Exploring Quark Transversity in Polarized Proton-Proton Collisions at STAR

J. Kevin Adkins for the STAR Collaboration

Morehead State University

CIPANP 2022 – Lake Buena Vista, FL

September 2022

MOREHEAD STATE U N I V E R S I T Y

Describing the Proton's Spin Structure

Distribution	Partons	Name of Distribution	Proton Polarization
f(x)	q, G	Momentum	Unpolarized
Δf(x)	q <i>,</i> G	Helicity	Longitudinal
h1(x)	q	Transversity	Transverse

Describing the Proton's Spin Structure

Distribution	Partons	Name of Distribution	Proton Polarization	
f(x)	q <i>,</i> G	Momentum	Unpolarized	
∆f(x)	q <i>,</i> G	Helicity	Longitudinal	
h ₁ (x)	q	Transversity	Transverse	Least constrained

Opportunities in p+p Collisions: Hadron-in-Jet Collins Effect

- Transverse single spin asymmetries (TSSA) in p+p collisions are a unique avenue for a detailed study of the proton's transverse spin structure
 - Collins effect in jets
 - Di-hadron asymmetries

Opportunities in p+p Collisions: Hadron-in-Jet Collins Effect

- Transverse single spin asymmetries (TSSA) in p+p collisions are a unique avenue for a detailed study of the proton's transverse spin structure
 - Collins effect in jets
 - Di-hadron asymmetries
- Collins effect connects the initial state quark spin (transversity) to the final state pion distribution within the jet (Collins FF)
- Pions within jets are asymmetrically distributed
 - Looking at the difference between spin states will allow access to transversity distribution and Collins FF via asymmetry measurements

Opportunities in p+p Collisions: Hadron-in-Jet Collins Effect

- Transverse single spin asymmetries (TSSA) in p+p collisions are a unique avenue for a detailed study of the proton's transverse spin structure
 - Collins effect in jets
 - Di-hadron asymmetries
- Collins effect connects the initial state quark spin (transversity) to the final state pion distribution within the jet (Collins FF)
- Pions within jets are asymmetrically distributed
 - Looking at the difference between spin states will allow access to transversity distribution and Collins FF via asymmetry measurements
- Asymmetry modulated by sine term in polarized cross section:

$$d\sigma_{UT} \approx d\sigma_{UU} \left[1 + A_{UT}^{\sin(\phi_S - \phi_H)} \sin(\phi_S - \phi_H) + \ldots \right]$$

Transversity x Collins

Opportunities in p+p Collisions: Hadron-in-Jet Collins Effect

- Transverse single spin asymmetries (TSSA) in p+p collisions are a unique avenue for a detailed study of the proton's transverse spin structure
 - Collins effect in jets
 - Di-hadron asymmetries
- Collins effect connects the initial state quark spin (transversity) to the final state pion distribution within the jet (Collins FF)
- Pions within jets are asymmetrically distributed
 - Looking at the difference between spin states will allow access to transversity distribution and Collins FF via asymmetry measurements
- Asymmetry modulated by sine term in polarized cross section:

$$d\sigma_{UT} \approx d\sigma_{UU} \left[1 + A_{UT}^{\sin(\phi_S - \phi_H)} \sin(\phi_S - \phi_H) + \ldots \right]$$

Transversity x Collins

Opportunities in p+p Collisions : Di-hadron or Interference Fragmentation Function (IFF) Asymmetry

- Correlates quark polarization to azimuthal distribution of final state hadron pairs
- IFF process is collinear, where Collins is dependent upon transverse momentum

Opportunities in p+p Collisions : Di-hadron or Interference Fragmentation Function (IFF) Asymmetry

- Correlates quark polarization to azimuthal distribution of final state hadron pairs
- IFF process is collinear, where Collins is dependent upon transverse momentum
- Modulated by a sine term similarly to the hadron-in-jet Collins asymmetry:

$$d\sigma_{UT} \approx d\sigma_{UU} \left[1 + A_{UT}^{\sin(\phi_{RS})} \sin(\phi_R - \phi_S) + \ldots \right]$$

Transversity x IFF

Why Look to p+p? Kinematic Coverage!

