

Measurements of K^+K^+ correlation function in $\sqrt{s_{NN}} = 3.0$ GeV Au+Au Collisions at RHIC-STAR

Wensong Cao (for the STAR Collaboration) Central China Normal University

The 18th National Conference on Nuclear Physics

Outline

- Introduction and motivation
- K⁺K⁺ correlation function
- Systematic uncertainty
- Extracting parameters of correlation function
- Summary and outlook

Femtoscopy

Femtoscopy (inspired by Hanbury Brown and Twiss interferometry) the method to probe geometric and dynamic properties of the source.

Koonin-Pratt equation: $C(q_{inv}) = \int dr |\psi(q_{inv}, r)|^2 S(r)$ Steven E. Koonin. PRC,1990,42(6)

Invariant relative momentum: $q_{inv} = |\Delta \overrightarrow{P^{\mu}}|$

Pair wave function: $\psi(q_{inv}, r)$

Emission function: S(r)

Experimental Method

$$C_{\exp}(q_{inv}) = \frac{\text{Same events}(q_{inv})}{\text{Mixed events}(q_{inv})}$$

Theory Method

$$C_{\text{theory}}(\overrightarrow{P_{a}}, \overrightarrow{P_{b}}) = \frac{P_{2}(\overrightarrow{P_{a}}, \overrightarrow{P_{b}})}{P_{1}(\overrightarrow{P_{a}})P_{1}(\overrightarrow{P_{b}})}$$

Motivation

Nonmonotonic energy dependence for pion source size.

Leszek Adamczyk. PRC 92,014904(2015)

Why do we analyse kaons?

Kaons can provide complementary information to pions:

- Smaller cross section with the hadronic matter.
- Less affected by the feed-down from resonance decays.
- The production of strange quark is related to QGP formation.

How about the collision energy dependence of kaon source size?

STAR detector and dataset

The STAR Detector

- Full 2π azimuthal coverage
- Large acceptance at midrapidity
- Excellent particle identification

K⁺ selection

Tri-gaussian (Gaussian_{blue} + Gaussian_{green} + Gaussian_{purple}) is used to fit the $n\sigma_{K^+}$ distribution.

$$Purity = \frac{\int_{\mu-3}^{\mu+3} Gaussian(K^{+})}{\int_{\mu-3}^{\mu+3} [Gaussian(\pi^{+}) + Gaussian(K^{+}) + Gaussian(p)]}$$

PID Cuts (Purity >95%)

 $| n\sigma_{K^+} | < 3$ 0.16 < mass² < 0.36 for 0.2 < momentum < 2.0 GeV/c

2023/5/13

Track splitting and merging effects

Track splitting: shifts of pad-rows, a single track is reconstructed as two tracks with similar momenta.

Track merging: two tracks with close θ and ϕ are reconstructed as a single one. (θ and ϕ determined by p_x , p_y and p_z)

Momentum smearing effect

The detector has a momentum resolution for measuring the particle momentum.

 $p_{\rm T}^{\rm smear} = p_{\rm T}^{\rm meas} + \Delta p_{\rm T}$ $\theta^{\rm smear} = \theta^{\rm meas} + \Delta \theta$ $\phi^{\rm smear} = \phi^{\rm meas} + \Delta \phi$

The measured q_{inv} is a Gaussian distribution with the real q_{inv} as the mean.

Embedding

MC: Monte-Carlo simulation RC: Detector reconstruction

Number of events from MC:531300

Take the σ of the Gaussian distribution of p_{T} , θ , ϕ as the resolution.

2023/5/13

Momentum smearing effect

Correction: CF
$$(q_{data}) * \frac{CF(q_{smeared})}{CF(q_{UrQMD data})}$$

The momentum smearing effect is tiny, the statistics need to be increased to make corrections.

大學

CENTRAL CHINA

Systematic uncertainty

$$\Delta CF = (|CF_{default} - CF_{varied}|)/CF_{default}$$

$$\Delta\sigma(\text{Stat. fluctuation}) = \left(\sqrt{\left|\text{err}_{\text{default}}^2 - \text{err}_{\text{varied}}^2\right|}\right) / \text{CF}_{\text{default}}$$

same source with different cut: sys. err = $\sqrt{(sys. err_1^2 + sys. err_2^2)/2}$

sys. err = $\Delta CF - \Delta \sigma$; if $\Delta CF < \Delta \sigma$ (Stat. fluctuation), sys. err = 0

At low q_{inv} , systematic uncertainty of track splitting effect (nhitsFit) dominates.

2023/5/13

Correlation function

At $q_{inv} < 0.02$ GeV/c, Coulomb interaction (repulsive) is dominant.

With the increase of q_{inv} , Coulomb interaction becomes weak, quantum statistics (attractive) is dominant.

At $q_{inv} > 0.15$ GeV/c, Coulomb interaction and quantum statistics can be ignored.

Extraction of R and λ

Sinyukov-Bowler method: $C(q) = N\left[(1-\lambda) + K_{coul}(q, R)\lambda\left(e^{-q^2R^2} + 1\right)\right]$

Y. Sinyukov et al. Phys. Lett. B 432 (1998)

 λ - correlation strength parameter R – Gaussian source size N - normalization factor

Quantum Statistics: $C^{(0)}(q) = N(1 + \lambda e^{-q^2 R^2})$ - interaction-free particles

Within the statistical error, R and λ extracted from the experiment and model are similar.

Summary

- K⁺K⁺ CF measurements in Au+Au collisions at $\sqrt{s_{NN}} = 3 \text{ GeV}$
- Extraction of the parameters source size R and λ
- The CF from data can be reproduced by UrQMD model

Outlook

• Collision energy dependence

Thanks for your attention!

Backup

We mixed particles from different events which come from same V_z bin and centrality bin. Every 15 events are mixed as a group.

Simulation of correlation function

