum BE cells in phase-space, in which the number
of identical bosons is enhanced [28]. It conserves the energy-momenta, total
charge and does not alter any single particle inclusive distribution. These
cannot be changed, because they are direct observables in the experiment.
However, the charge distribution among particles in event can be altered as
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Figure 4.4: Flow diagram for the charge reassigning algorithm.
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Figure 4.5: Two-particle correlation function obtained via charge reassigning
algorithm with Gaussian weight (4.2) (full circles) compared to the correla-
tions modeled via weighting method (open circles) for central Au–Au colli-
sions. Shown are qinv (a) parametrization and |qout| (b), qside (c), |qlong| (d)
projections of Bertsch–Pratt parametrization (cut 0 < |qout|, qside, |qlong| <
0.03 GeV/c is applied to each unprojected variable) of the correlation func-
tion for identical pions in the k> ∈ (0.1, 0.2) GeV/c bin. Fit parameters
correspond to one- and three-dimensional Gaussian fit, Eq. (2.40) and (2.42),
respectively.
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id c λ Rinv (fm)
(a) 1 1.10 ± 0.01 8.19 ± 0.03

(b)
√

2 0.97 ± 0.01 8.67 ± 0.04
(c) 2 0.84 ± 0.01 9.18 ± 0.05
(d) 3 0.67 ± 0.01 9.69 ± 0.07
(e) 3.2 0.65 ± 0.01 9.82 ± 0.08
(f) 3.8 0.58 ± 0.01 9.94 ± 0.09
(g) 5 0.49 ± 0.01 10.21 ± 0.11

id c λ Rout (fm) Rside (fm) Rlong (fm)
(a) 1 1.09 ± 0.01 6.30 ± 0.04 7.36 ± 0.04 7.45 ± 0.05

(b)
√

2 0.97 ± 0.01 6.73 ± 0.05 7.77 ± 0.06 7.94 ± 0.06
(c) 2 0.83 ± 0.01 7.25 ± 0.07 8.12 ± 0.07 8.18 ± 0.08
(d) 3 0.68 ± 0.01 7.81 ± 0.11 8.43 ± 0.10 8.84 ± 0.11
(e) 3.2 0.66 ± 0.01 8.03 ± 0.12 8.44 ± 0.11 9.01 ± 0.12
(f) 3.8 0.58 ± 0.01 8.10 ± 0.13 8.60 ± 0.13 8.86 ± 0.14
(g) 5 0.49 ± 0.01 8.40 ± 0.17 8.62 ± 0.15 9.36 ± 0.18

Table 4.2: Modeling BEC among pions for central Au–Au collisions via
charge reassigning method with exponential weight Pij = exp(−c |q · r|).
Dependence of correlation strength λ and interferometry radii, the fit pa-
rameters of the correlation function, on the constant c used in exponential
weight. Shown are parameters for qinv parametrization (top) and Bertsch–
Pratt parametrization (bottom) of the correlation function.

being not directly observable.
Briefly, the proposed charge reassigning algorithm consists of the following

procedure. For each event, the event generator provides a number of charged
and neutral pions with their energy-momenta pi and space-time coordinates
xi at freeze-out. Pion (i) is chosen randomly and +, − or 0 charge is assigned
to it randomly with weights proportional to P+ = n+/n, P− = n−/n and
P0 = n0/n, where n = n+ + n− + n0 is total multiplicity of pions π+, π−

and π0 in event. This pion defines a new phase-space cell. Distances in
momenta |q| = |pi − pj| between the chosen pion (i) and all other pions (j)
which are still without signs are calculated and pions (j) are arranged in
order of ascending |q|. The additional pions (j) are then added to the cell
with Gaussian weight [28]

Pij = exp

(

−1

2
|q2||r2|

)

