Forward π^{0} and η production in STAR at $\sqrt{s}^{s} \mathbf{5 0 0} \mathbf{~ G e V}$ with transversely polarized pp collisions

Transverse momentum
 Dependence of π^{0} SSA in FMS Run 11
 CIPANP
 S. Heppelmann (PSU) for STAR collaboration
 June 2, 2012

- Background
- Physics Questions
- Cross Ratio method vs. $\mathbf{A}(\phi)=\mathbf{A}_{\mathbf{N}} \boldsymbol{\operatorname { c o s }}(\phi)$ fitting method
- Previous FMS and STAR results
- About P_{T} dependence of A_{N}
- FMS Event Topology and Event Selection
- Present High Statistics A_{N} for STAR Run $11 V_{s}=500 \mathrm{GeV}$
- X_{F} dependence
- P_{T} dependence for fixed X_{F}
- Dependence on event topology

Proton Forward Scattering at High PT QCD Perspective

PQCD (Leading Twist):

Factorized Cross Section= (initial state) \times (quark scattering) \times (fragmentation)

- Does good job of predicting the spin averaged cross section.
- Leading twist cross section does not depend on transverse polarization.
- Spin Dependence require refinements like:
- Beyond Collinear Factorization (Sivers)
- Models of spin dependent factorization (Collins)
- Models that go beyond leading twist.

Transversely polarized proton (transversely polarized quark) RHIC Blue Beam

Target Proton

Random Spin RHIC Yellow Beam

To FMS

Forward EM Calorimetry In STAR.

1) Cross Ratio Transverse Asymmetry

VS
2)

A(ϕ) Fit
Method 1:
Cross Ratio:

$$
A_{N}=\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}} \cong \frac{1}{P} \frac{\sqrt{S^{\uparrow} N^{\downarrow}}-\sqrt{N^{\uparrow} S^{\downarrow}}}{\sqrt{N^{\uparrow} S^{\downarrow}}+\sqrt{S^{\uparrow} N^{\downarrow}}}
$$

$$
\text { Left(S): } \operatorname{Cos}(\phi)>0.5
$$

Viewed from collision point
Right(N): $\operatorname{Cos}(\phi)<-0.5$

Method 2: $a_{N}(\phi)=a_{0}+A_{N} \cos (\phi)$
Fix a_{0} for full data set
For many small data subsets one parameter fit for A_{N}

Advantage: Every fitted value of A_{N} comes with error and chi ${ }^{2}$.

New paper on η / π^{0} at $X_{F} \geq 0.5$ arXiv:1205.6826v1

- π^{0} cross section in good agreement with PQCD calculation.
- η / π^{0} cross section ratio similar to that observed where jet fragmentation is dominant.
- $A_{N}(\eta)>A_{N}\left(\pi^{0}\right)$ for $X_{F}>0.55$

STAR Published Run 6 (FPD $V_{s}=200 \mathrm{GeV}$)

PRL 101, 222001 (2006)

- Rising A_{N} with $X_{F}\left(0<X_{F}<0.5\right)$ from 0% to $5-10 \%$
- No evidence of fall in A_{N} with increasing P_{T} up to $P_{T} \sim 3 \mathrm{GeV} / \mathrm{c}$

From FMS Run 8, STAR has Expanded Rapidity Coverage $-1<Y<4.2$

STAR Forward Meson Spectrometer

$$
2.5<Y<4.0
$$

- Leading twist cross section does not depend on transverse polarization.
- Spin Dependence require refinements like:
- Beyond Collinear Factorization (Sivers)
- Models of spin dependent factorization (Collins)
- Models that go beyond leading twist.

Sivers Model: Initial quark picks up \mathbf{k}_{T} from initial state wave function, proportional to orbital angular momentum.
Jet based Asymmetry, significant dependence of A_{N} on the details of near side jet fragments is not expected!
Collins Model: Final π^{0} picks up k_{T} from fragmentation of polarized quark. Vanishing jet asymmetry. Observed A_{N} will depend on the details of near side fragmentation!

Suppose initial state structure or final state fragmentation modifies the hard scattering \mathbf{p}_{T}. If the spin dependent initial/final state momentum is \mathbf{k}_{T}.

For spin proton spin up: $\quad\left\langle\boldsymbol{p}_{\mathrm{T}}\right\rangle \Longrightarrow\left\langle\boldsymbol{p}_{\mathrm{T}}\right\rangle-\mathrm{k}_{\mathrm{T}}$ For spin proton spin $\mathrm{dn}: \quad\left\langle\mathbf{p}_{\mathrm{T}}\right\rangle \Longrightarrow\left\langle\mathbf{p}_{\mathrm{T}}\right\rangle+\mathbf{k}_{\mathrm{T}}$
$A_{N}\left(p_{T}\right) \sim \frac{\sigma\left(p_{T}-k_{T}\right)-\sigma\left(p_{T}+k_{T}\right)}{2 \sigma\left(p_{T}\right)} \sim \frac{-k_{T}}{\sigma} \frac{d \sigma}{d p_{T}} \sim \frac{6 k_{T}}{p_{T}} \propto \frac{1}{p_{T}}$

$$
\sigma\left(p_{T}\right) \sim \frac{\left(1-x_{F}\right)^{5}}{p_{T}{ }^{6}}
$$

$$
A_{N}\left(p_{T}\right) \propto \frac{1}{p_{T}}
$$

Isolation of π^{0} 's

Event Selection:

1. Analyze FMS for all photon candidates. (Showers that are fit successfully to photon hypothesis)
A photon candidates must have a minimum of 6 GeV in the small inner detector or 4 GeV in the outer cells.
2. Find Clusters of EM energy grouping photon candidates that are within opening
 angle cone $\Delta \boldsymbol{\theta}$ (relative to energy weighted center)
3. We consider 2 event classes $\{1$ and 2$\}$
4. $\Delta \theta=0.072$ Photon clusters, Pi0 Mass (isolation radius of .07 radians).
5. $\Delta \theta=0.032$ Photon clusters , PiO Mass (isolation radius of .03 radians).

