Measurement of open-charm hadrons in Au+Au collisions at $\sqrt{s_{\text{NN}}} = 200 \text{ GeV}$ by the STAR experiment

35

36

60

61

62

J. Vanek for the STAR Collaboration, vanek@ujf.cas.cz, Nuclear Physics Institute of the Czech Academy of Sciences

1 PHYSICS MOTIVATION

One of the main goals of the heavy-ion program ³⁷ 2 at the STAR experiment is to study properties of the ³⁸ 3 Quark-Gluon Plasma (QGP). Charm quarks are an ³⁹ 4 excellent probe of the QGP as they are produced at ⁴⁰ 5 very early stages of ultra-relativistic heavy-ion colli-⁴¹ 6 sions and therefore experience the whole evolution of 42 7 the hot and dense medium. STAR is able to study pro-⁴³ 8 duction of charm quarks through a precise topological ⁴⁴ 9 reconstruction of open-charm hadron decays utilizing 10 the Heavy Flavor Tracker (HFT) [1]. 11

Various measurements are used to study interac-12 tions of charm quarks with the QGP. In these pro-13 ceedings, we present a selection of recent results on 14 open-charm hadron production from the STAR exper-15 iment. In particular, we discuss the nuclear modifica-16 tion factors (R_{AA}) of D^{\pm} and D^{0} mesons which give 17 access to the charm quark energy loss in the QGP. We 18 show the Λ_c^{\pm}/D^0 and D_s/D^0 yield ratios which help us 19 better understand the charm quark hadronization pro-20 cess in heavy-ion collisions. In addition, we present the 21 rapidity-odd directed flow of D^0 mesons, which can be 22 used to probe the initial tilt of the QGP bulk and the 23 effects of the early-time magnetic field. 24

25 **RESULTS**

Figure 1 shows the R_{AA} of D⁰ [2] and D[±] mesons as a function of transverse momentum (p_T) in 0-10% central Au+Au collisions. Both open-charm mesons show a significant suppression at high p_T which suggests strong interactions of the charm quarks with the QGP. 45 The R_{AA} evolution in low to intermediate p_T region 46 suggests a large collective flow of charm quarks [2]. 47

Fig. 1. R_{AA} of D⁰ [2] and D[±] mesons as a function of p_T in 0-10% central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV.

The presence of the QGP may also influence the 63 charm quark hadronization. In order to study that, 64 STAR has measured the Λ_c^{\pm}/D^0 yield ratio as a function of number of participants (N_{part}) [3] as shown in Fig. 2. In central collisions, the ratio shows an enhancement with respect to PYTHIA 8.2 p+p calculations (Monash tune [4]) with and without color reconnection (CR) [5]. The centrality dependence follows a similar trend as baryon to meson ratio of light flavor hadrons [6, 7]. The data are reasonably reproduced by the Catania model incorporating coalescence and fragmentation hadronization of the charm quarks [8].

Fig. 2. Λ_c^{\pm}/D^0 yield ratio as a function of number of participants N_{part} . The open-charm hadron data are compared to measurements of light flavor hadrons [6, 7], PYTHIA calculation and the Catania model incorporating coalescence and fragmentation hadronization of the charm quarks [8]. Taken from Ref. [3].

To get more detailed information about hadronization of charm quarks, STAR has also measured the D_s/D^0 yield ratio, as shown in Fig. 3. The ratio is enhanced with respect to a PYTHIA 8.2 calculation, suggesting enhanced D_s production in Au+Au collisions with respect to p+p collisions. The data are qualitatively described by various models incorporating coalescence and fragmentation hadronization [8, 9, 10].

Theoretical calculations predict that the charm quarks could also be used to probe the initial tilt of the QGP bulk and the electromagnetic (EM) field induced by the passing spectators [11]. The former leads to a large negative slope of the directed flow versus rapidity (dv_1/dy) of open-charm mesons, and the latter to a negative slope for D⁰ and a positive slope for $\overline{D^0}$. When combined, the slope is predicted to be negative for both D⁰ and $\overline{D^0}$ but larger for D⁰ than for $\overline{D^0}$ in Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV. The STAR results on D⁰ and $\overline{\overline{D^0}} v_1$ are shown in Fig. 4. The current precision of the measurement is not sufficient to