, (4.2)

where r = xi − xj and q = pi − pj are the space-time distance between two
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id c λ Rinv (fm)
(a) 0.5 0.65 ± 0.01 3.44 ± 0.05
(b) 1 0.49 ± 0.02 3.84 ± 0.09
(c) 2 0.38 ± 0.03 4.47 ± 0.19
(d) 3 0.34 ± 0.03 5.04 ± 0.28
(e) 5 0.23 ± 0.03 4.72 ± 0.38

id c λ Rout (fm) Rside (fm) Rlong (fm)
(a) 0.5 0.60 ± 0.01 2.18 ± 0.04 3.11 ± 0.06 2.85 ± 0.05
(b) 1 0.45 ± 0.02 2.37 ± 0.07 3.55 ± 0.11 3.18 ± 0.09
(c) 2 0.33 ± 0.02 2.53 ± 0.15 3.88 ± 0.20 3.56 ± 0.19
(d) 3 0.27 ± 0.03 2.83 ± 0.25 4.20 ± 0.33 3.92 ± 0.25
(e) 5 0.17 ± 0.02 2.43 ± 0.24 3.44 ± 0.46 3.36 ± 0.30

Table 4.3: Modeling BEC among pions for p–p events via charge reassigning
algorithm with Gaussian weight Pij = exp(−c |q2||r2|). Dependence of cor-
relation strength λ and interferometry radii, the fit parameters of one- (top)
and three-dimensional (bottom) correlation function, on the constant c used
in Gaussian weight.

pions and relative momentum of the pion pair, respectively. All accepted
pions in the cell are assigned the same charge as pion (i). The process of
adding the pions to the cell continues until first failure, i.e. when generated
random number r ∈ (0, 1) becomes r > Pij, after which the new cell is
formed.

In the charge reassigning algorithm, we select pions in a wider pseudo-
rapidity region |η| < 2, which allows for a possible fluctuation of the charge
among pions in the mid-rapidity cut |η| < 1 that is used for constructing the
correlation function. The algorithm of producing new cells proceeds until all
pions in event are used, event by event. In this way four-momenta, freeze-out
coordinates and total charge of the system provided by the event generator
are kept intact, but the individual charges of particles are not.

For better understanding, the above mentioned procedure can be visu-
alized as the flow diagram for the charge reassigning algorithm, illustrated
in Fig. 4.4. The charge reassigning algorithm is performed by the program
BEC.cxx [34]. The input for the code is a ROOT-file with the UrQMD out-
put. BEC.cxx contains the algorithm for numerical modeling of BEC via
charge reassignment. The output of the program is a ROOT-file with modi-
fied UrQMD events, where BEC are present.

The only place where dynamics can enter the charge reassigning algorithm
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is the weight Pij that depends on the output of the event generator. Weight
Pij is proportional to the probability that a given pion likes to enter the cell
formed already by other pion of the same charge. The form of the weight,
Eq. (4.2), is suggested by [28] and it is the so-called minimal weight con-
structed from the output information provided by the cascade hadronization
model.

The results of introducing BEC among identical pions for central Au–Au
events using this algorithm are shown in Fig. 4.5, where one- and three-
dimensional two-particle correlation function is plotted using the qinv and
Bertsch–Pratt parametrizations, respectively. By comparing the results of
the new charge reassigning algorithm with the standard weighting method,
the correlation functions and their fit parameters, it can be seen that the
correlation strength λ acquires unphysical value above unity. That is a con-
sequence of the over-bunching of identical pions in phase-space cells, intro-
duced by Gaussian weight Pij, Eq. (4.2). The over-bunching may be due to
the too shallow decrease of the weight. Therefore, we find that the suggested
Gaussian weight, Eq. (4.2), does not reproduce BEC correctly, when it is
used in the proposed charge reassigning algorithm to model BEC of identical
pions for central Au–Au collisions. This conclusion in drawn in [35], where
the partial results of modeling BEC among identical pions using the charge
reassigning method with suggested Gaussian weight (4.2) are presented.

Since the suggested Gaussian weight (4.2) substantially overestimates the
correlation strength λ and radii and therefore does not properly model the
BEC effect of identical pions for central Au–Au collisions, we consider using
different choices of weight Pij in the charge reassigning algorithm, trying to
reproduce the results of the weighting method. The criterion for the success-
ful weight is chosen to be the correlation strength parameter λ, which needs
to reproduce the correlation strength obtained by the weighting method.