- STAR covers a similar range in x to that of SIDIS experiments but much higher in Q²
 - Important for studies of TMD universality
 - We can learn about the evolution of TMDs and factorization breaking
- Collins and di-hadron at different energies allow for self-contained studies of these
 effects as well

Kinematic Coverage: STAR's Impact

- Transversity is quite unconstrained, even in valence region
 - Unpolarized and helicity distributions quite well known!
- STAR's kinematic coverage will help constrain transversity where uncertainties are the largest

Kinematic Coverage: STAR's Impact

- Transversity is quite unconstrained, even in valence region
 - Unpolarized and helicity distributions quite well known!
- STAR's kinematic coverage will help constrain transversity where uncertainties are the largest

Relativistic Heavy Ion Collider

Data from Recent RHIC Runs

Year	2011	2012	2015	2017	2022
\sqrt{s} (GeV)	500	200	200	510	508
$L_{int} (pb^{-1})$	25	22	52	350	400
Polarization	53%	57%	57%	58%	~52%

- For this talk, the 200 GeV data has better statistical precision than the 500 GeV data
- 500 GeV data probes lower momentum fraction than that of the 200 GeV data
- Analysis of forward and backward scattered jets with respect to the polarized proton beam gives access to a broad range of momentum fractions
- Note: Collins results from 2012 and 2015 data have been combined!

Previous STAR Result: Di-hadron Asymmetry

- 2011 500 GeV data
- 500 GeV results show significant asymmetries comparable to those from the previous 200 GeV measurement
- Higher COM energy probes an x-range on the upper end of SIDIS results, but with a higher effective Q²
- Decent agreement with theory that is fit to SIDIS and e⁺e⁻ experiments

√s = 200 GeV

- Much higher statistical precision than any previous di-hadron asymmetry result
- Multidimensional binning probes transversity in fine details
- Enhancement of the asymmetry in the vicinity of the ρ mass (M \approx 0.78 GeV/c²)

√s = 200 GeV

- Much higher statistical precision than any previous di-hadron asymmetry result
- Multidimensional binning probes transversity in fine details
- Enhancement of the asymmetry in the vicinity of the ρ mass (M \approx 0.78 GeV/c²)

√s = 200 GeV

- Integrated over all $p_{\rm T}$ and $M_{\rm inv}$ ranges
- $\eta > 0$ region gives a larger asymmetry
 - Samples larger x region than $\eta < 0$
 - Parton in this region comes from the polarized proton
- Sampled kinematics from simulation given on the bottom

$$z = \frac{E_{\text{pair}}}{E_{\text{quark}}}$$

√s = 200 GeV

- Asymmetry integrates over all values of p_T for $\eta > 0$
- Good agreement with the previous 200 GeV result (shown earlier) with much better statistical precision
- 200 GeV theory curve agrees well, but overshoots at large M_{inv}
 - Predicts larger enhancement in the vicinity of M_o
 - Opportunity for model improvement with these new results

Previous STAR Result: Collins Asymmetry

Theory curves: D, Alesio, et. al. Phys. Lett. B773 (2017) Kang, et. al. Phys. Lett. B774 (2017)

- 2011 500 GeV data
- First published Collins asymmetry in p+p collisions!
- Models based on SIDIS/e⁺e⁻ data
 - DMP&KPRY: No TMD evolution
 - KPRY-NLL: TMD evolution up to NLL
- Consistency with models suggests universality and that factorization isn't broken in p+p

New STAR Result: Collins Asymmetry

- Paper submitted to PRD and now on the arXiv!
- 2012 and 2015 analyses finished simultaneously
 - Asymmetries are in excellent agreement!
- Results from both years combined into a single set of asymmetries for publication
- These are the most statistically precise and significant Collins asymmetries in p+p to date

√s = 200 GeV

√s = 200 GeV

New STAR Result: Collins Asymmetry

- DMP+2013 model uses transversity distribution from SIDIS and the Collins FF from e⁺e⁻
 - D'Alesio, et. al. PLB 773, 300 (2017)
 - Undershoots the amplitude, but follows the shape well
- x_F > 0 jets access larger values of x than x_F < 0 jets and the parton from the polarized proton
- x-axis values have been corrected to the particle level in simulation

New STAR Result: Collins Asymmetry

$$z = rac{p_{ ext{hadron}}}{p_{ ext{jet}}}$$

DMP+2013: D'Alesio, et. al. PLB 773, 300 (2017) KPRY: Kang *et. al.*, PLB 774, 635 (2017);

- Both models assume factorization and universality
- Models do a reasonable job at lower jet $\ensuremath{p_{\text{T}}}$
- Models underestimate the size at high jet $\ensuremath{p_{\text{T}}}$
 - For all z for π^-
 - Low z for π^+

