

Recent STAR Cold QCD Results and Forward Upgrade

Xiaoxuan Chu (for the STAR collaboration) Brookhaven National Laboratory 07-12 March 2022

Outline:

- Results on longitudinally polarized program
- Results and Forward Upgrade on
 - Transversely polarized program
 - Unpolarized program

The STAR detector

Time Projection Chamber: $|\eta| < 1$, $\Delta \phi = 2\pi$

• Tracking, PID, vertex reconstruction

Electromagnetic Calorimeter: $-1 < \eta < 2$, $\Delta \phi = 2\pi$

• Energy measurement

Time-of-Flight: $|\eta| < 1$, $\Delta \phi = 2\pi$

• Particle identification

Forward Meson Spectrometer: 2.6 < η < 4 , $\Delta \phi$ = 2 π

• Energy measurement

Complemented by many ancillary subsystems:

- Beam-Beam Counter
- Vertex Position Detector
- Zero Degree Calorimeter
- Roman Pots

STAR Forward Upgrade

Detector	pp and pA	AA
ECal	~10%/√E	~20%/VE
HCal	~50%/VE+10%	
Tracking	charge separation photon suppression	0.2 <p<sub>T<2 GeV/c with 20-30% 1/p_T</p<sub>

STAR Forward Upgrade: $2.5 < \eta < 4$

Four new systems:

- Electromagnetic and Hadronic Calorimetry
- Tracking: Si detectors and small-strip Thin Gap Chambers (sTGC)

What we can measure:

- *h*^{+/-}, *e*^{+/-} (with good *e*/*h* discrimination)
- Photons, π^0
- Jets, *h* in jets
- Lambda's
- Drell-Yan and J/Ψ di-electrons
- Mid-forward and forward-forward correlations

Run period:

- STAR alone (**NOW**): $2022 \rightarrow 510$ GeV polarized p+p
- STAR in parallel with sPHENIX:
 - 2023 and 2025 \rightarrow 200 GeV Au+Au
 - 2024 \rightarrow 200 GeV polarized p+p and p+Au

Longitudinally polarized program

Longitudinally polarized p+p $\rightarrow \Delta f(x, Q^2)$

Polarized gluon distribution Δg

• $\vec{p} + \vec{p} \rightarrow \text{jet/dijet/hadron} + X: A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} \propto \frac{\Delta f_a \otimes \Delta f_b}{f_a \otimes f_b}$

Polarized sea quark distributions

• $\Delta \overline{u}$ and $\Delta \overline{d}$

•
$$\vec{p} + p \rightarrow W + X: A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

- $W^{+/-} \rightarrow$ natural flavor separation
- - $\Lambda(\overline{\Lambda})$ production: $D_{LL} = \frac{\sigma_{p^+p\to\Lambda^+X} \sigma_{p^+p\to\Lambda^-X}}{\sigma_{p^+p\to\Lambda^+X} + \sigma_{p^+p\to\Lambda^-X}}$
 - Sensitive to polarized fragmentation functions (FF) and the helicity distributions of s (\bar{s})

Helicity $\varDelta g$

STAR inclusive jets A_{LL} at 200 and 510 GeV from 2009 to 2015:

- Consistent results from both energies
- 200 GeV data constrain $\Delta g(x)$ for x > 0.05; 510 GeV data push sensitivity to lower $x \rightarrow 0.02$

Helicity $\varDelta g$

Dijets provide stricter constraints to underlying **partonic kinematics**:

- Narrow ranges of initial state partonic momentum fraction probed
- More-forward production: lower $x \rightarrow 0.01$ (PRD 98 (2018), 032011)

STAR, PRD 99 (2019), 051102(R)

Helicity PDFs: $\Delta \overline{u}$ and $\Delta \overline{d}$

Helicity PDFs: Δs

- Results show consistency between Λ and $\overline{\Lambda}$
- Data agree with various models within uncertainties
- Most precise measurements to date with twice the statistics of the 2009 dataset (STAR, PRD 98 (2018) 112009)

STAR has concluded the collection of longitudinally polarized data

CPHI-2022, Xiaoxuan Chu

Transversely polarized program

Transversely polarized p+p \rightarrow $f(x, k_T, S_T)$

- Transverse Momentum Dependent parton distribution functions (TMDs):
 - Sivers effect
 - Collins fragmentation functions (FF)
- What measurements will Forward Upgrade enable?

arXiv:1212.1701

Sivers

One of the 8 TMDs known as Sivers function:

 Observables: transverse single spin asymmetry (TSSA) for jets, W^{+/-}, Z⁰, Drell-Yan

$$A_N = \frac{d\sigma(\phi) - d\sigma(\phi + \pi)}{d\sigma(\phi) + d\sigma(\phi + \pi)}$$

Sivers effect:

Not universal → Sivers_{DIS} = - (Sivers_{DY} or Sivers_{W,Z0})