In addition to the Gaussian weight (4.2) it is also suggested to use different
most natural choices of weights, which use only the available information
provided by event generator [28]. For modeling BEC via charge reassigning
algorithm, we decide to use weight Pij of the Gaussian and exponential form,

Pij = exp
(

−c |q2||r2|
)

(4.3)

and
Pij = exp (−c |q · r|) , (4.4)

respectively, where constant c is the free parameter. The BEC effect is in this
case given entirely by the number of identical pions in a phase-space cell and
by the number of such cells, therefore it depends entirely on the weight Pij

present in the charge reassigning algorithm. Tab. 4.2 and 4.3 show the results
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Figure 4.6: Correlation strength difference ∆λ between charge reassigning
algorithm and weighting method as a function of the parameter c used in the
exponential weight (4.4) for one-dimensional (a) and three-dimensional (b)
parametrizations of the correlation function for Au–Au events.

of modeling BEC for different weights Pij, exponential (4.4) and Gaussian
weight (4.3) for different values of parameter c, used in the charge reassign-
ing algorithm for Au–Au and p–p events. The results are shown in the form
of fit parameters, correlation strength λ and radii, obtained by fitting qinv

and Bertsch–Pratt parametrizations of the one- and three-dimensional two-
particle correlation function by Eq. (2.40) and (2.42), respectively. It can
be seen that for the decreasing weight Pij, which is reflected in the increase
of the constant c used in the argument of the weight, we obtain increasing
number of cells, which leads to the decreasing correlation strength λ, the
intercept of the correlation function C2(qinv = 0). The correlation strength
difference ∆λ between the charge reassigning algorithm and the weighting
method as a function of the parameter c is shown in Fig. 4.6 using one- and
three-dimensional parametrizations of the correlation function for Au–Au
events. By fitting the dependence of the correlation strength difference ∆λ
on parameter c used in the argument of the weight, we find the exponential
weight Tab. 4.2(f) and Gaussian weight Tab. 4.3(c) as best matching the
weighting method, when used in the charge reassigning algorithm for mod-
eling BEC for central Au–Au and p–p events, respectively. These results,
in the form of the correlation functions, are plotted in Fig. 4.7 and Fig. 4.8
for central Au–Au and p–p events, respectively. At the same time we find
that the Gaussian weight (4.3) applied on Au–Au events is unable to repro-
duce the trends of the correlation function from the weighting method and
similarly, the exponential weight (4.4) applied on p–p events is unable to
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reproduce correlations from the weighting method, with respect to all differ-
ent choices of parameter c present in the argument of the weight. Here, the
results are diverging from those obtained by weighting method in the means
of unphysical values of the correlation strength λ.

After application of the charge reassigning algorithm, identical pions show
strong tendency to occur in bunches, occupying cells in the phase-space,
which results in the BEC pattern. These cells are of varying sizes, both in
momenta and in space, where the sizes of the cells depend on the values of
weights Pij. Because the number of pions that can be put in a given cell ncell is
not restricted, this algorithm automatically models multi-boson correlations
of all orders. The highest order of BEC is limited by the maximum occupation
one can reach in a single cell in a given event. The majority of cells contain
only a single pion, though. For small multiplicities the number of cells is
smaller and their occupation lower. This can be clearly seen when comparing
the cell occupancy plots, direct results of the charge reassigning algorithm,
for central Au–Au collisions versus p–p collisions. See Fig. 4.9 and Fig. 4.10,
respectively. These results show that for 4000 central Au–Au events, multi-
boson correlations up to 6-th order are present, while for 21.2×106 correlated
p–p events reach at maximum 4-th order BEC. The occupancy of identical
pions in cells follows the geometrical (Bose–Einstein) distribution

P (ncell) = (1 − P )P ncell−1 , (4.5)

where P (ncell) is the probability distribution of cell occupancy ncell and P
is the probability P (ncell > 1) =

∑∞

ncell=2 P (ncell) = P that the cell contains
two or more identical pions.