Class 1 Events: $\Delta \theta=0.072$ Photon clusters, π^{0} Mass (less inclusive)?

- 40 GeV < Epair <100 GeV
- $Z=|(E 1-E 2) /(E 1+E 2)|<.7$
- $2.7<Y<4.0$ (Full FMS Pseudo-rapidity)
- Selection of π^{0} Peak (0.02 <Mass<.3)
- Average polarization: $51.6 \% \pm 6.7 \%$ (RHIC Spin CNI Group http://www.phy.bnl.gov/cnipol/)
- Integrated Luminosity: $22 \mathrm{pb}^{-1}$

Cross Ratio Transverse Single Spin Asymmetry for Run 11

 π^{0} (2 Photon Cluster) Cluster size $=0.07$ RadFor Blue Beam (Forward)
Full FMS rapidity range $(2.6<Y<4.1)$

Left(S): $\operatorname{Cos}(\phi)>0.5$

Right(N): $\operatorname{Cos}(\phi)<-0.5$

Compare new $V_{s=500} \mathbf{G e V}$ Run 11 Full FMS Data on

$p+p \rightarrow \pi^{0}+X$ at $\sqrt{s}=200 \mathrm{GeV}$

Compare new $V_{s}=500 \mathrm{GeV}$ Run 11 Full FMS Data on right

Scale of A_{N} similar but starts at lower X_{F} in Run 11 data.
STAR Preliminary
$p+p \rightarrow \pi^{0}+X$ at $\sqrt{s}=200 \mathrm{GeV}$

Transverse Single Spin π^{0} Asymmetry vs \mathbf{P}_{T} for small and large π^{0} isolation cones. (Errors shown are statistical)

Transverse Single Spin π^{0} Asymmetry vs \mathbf{P}_{T} for small and large π^{0} isolation cones. (Errors shown are statistical)

Transverse Single Spin π^{0} Asymmetry vs \mathbf{P}_{T} for small and large π^{0} isolation cones. (Errors shown are statistical)

Transverse Single Spin π^{0} Asymmetry vs \mathbf{P}_{T} for small and large π^{0} isolation cones. (Errors shown are statistical)

Higher Twist or other pQCD related models suggest $\underline{A}_{\underline{N}}$ should fall at large $P_{\underline{T}}$ with at least 1 power of $P_{\underline{T}}$

These plots include 2 parameter fits for A_{N} vs P_{T} :

$$
A_{N}\left(P_{T}\right)=\left[p_{0}\right] \times\left(P_{T}\right)^{\left[p_{1}\right]}
$$

Fits are shown for both the 70 mRad and 30 mRad isolation cones.

Systematic Errors

- Run 11 blue beam polarization $51.6 \% \pm 6.7$
- Non π^{0} signal $<10 \%$
- Similar asymmetries for Background:

$$
\begin{aligned}
& \frac{\Delta P_{T}}{P_{T}}<12 \% \\
& \frac{\Delta A_{N}}{A_{N}}<5 \%
\end{aligned}
$$

- P_{T} uncertainty
- Energy 10\%
- Angle 6\%

$$
\frac{\Delta A_{N}}{A_{N}}<13 \%
$$

$$
\frac{\Delta A_{N}}{A_{N}}<5 \%
$$

$$
\begin{aligned}
& \frac{\Delta P_{T}}{P_{T}}<12 \% \\
& \frac{\Delta A_{N}}{A_{N}}<5 \%
\end{aligned}
$$

Total Systematic Asymmetry Error Common to all data points.

$$
\frac{\Delta A_{N}}{A_{N}}<15 \%
$$

Conclusion

STAR $\pi^{0} \mathbf{A}_{\mathbf{N}}$ at $\sqrt{\mathbf{S}=500 \mathrm{GeV}}$

- A_{N} increases with X_{F} (as seen at lower energies).
- A_{N} less dependent on P_{T} than models predict to $P_{T} \sim 10 \mathrm{GeV} / \mathrm{c}$. Data may be consistent with flat dependence on P_{T}.
- For data points at $X_{F}<0.32, A_{N}$ is significantly larger when the π^{0} s are more isolated (0.07 Rad).

Additional $\mathrm{E} \& \mathrm{M}$ signals in the same general direction as the π^{0} ($>\sim 5 \mathrm{GeV}$ between 0.03 and 0.07 radians from the π^{0}) contribute little to the observed Transverse Single Spin Asymmetry.

- New Data Coming RHIC RUN 12
~20 pb-1 of $\sqrt{\mathrm{s}=200 \mathrm{GeV} \mathrm{pp}}$

~Transversely Polarized FMS data
~ Similar measurement up to $\mathrm{P}_{\mathrm{T}}>6 \mathrm{GeV} / \mathrm{c}$

