Measurement of Mid-rapidity Inclusive Jet Cross Sections in pp Collisions at $\sqrt{s} = 200$ and 510 GeV

Dmitry Kalinkin For the STAR Collaboration

¹University of Kentucky – Lexington, KY

previously: ²Indiana University – Bloomington, IN

previously: ³Brookhaven National Laboratory – Upton, NY

2nd workshop on advancing the understanding of non-perturbative QCD using energy flow November 7, 2023

Proton Structure in Hard Interactions

Jet production in high energy collisions of hadrons can be described in terms of follow-ing ingredients:

- Initial state of hadrons
- Hard collision of partons
- Parton Shower
- Underlying Event (UE)
- Hadronization

$$d\sigma_{pp \to jet+X}(Q^2) = \sum_{a,b} \int \underbrace{f_a(x_1, Q^2) f_b(x_2, Q^2)}_{\text{proton structure}} \underbrace{d\hat{\sigma}_{a+b \to jet+X}(x_1, x_2, Q^2)}_{\text{hard process+PS+Had.}} dx_1 dx_2$$

Original plot from NNPDF 3.1 Catalog of plots: α_S variations at NNLO

Dmitry Kalinkin for the STAR Collaboration

Jet Measurements using STAR Detector

- TPC: Interaction vertex and charged particle tracks
- BEMC and EEMC: Photon energy measurement
- Trigger condition on deposited EM energy sum in 1 × 1 patches in η - φ
- East and west
 Zero Degree Calorimeter: Absolute luminosity monitoring

Gluon Polarization using Jets at STAR

- Measurements using a similar collinear factorization framework $A_{LL} \sim \Delta f_a \otimes \Delta f_b \otimes \Delta \hat{\sigma}$ to determine Δg the helicity distribution of gluons inside the proton
- Detector effects are not unfolded but corrected by adjusting p_T (or M_{jj}) and A_{LL} of independent points
- Run 13 mid-rapidity inclusive jet and di-jet A_{LL} results recently published [PRD 105 (2022) 092011]
- Spin asymmetries for jet production analyzed for all RHIC runs

impact on global fit by DSSV,

STAR Collaboration, PRD 105 (2022) 092011

Dmitry Kalinkin for the STAR Collaboration

Published Jet Cross Sections from STAR

Phys. Rev. Lett. 97 (2006) 252001

- An inclusive jet cross section
- Mid-point cone algorithm
- Not corrected for UE or hadronization
- Bin-by-bin detector effects correction
- Limited acceptance

- A di-jet cross section
- anti-k_T algorithm
- Detector effects unfolded
- No data-driven UE correction

Underlying Event Correction

Two off-axis cone regions defined as $(\varphi - \varphi_{iet} \pm \pi/2)^2 + (\eta - \eta_{iet})^2 \le R_{UE}^2$ with $R_{UE} = 0.5$

- For each jet calculate a jet area A and a p_T-density of constituents ρ_{UE}
- Correction implemented via a jet p_T shift:

 $(\text{jet } p_T) \rightarrow (\text{jet } p_T) - A \cdot \rho_{\text{UE}}$

- This was previously done at ALICE: PRD 91 (2015) 112012
- Applied to data before unfolding and to simulation in the definition of the detector

response CFNS workshop Charged UE measured at STAR: (lipup/⁵Np) 0.2 GeV/c 0.5 GeV/c |n|<1 R_{~nti-k}=0.6 YTHIA 6 (STAR h <0.4 0.5 n+n@200 Ge Leading jet p_ (GeV/c) (GeV/c) 0.2 GeV/c 0.5 GeV/c |n|<1 > R_{anti-k}=0.6 ransverse YTHIA 6 (STAR) η |<0.4 £_1 05 p+p@200 GeV STAR Leading jet p (GeV/c) Phys Rev D 101 (2020) 052004 A different set of regions defined as $|\varphi - \varphi_{\text{iet}} \pm \pi/2| < \pi/6$

Jets at Three Levels

Parton jets

- Made of partons outgoing from the hard interaction
- Definition flexible depending on theoretical needs (e.g. fit using pQCD)

Particle jets

- Made of stable particles (at STAR the π⁰ treated as stable)
- Universal Free from all detector effects
- Includes effects of
 - QCD radiation
 - Hadronization
 - UE (unless subtracted)

Detector jets

©2009 Tai Sakuma

- Made of tracks and discrete calorimeter towers
- Experiment specific

Detector Effects Unfolding

- Matrix inversion gives the exact result for the maximum likelihood estimator
- Statistical fluctuations are regularized by choosing sufficiently large bin sizes
- Need to estimate uncertainty due to the choice of prior (in this case, Pythia)

Inclusive Jet Cross Section at $\sqrt{s} = 200$ GeV, Particle Level

Inclusive jet cross section

- With UE subtraction ■ 0.067 < $x_T = \frac{2p_T}{\sqrt{5}} < 0.5$
- Jet Energy Scale uncertainty from the EM calorimeter response
 - leading systematic uncertainty
- Final result will use a larger simulation sample to do unfolding in finer binning in jet p_T and also in η

Inclusive Jet Cross Section at $\sqrt{s} = 510$ GeV, Particle Level

With UE subtraction

$$0.021 < x_T = \frac{2p_T}{\sqrt{s}} < 0.32$$

Different triggers:

- JP0: E ≥ 5.4 GeV
- JP1: E ≥ 7.3 GeV
- JP2: *E* ≥ 14.4 GeV

Measured in two η -ranges:

■ 0 < |η| < 0.5

- Jet measurements at STAR are extended to the unpolarized case, with absolute cross section normalization
- First measurement with jet *p*_T defined with the off-axis UE density subtracted
- Inclusive jet measurements at RHIC will allow to better constrain high-x behaviour of the gluon PDF
- ...and serve as a normalization for hadron fragmentation inside jets
- ...or as a reference for future R_{AA} measurements at RHIC
- Measurements at two values of \sqrt{s} , at 200 GeV and 510 GeV, provide insights into energy dependence for **MC tuning**