It is believed, that the hot and dense nuclear matter formed in the colli-
sion, while going through the expansion and cooling stage, may relax into a
vacuum state oriented quite differently from the normal ground state. This
results in the formation of what are known as disoriented chiral condensates
(DCC) which finally decay producing an imbalance in pion production [29].
The basic difference between the events with DCC and those without any
DCC formation lies in the probability distribution of the neutral pion fraction
f = n0/n, where n = n+ + n− + n0 is total multiplicity of pions π+, π− and
π0 in event. The probability distribution of the neutral pion fraction is given
by P (f) = 1

2
f−1/2 for events with DCC and by a Gaussian with 〈f〉 = 1/3

for non-DCC events. An effective probe for the DCC production can be the
event-by-event fluctuation study of the neutral to charged pion ratio [30].
The fluctuation D in the neutral to charged pion ratio R = n0/(n+ + n−) is
given as

D =
〈δR2〉
〈R〉2 =

〈R2〉 − 〈R〉2
〈R〉2 , (4.6)
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Figure 4.7: Correlation function obtained via charge reassigning algorithm
using exponential weight Tab. 4.2(f) (full circles) compared to the correla-
tions modeled via weighting method (open circles) for central Au–Au colli-
sions. qinv (a) parametrization and |qout| (b), qside (c), |qlong| (d) projections
of Bertsch–Pratt parametrization (cut 0 < |qout|, qside, |qlong| < 0.03 GeV/c is
applied to each unprojected variable) of the correlation function for identical
pions in the k> ∈ (0.1, 0.2) GeV/c bin. Shown are parameters of one- and
three-dimensional Gaussian fit, Eq. (2.40) and (2.42), respectively.
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Figure 4.8: Two-particle correlations modeled via charge reassigning algo-
rithm using Gaussian weight Tab. 4.3(c) (full circles) compared to the correla-
tions obtained via weighting method (open circles) for p–p events. Shown are
qinv (a) parametrization and |qout| (b), qside (c), |qlong| (d) projections of three-
dimensional Bertsch–Pratt parametrization (cut 0 < |qout|, qside, |qlong| <
0.03 GeV/c is applied to each unprojected variable) of the two-pion correla-
tion function in the k> ∈ (0.1, 0.2) GeV/c bin. Fit parameters correspond to
Eq. (2.40) and (2.42).
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Figure 4.9: Cell occupancy of identical pions, ncell, for central Au–Au colli-
sions. Here, multi-boson correlations up to 6-th order are modeled via charge
reassigning algorithm using exponential weight Tab. 4.2(f). Also shown is the
fit with Eq. (4.5).
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Figure 4.10: Cell occupancy of identical pions, ncell, for p–p collisions. Multi-
boson correlations are obtained via charge reassigning algorithm using Gaus-
sian weight Tab. 4.3(c). Shown with the fit using Eq. (4.5). Small multiplici-
ties of p–p events result in smaller number of cells and their lower occupancy
than of Au–Au events.
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events D
Au–Au UrQMD 0.022

Au–Au BEC 0.024
p–p UrQMD 0.039

p–p BEC 0.039
DCC 1.8

Table 4.4: Fluctuation D in the neutral to charged pion ratio for UrQMD
simulations of Au–Au and p–p events and the same events after introducing
BEC via charge reassigning algorithm. DCC value is obtained from [30].

where the averaging 〈. . .〉 is over events. To be sure that the charge reassign-
ing algorithm does not artificially mimic DCC formation, we have checked
the values of the fluctuation in the neutral to charged pion ratio (4.6) for
Au–Au and p–p events, see Tab. 4.4. For our case, the fluctuation in the
ratio is way below the value 1.8 obtained for DCC [30] and we conclude that
the charge reassigning algorithm does not mimic DCC production.

4.2 k> dependence of the interferometry pa-

rameters

The radius parameters, obtained by fitting the correlation function, measure
the sizes of the regions emitting particles of a given momentum, the homo-
geneity regions. Hence, for an expanding source, depending on the average
momenta k of the pion pairs entering the correlation function, different parts
of the source are measured. Therefore, the dependence of the transverse
radii on the transverse momentum k> contains dynamical information of the
particle emitting source [5].