New STAR Result: Collins Asymmetry

- In both cases there are large differences between data and model calculations
 - KPRY does a better job of predicting the correct shape

√s = 200 GeV

- z and j_{T} dependences are important for understanding the Collins FF

Collins Asymmetry: 200 GeV vs. 500 GeV

STAR, arXiv:2205.11800

- Asymmetries agree well in both shape and amplitude for jet $x_T \ge 0.07$
- Slow evolution with Q²

√s = 200 GeV

New STAR Result: Collins Asymmetry

→ jet + K[±] + X s = 200 GeV $\langle p_{\tau}^{jet} \rangle = 13.3 \text{ GeV/c}$ • K⁺ $\langle p_{\tau}^{\text{jet}} \rangle = 13.3 \text{ GeV/c}$ 0.1 < z < 0.8 -0.06 < j_{____,May} j_ < j_ T.Max K 0.1 < z < 0.8 + p \rightarrow jet + p/p + X 0.06 3% Scale Uncertainty Not Shown 12 14 16 18 20 22 24 26 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 10-1 j_ [GeV/c] Particle jet p_ [GeV/c]

STAR, arXiv:2205.11800

- First measurement of kaon and proton Collins asymmetries inside of jets (2015 data only)
- K⁺ shows asymmetry similar to π^+ (favored fragmentation) but K⁻ is consistent with zero (unfavored fragmentation) within statistical precision
- Proton asymmetries consistent with zero within statistical precision

• Polarized proton collisions offer rich and unique channel to access the transversity distribution

- Polarized proton collisions offer rich and unique channel to access the transversity distribution
- Results from 200 GeV collisions are the most statistically precise asymmetries to date in p+p

- Polarized proton collisions offer rich and unique channel to access the transversity distribution
- Results from 200 GeV collisions are the most statistically precise asymmetries to date in p+p
- Both the Collins and di-hadron channels agree in 200 GeV and 500 GeV collisions, pointing to a slow evolution with Q²

- Polarized proton collisions offer rich and unique channel to access the transversity distribution
- Results from 200 GeV collisions are the most statistically precise asymmetries to date in p+p
- Both the Collins and di-hadron channels agree in 200 GeV and 500 GeV collisions, pointing to a slow evolution with Q²
- First results on kaon and proton Collins asymmetries in p+p suffer from limited statistics, and will be investigated further soon with datasets approximately 7 times the statistics presented here

- Polarized proton collisions offer rich and unique channel to access the transversity distribution
- Results from 200 GeV collisions are the most statistically precise asymmetries to date in p+p
- Both the Collins and di-hadron channels agree in 200 GeV and 500 GeV collisions, pointing to a slow evolution with Q²
- First results on kaon and proton Collins asymmetries in p+p suffer from limited statistics, and will be investigated further soon with datasets approximately 7 times the statistics presented here
- Upcoming measurements of pion yields and unpolarized di-hadron cross section will help better understand the fragmentation

- Polarized proton collisions offer rich and unique channel to access the transversity distribution
- Results from 200 GeV collisions are the most statistically precise asymmetries to date in p+p
- Both the Collins and di-hadron channels agree in 200 GeV and 500 GeV collisions, pointing to a slow evolution with Q²
- First results on kaon and proton Collins asymmetries in p+p suffer from limited statistics, and will be investigated further soon with datasets approximately 7 times the statistics presented here
- Upcoming measurements of pion yields and unpolarized di-hadron cross section will help better understand the fragmentation
- Di-hadron and Collins measurements using the 2017 510 GeV dataset are ongoing

- Polarized proton collisions offer rich and unique channel to access the transversity distribution
- Results from 200 GeV collisions are the most statistically precise asymmetries to date in p+p
- Both the Collins and di-hadron channels agree in 200 GeV and 500 GeV collisions, pointing to a slow evolution with Q²
- First results on kaon and proton Collins asymmetries in p+p suffer from limited statistics, and will be investigated further soon with datasets approximately 7 times the statistics presented here
- Upcoming measurements of pion yields and unpolarized di-hadron cross section will help better understand the fragmentation
- Di-hadron and Collins measurements using the 2017 510 GeV dataset are ongoing
- Additional transverse single-spin jet asymmetries in p+p from STAR:
 - Inclusive jet asymmetry (200 and 500 GeV; sensitive to twist-3 analogy of gluon Sivers)
 - Hadron-tagged jet asymmetries (200 GeV; sensitive to twist-3 analogy of quark Sivers)
 - Collins-like asymmetries (200 and 500 GeV; sensitive to linearly polarized gluons in transversely polarized protons)
 - All are zero within current statistical precision

