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INTRODUCTION

Jets are an excellent probe of the Quark-Gluon
Plasma (QGP) - an exotic state of matter created in
high-energy nucleus-nucleus collisions. They are cre-
ated at the very early stage in the collision during hard
parton-parton scatterings, which means that they ex-
perience the entire evolution of the system. In addition,
their production cross section in proton-proton colli-
sions is calculable by perturbative Quantum Chromo-
dynamics. The modification of jet production as the re-
sult of parton interactions with the QGP medium (jet
quenching) was first studied via suppression of high-
transverse momentum (high-pT) hadrons [1], which
provided a clear evidence of QGP formation in Au+Au
collisions at top RHIC energies. Since then, detailed
measurements with reconstructed jets have been car-
ried out in Pb+Pb collisions at the LHC [2, 3, 4]. These
proceedings focus on the recently reported results of in-
clusive charged-particle jet production in Au+Au col-
lisions at

√
sNN = 200 GeV by the STAR experiment

at RHIC [5] and also on the ongoing analysis of fully-
reconstructed jets, which is expected to bring extended
kinematic reach and improved precision.

DATASET AND ANALYSIS

The analysis uses the STAR detector [6], a multi-
purpose large-acceptance system utilizing a solenoidal
magnetic field. Charged-particle tracks and their mo-
menta are reconstructed in the Time Projection Cham-
ber (TPC) [7]. The Barrel Electromagnetic Calorime-
ter [8] is used to measure the energy deposited by
neutral particles and also provides online triggers.
The STAR detector offers a full azimuthal coverage
within pseudorapidity range |η| < 1. The dataset
for the charged-particle jet analysis amounts to ∼
6 µb−1 of Au+Au collisions at

√
sNN = 200 GeV

recorded with the minimum-bias trigger in year 2011,
while the fully-reconstructed jet analysis uses a 5.2
nb−1 dataset of Au+Au collisions at the same en-
ergy recorded in 2014 using the High-Tower trigger,
requiring a signal threshold of ∼ 4 GeV in a single
BEMC tower. Charged-particle jets are reconstructed
from TPC tracks (see [5] for analysis details), while
fully-reconstructed jets also include the energy from
BEMC clusters (3×3 towers), corrected for hadronic
energy deposition. The clusters’ transverse energy was
limited to 0.2 < ET < 30.0 GeV. Jets are recon-
structed using the anti-kT algorithm [9] with resolu-
tion parameters R = 0.2, 0.3, 0.4. The combinatorial-
jet background in both analyses is suppressed by im-
posing a cut on the transverse momentum of the hard-
est particle (pT,lead) in a jet. However, this cut also

introduces a bias into the fragmentation of the surviv-
ing jet population. This bias is estimated by varying
the pT,lead cut and physics results are discussed in the

unbiased region.
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Fig. 1. Uncorrected distributions of charged-particle [5]
(top) and fully-reconstructed (bottom) jets as a function

of preco
T,jet in 0-10 % Au+Au collisions at

√
sNN = 200

GeV. Different colors represent different values of pT,lead.

RESULTS

Figure 1 shows the charged-particle (top) and fully-
reconstructed (bottom) jet distributions as a function
of preco

T,jet = praw
T,jet − ρ · A, where praw

T,jet is the raw

jet pT given by the jet finder, A is the jet area and
ρ is the median background energy density (calculated
event-wise), for R = 0.4 in central Au+Au collisions. It
can be seen that the pT,lead cut significantly reduces

the combinatorial background, especially at low preco
T,jet.

The distributions also indicate the extended kinematic
reach of the fully-reconstructed-jet analysis. However,
since this analysis is a work in progress, we only show
corrected results from the charged-particle jet analy-
sis. Corrections are applied for the smearing effects of
the high-multiplicity environment and instrumental ef-
fects using the SVD and Bayesian unfolding methods
(details in [5]).

Figure 2 shows charged-particle jet RCP, the scaled
ratio of yields in central to peripheral collisions, which
exhibits a similar level of suppression as charged
hadrons at RHIC [10] and LHC energies [11] and as

charged-particle jets at the LHC at higher pchT,jet [2],

with weak pchT,jet dependence. Figure 3 shows charged-
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Fig. 2. RCP of charged-particle jets reconstructed with R = 0.2 (left) and 0.3 (right) and pT,lead > 5 GeV/c (solid stars)

[5]. Also shown are measurements of RCP for charged-particle jets at the LHC (solid circles) [2] and inclusive charged
hadrons at RHIC (open stars) [10] and the LHC (open circles) [11].
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Fig. 3. RPYTHIA
AA as a function of pch

T,jet for charged-particle jets at STAR reconstructed with R = 0.2 (left), 0.3 (middle)

and 0.4 (right), and pT,lead > 5 GeV/c [5]. Bands represent theory calculations [13, 14, 15, 16].

particle jet RPYTHIA
AA , which measures the yield sup-

pression for central Au+Au collisions compared to p+p
baseline calculated by PYTHIA 6 (Perugia 2012, fur-
ther tuned by STAR [12]). Calculations based on jet
quenching models are largely consistent with the mea-
sured value of RPYTHIA

AA within uncertainties, which
motivates more precise measurements to distinguish
among them.

CONCLUSIONS

We have discussed the recently reported results of
charged-particle jet production in Au+Au collisions at√
sNN = 200 GeV by the STAR experiment. The RCP

shows large suppression, consistent with similar mea-
surement at the LHC and also with charged hadron
results at RHIC and the LHC. The RPYTHIA

AA also
shows large suppression consistent with models incor-
porating jet-quenching mechanisms. The ongoing fully-
reconstructed jet analysis is expected to increase the
kinematic reach and precision of STAR inclusive jet
measurements.
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