Fig. 4.11 shows the k> dependence of λ and Rinv, parameters of the
qinv parametrization (2.40) of the correlation function, and λ, Rout, Rside and
Rlong, parameters of Bertsch–Pratt parametrization (2.42) of the two-particle
correlation function of identical pions for central Au–Au events. Here, our
results of modeling BEC via charge reassigning algorithm using the exponen-
tial weight best matching the weighting method, Tab. 4.2(f), are compared
with results obtained via weighting method. For the qinv parametrization, an
agreement can be seen in parameter λ. That is due to our choice of the ex-
ponential weight Pij in the charge reassigning algorithm, where we demand
the correlation strength parameter λ to reproduce the weighting method.
The invariant radius Rinv is overestimated by the charge reassigning method
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Figure 4.11: k> dependence of interferometry parameters for the qinv (a,
b) and Bertsch–Pratt (c, d, e, f) parametrization of the correlation function
for central Au–Au events. Charge reassigning algorithm using exponential
weight Tab. 4.2(f) (full circles) is compared to weighting method (open cir-
cles). Shown are preliminary data [31] by the STAR experiment (full stars).
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in the first two k> bins by 30-50%. The three-dimensional parametrization
shows that the charge reassigning method substantially overestimates the
extracted side radius Rside by 40-90% and fails to reproduce the weighting
method in the side direction in all k> bins.

Furthermore, Fig. 4.11 shows the preliminary results from data by the
STAR collaboration [31], parameters λ, Rout, Rside and Rlong for the 0-5%
most central Au–Au collisions at

√
sNN = 200 GeV as a function of k> for

identically charged two-pion correlation functions. Here, increase in the λ
parameter with k> can be observed, which is attributed to decreased contri-
bution of pions from the long-lived resonances at higher transverse momenta.
While the decrease of the transverse radii Rout and Rside with k> is due to the
transverse flow, which is present in the source created in heavy ion collisions,
the strong decrease in Rlong is produced by the boost invariant longitudinal
flow [32]. As transverse flow increases, the transverse region of homogeneity
decreases, as the correlation function receives contributions from a smaller
fraction of the total source. These correlations of spatial coordinates of par-
ticle emission on momentum k are thus generated by the collective expansion
of the sources created in heavy ion collisions. By comparing our extracted
radii with the STAR data it can be seen that the charge reassigning algorithm
gives a steeper decrease of transverse and longitudinal radii, which point to
the rapid expansion of the particle emitting source, also visible in Fig. 3.8, as
the result of the strong cascade hadronization present in the UrQMD model.

4.3 The three-particle correlations

As already mentioned, multi-particle correlations up to 6-th and 4-th order
can be seen in the cell occupancy plots for Au–Au and p–p collisions, Fig. 4.9
and Fig. 4.10, respectively. In particular, using Eq. (4.5), the probability

P (ncell ≥ 3) = P (ncell ≥ 1) − P (ncell = 1) − P (ncell = 2)

= 1 − (1 − P ) − (1 − P )P

= P 2 (4.7)

that the average cell contains at least three identical pions is non-negligible
and equals P (ncell ≥ 3) = (4.38 ± 0.05) × 10−3 and P (ncell ≥ 3) = (1.32 ±
0.02)×10−4 for central Au–Au and p–p collisions, respectively. This probabil-
ity is more than 30-times higher for Au–Au events than for p–p events. Hence,
we study effects of higher order BEC for Au–Au events using the three-
particle correlation function (2.49) according to the procedure explained in
Sec. 2.5.2. Distributions of the invariant three-particle relative momentum for
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real and mixed triplets of pions are computed by the programs CF3real.cxx
and CF3mixed.cxx [34], respectively.

Our results for the three-particle correlation function (2.44), the contribu-
tion due to the two-particle correlations (2.51) and the genuine three-particle
correlation function (2.50) for central Au–Au events are shown in Fig. 4.12.
After subtracting from the three-particle correlation function C3(q3) the con-
tribution due to the two-particle correlations C1,2(q3) we obtain the genuine
three-particle correlation function Cgen

3 (q3), where the characteristic peak at
low q3 is not visible. The shape of C3(q3) is built up of products of two-pion
correlations with the effect of true three-pion correlations being not notice-
able. This may be due to the very low statistics of 4000 simulated UrQMD
events that we use for modeling BEC, when compared to the experimental
data. In the three-pion correlations analysis by the STAR collaboration [33],
in fact, it is only with the very high statistics available from STAR, 3 × 105

Au–Au events at
√

sNN = 130 GeV, that the calculation of the three-particle
correlation function can be considered in the range q3 < 0.12 GeV/c.
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Figure 4.12: Three-particle correlation function (a) of identical pions for
central Au–Au collisions and contribution from two-particle correlations (b).
Genuine three-particle correlations (c) are not visible probably due to low
statistics.