Backup

Sources of Systematic Uncertainty

- Implement simulation to estimate systematic uncertainties
 - Use PYTHIA and GEANT with embedded zero bias events tosimulate detector response to QCD processes
 - Recreate the analysis in simulation framework with and without detector effects
- The hadron-in-jet and di-hadron analyses have several sources of systematic error in common:
 - Kinematic shifts (i.e., x-axis value shifts)
 - Trigger bias
 - Particle identification
 - Azimuthal smearing
- The Collins analysis receives additional errors due to the effect of one moment "leaking" into another (e.g., leak through of Collins-like to Collins, etc.)

Jet Reconstruction: Collins Asymmetry

- Anti-k_T reconstruction algorithm
- Radius R = 0.6
- Jet level cuts:
 - |z_{vertex}| < 60 cm
 - 6 < p_{T,jet} < 31.6 GeV/c
 - R_{T,jet} < 0.95
 - No tracks with p_{T,track} > 20 GeV/c
 - Sum of track $p_T > 0.5$
 - $-0.9 < \eta_{\rm jet} < 0.9$
 - -0.8 < $\eta_{
 m detector}$ < 0.9

- Hadron cuts
 - $0.05 < j_T < 4.5 \text{ GeV/c}$
 - 0.1 < z < 0.8
 - $-1 < n_{\sigma}(\pi) < 2$
 - $\Delta R > 0.05$ (between track and jet)

Pion Pair Selection: Di-hadron Asymmetry

- Jet reconstruction is not required
- Look at all possible $\pi^+\pi^-$ pairs are formed and examined
 - |z_{vertex}| < 60 cm
 - Track DCA < 1 cm
 - p_{T,track} > 1.5 GeV/c
 - Track hits > 15
 - $-1 < n_{\sigma}(\pi) < 2$
 - $-1 < \eta_{\text{track}} < 1$
 - Cone size (η - ϕ space) < 0.7
 - 0.2 < M_{inv} < 4 GeV/c
 - 2.5 < p_{T,pair} < 15 GeV/c
 - $-1 < \eta_{\text{pair}} < 1$

Simulation Framework

- Simulation: PYTHIA 6.4 Perugia 2012 with additional tuning to STAR data;
 - Three Simulation Levels :
 - Parton hard scattered partons involved in 2->2 hard scatterings from PYTHIA
 - Particle partons propagate and hadronize into stable and color-neutral particles
 - Detector detector response to the stable particles

√s = 200 GeV

Previous STAR Result: Di-hadron Asymmetry

J.K. Adkins - CIPANP 2022

Previous STAR Result: Collins Asymmetry

- Multi-dimensional binning scheme gives insight into how the kinematic variables depend upon each other
 - z and j_T show up in FF, $p_T \sim Q$ shows up in transversity

$= \frac{p_{\rm hadron}}{p_{\rm jet}}$

√s = 500 GeV

Previous STAR Result: Inclusive Jet Asymmetry

Previous STAR Result: Collins-like Asymmetry

Previous STAR Result: Collins-like Asymmetry

- Statistics combines both charge states to maximize precision
 - Still consistent with zero and within model predictions

√s = 200 GeV

- Asymmetry for the highest <p_T> bin shows the largest asymmetry
- Average sampled kinematics given on the bottom panel

$$z = \frac{E_{\text{pair}}}{E_{\text{quark}}}$$

√s = 200 GeV

New STAR Result: Collins Asymmetry (x_F < 0)

√s = 200 GeV

New STAR Result: Collins Asymmetry ($x_F < 0$)

√s = 200 GeV

New STAR Result: Collins Asymmetry ($x_F < 0$)

J.K. Adkins - CIPANP 2022

48

√s = 200 GeV

New STAR Result: Inclusive Jet Asymmetry

J.K. Adkins - CIPANP 2022

√s = 200 GeV

New STAR Result: Hadron-Tagged Jet Asymm.

J.K. Adkins - CIPANP 2022

√s = 200 GeV

New STAR Result: Collins-like Asymmetry

51

J.K. Adkins - CIPANP 2022

√s = 200 GeV

New STAR Result: Collins-like Asymmetry

STAR, arXiv:2205.11800