Fig. 3. D_s/D^0 yield ratio as a function of p_T . The data are compared to various models incorporating coalescence and fragmentation hadronization of charm quarks [8, 9, 10] and PYTHIA p+p calculations.

conclude on the EM induced splitting, but the dv_1/dy 65 slope is indeed negative and significantly larger than 66

that of light-flavor mesons, as discussed in Ref. [12]. 67

CONCLUSIONS 68

The STAR experiment has extensively studied the ⁹⁴ 69 production of open-charm hadrons in Au+Au colli-⁹⁵ 70 sions at $\sqrt{s_{\rm NN}} = 200$ GeV through a precise topo-96 71 logical reconstruction of their hadronic decays, uti-⁹⁷ 72 lizing the HFT. The latest results show that the $D^{0.98}$ 73 and D^{\pm} mesons are suppressed in central Au+Au⁹⁹ 74 collisions, suggesting a substantial energy loss of the ¹⁰⁰ 75 charm quarks in the QGP. The QGP seems to influ-101 76 ence the charm quark hadronization. The STAR re- 102 77 sults on the Λ_c^{\pm}/D^0 and D_s/D^0 yield ratios are in ¹⁰³ 78 qualitative agreement with theoretical models incorpo-¹⁰⁴ 79 rating coalescence and fragmentation hadronization of $^{\scriptscriptstyle 105}$ 80 charm quarks. The measured $D^0 dv_1/dy$ slope is qual-¹⁰⁶ 81 itatively consistent with hydrodynamical model calcu-¹⁰⁷ 82 108 lations with tilted QGP bulk [11]. 83

ACKNOWLEDGMENT: 85

This work was also supported from European¹¹¹ 86 112 Regional Development FundProject "Center of Ad-87 113 vanced Applied Science" No. CZ.02.1.01/0.0/0.0/16-88 019/0000778 and by the grant LTT18002 of Ministry 114 89 of Education, Youth and Sports of the Czech Republic. 90

REFERENCES 91

84

- 1. D. Beavis, et al., Technical Design Report, 2011. 119 92
- Available online: https://drupal.star.bnl.gov/ 93

Fig. 4. (a) Directed flow of D^0 and $\overline{D^0}$ mesons at $p_T > 1.5$ GeV/c as a function of rapidity in 10-80% central Au+Au collisions at $\sqrt{s_{\rm NN}} = 200 \,{\rm GeV}$, compared to calculations of a hydrodynamic model with an initial EM field [13] and the AMPT model [14]. (b) Difference in v_1 between D⁰ and $\overline{D^0}$ compared to a model prediction with only the initial EM field [13] and one that combines EM effects with hydrodynamics [11]. The D^0 data are compared to measurement of charged kaons [15]. Taken from Ref. [12].

STAR/starnotes/public/sn0600 (accessed on 6 September 2019).

- 2. J. Adam, et al. [STAR Collaboration], Phys. Rev. C 99, 034908, (2019).
- J. Adam, et al. [STAR Collaboration], Phys. Rev. 3. Lett. 124, 172301, (2020).
- 4. P. Skands, S. Carrazza, and J. Rojo, Eur. Phys. J. C 74, 3024, (2014).
- 5. C. Bierlich and J. R. Christiansen, Phys. Rev. D 92, 094010, (2015).
- 6. B.I. Abelev, et al. [STAR Collaboration], Phys. Rev. Lett. 97, 152301 (2006).
- 7. G. Agakishiev, et al. [STAR Collaboration], Phys. Rev. Lett. 108, 072301 (2012).
- 8. S. Plumari, et al., Eur. Phys. J. C 78, 348, (2018).
- 9. M. He, et al., : Phys. Rev. Lett. 110, 112301 (2013).
- 110 10. J. Zhao, et al., arXiv1805.10858, (2018).

109

117

- 11. S. Chatterjee, P. Bozek, Phys. Lett. B 798, 134955, (2019).
- 12.J. Adam, et al. [STAR Collaboration], Phys. Rev. Lett. 123, 162301 (2019).
- 115 13. S.K. Das, et al., Phys Lett B 768, 260 (2017).
- 116 14. M. Nasim and S. Singha, Phys. Rev. C 97, 064917, (2018).
- ¹¹⁸ 15. L. Adamczyk, et al. [STAR Collaboration], Phys. Rev. Lett. 120, 062301 (2018).