Chapter 5

Conclusions and summary

To summarize, in this thesis we presented the results of numerical modeling
of Bose–Einstein correlations among identical pions produced in nucleus–
nucleus and proton–proton collisions at RHIC energies using recently pro-
posed charge reassigning algorithm [28]. BEC among final state pions were
introduced into Au–Au and p–p simulated events.

Using the UrQMD transport model, we simulated 4000 central Au–Au
events with impact parameter b ≤ 3 fm and 21.2 × 106 minimum bias p–p
events at

√
sNN = 200 GeV. A routine converting the UrQMD output com-

pliant with the OSCAR 1997A format into the ROOT-file was written. The
source code O2Root.cxx is available at [34]. All simulated UrQMD events
were converted into ROOT-files using the above routine and the dynamics of
the UrQMD transport model was studied. It was shown that mean freeze-
out proper time of pions for central Au-Au collisions at

√
sNN = 200 GeV

is a monotonous function of pion transverse momentum, reaching a max-
imum 〈τ〉 = 36 fm/c at p> = 0 GeV/c and declining to 〈τ〉 = 18 fm/c
at p> > 1.5 GeV/c. Contrary to this, distribution of τ itself is peaked at
about 10 fm/c and for τ < 1 fm/c and τ > 40 fm/c it is almost negligible.
However, mean number of inelastic collisions 〈Ninel〉 saturates at much later
proper time τ ≥ 200 fm/c.

The software used for the analysis of the two-particle and three-particle
correlation function was developed [34]. Two-particle relative momentum dis-
tributions for real and mixed pairs of pions were computed by the programs
CF2real.cxx and CF2mixed.cxx, respectively. The three-particle momen-
tum distributions were computed using codes CF3real.cxx and CF3mixed.cxx,
respectively.

Using two-particle cosine weight (4.1) the two-particle correlation func-
tion of identical pions for Au–Au and p–p collisions was extracted from the
UrQMD generated events. Then, using a code BEC.cxx [34] that contains

56
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the charge reassigning algorithm for numerical modeling of BEC, multi-
particle Bose–Einstein correlations among identical pions were introduced
into UrQMD generated events and new BEC correlated UrQMD events were
produced. The two-particle correlation function of identical pions for BE
correlated central Au–Au events was compared with the standard weight-
ing method. It was found that with the originally proposed Gaussian weight,
given by Eq. (4.2), the charge reassigning algorithm leads to the over-bunching
of identical pions in phase-space cells. As a result, the correlation strength
acquires an unphysical value λ > 1.

Trying to reproduce the results of the correlation function by the weight-
ing method we have used in the charge reassigning algorithm exponential
Pij = exp(−c |q · r|) and Gaussian weight Pij = exp(−c |q2||r2|) with differ-
ent choices of the parameter c. For central Au–Au and p–p minimum bias
collisions the best matching values of the parameter c for exponential and
Gaussian weights have been found, Tab. 4.2(f) and Tab. 4.3(c), respectively.

The multi-particle correlations of identical pions modeled via charge re-
assigning algorithm were found to persist up to 6-th and 4-th order for
central Au–Au and p–p collisions, respectively. The probability that the
average cell contains at least three pions was found to be P (ncell ≥ 3) =
(4.38 ± 0.05) × 10−3 and P (ncell ≥ 3) = (1.32 ± 0.02) × 10−4 for central
Au–Au and p–p collisions, respectively.

The fluctuation (4.6) of the neutral to charged pion ratio from BE corre-
lated events was studied, Tab. 4.4. It was found that the charge reassigning
algorithm does not artificially produce fluctuations expected from the forma-
tion of disoriented chiral condensate.

The k> dependence of the two-particle correlation function and corre-
sponding interferometry radii Rout, Rside and Rlong for BE correlated central
Au–Au events were compared to results from the STAR experiment at RHIC.
While the charge reassigning algorithm resulted in a steeper decrease of trans-
verse and longitudinal radii, the weighting method produced rather accurate
description of Rlong but overestimated Rout and underestimated Rside.

The three-particle correlation function of identical pions for central Au–
Au events was constructed. The contribution due to the two-particle cor-
relations was identified and subtracted. However, due to the low statistics
of simulated Au–Au events the genuine three-particle correlations were not
observed.
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