Transversity and Collins fragmentation functions

Quark polarization along the spin of a transversely polarized proton

- Observables: $A_{UT}^{\sin(\phi)}$ for pions
- Collins function predicted to be universal

$A_{\rm N}$ for W^{+/-} and Z^0

Mid-rapidity $W^{+/-}$ and $Z^0 A_N$:

- Statistics much improved with run 2017 (350 pb⁻¹) compared to run 2011 (25 pb⁻¹)
- Predictions from PRL 126, 112002 (2021)
 - Extraction includes SIDIS, DY and STAR run 2011 results
 - N³LO accuracy of the TMD evolution assuming sign-change

Expect ~350 pb⁻¹ more data from run 2022 with Forward Upgrade and η coverage extended by STAR iTPC

A_N for π^0

Theory curves: J. Cammarota et al, PRD 102, 054002 (2020)

Forward $\pi^0 A_N$:

- Weak dependence on the center-of-mass energy
- Larger A_N for isolated π^0 : additional mechanism needed to explain asymmetries \rightarrow diffractive processes?
- Suppression of A_N in p+A to A_N in p+p collisions is observed \rightarrow nuclear dependence of TMDs?

A_N for EM-jet

Forward EM-jet A_N :

- Decreases with increasing photon multiplicity
- Provides substantial constraints on the Sivers effect at high x

Collins asymmetry for π^{\pm} in jets

Spin-dependent modulation of π^{\pm} in jets at mid-rapidity ($|\eta_{jet}| < 1$):

- Significant Collins asymmetries for π^{\pm} measured with high precision
- Stringent constraints on theoretical calculations of transversity and Collins FF

Transverse physics with Forward Upgrade

STAR Forward Upgrade capabilities with jets and hadrons for transverse asymmetries:

- Study forward Sivers, Collins and diffractive processes
 → charge-tagged jets and di-jets, hadron in jets, and
 diffractive processes with rapidity gaps
- Before STAR: TMDs only came from fixed target e+p data with low Q²
- STAR's unique kinematics with Forward Upgrade: low to high x at moderate and high Q² → TMD evolution:
 - $x \text{ up to } \sim 0.5 \rightarrow \text{ sensitive to valence quark}$

How well Forward Upgrade will do?

Projected uncertainty of the data from 2022

Forward Upgrade enables full jet reconstruction with charge-sign tagging (no PID) of a hadron fragment:

- Sivers: projected statistical uncertainties drawn on twist-3 predictions from Gamberg et al; up to 10 σ separation between plus-tagged and minus-tagged jet A_N
- Transiversity: precise measurements at high x with uncertainties ~< 10⁻³

CPHI-2022, Xiaoxuan Chu

Unpolarized program

Unpolarized p+p and p+A \rightarrow $f(x, Q^2)$

- Sea quark distributions and nuclear parton distributions
- What measurements will Forward Upgrade enable?

W and Z⁰ cross section

 $W^+/W^- \rightarrow \bar{d}/\bar{u}$:

- Sensitive to the region 0.1 < x < 0.3 in STAR midrapidity ($|\eta| < 1$) at $Q^2 = M_W^2$
- Clean theoretical and experimental observable

 $\sigma_{W^+} / \sigma_{W^-} \approx \frac{u(x_1) \, \bar{d}(x_2) + u(x_2) \, \bar{d}(x_1)}{\bar{u}(x_1) \, d(x_2) + \bar{u}(x_2) \, d(x_1)}$

The differential Z⁰ cross section:

 Constrain on the energy scale dependence of TMDs

Expect \sim 350 pb⁻¹ more data from run 2022 with Forward Upgrade

STAR, arXiv: 2111.10396

Nonlinear gluon dynamics in QCD

- Forward rapidities → high gluon densities
- STAR π^0 π^0 correlations: p_T, E.A. and A dependence
- This measurement is essential to explore the universality of nonlinear effects along with the future EIC

Future measurements with Forward Upgrade

Expanded observables by Forward Upgrade: di-hadron, di-jet, γ -hadron/jet, inclusive γ ...

• R_{pAu}^{γ} of direct photon: free from the final state effects; precise measurements of nuclear gluon distribution

Summary

High impact of STAR Cold QCD program:

Longitudinally polarized: insights in Δg ; $\Delta \overline{u} > \Delta \overline{d}$ and $\Delta s \sim 0$

Transversely polarized:

- A_N for W and Z boson \rightarrow precise measurement to investigate Sivers effect
- Non-zero Collins asymmetry for π^{\pm}

Unpolarized:

- W^+/W^- ratio \rightarrow constrain sea quark distributions
- Forward π^0 π^0 correlation \rightarrow evidence of nonlinear gluon dynamics

STAR is taking data with the Forward Upgrade. The upgrade will provide insights in:

- Understanding the origin of large forward A_N
- Testing TMD evolution and universality
- Constraining transversity at high *x*
- Understanding the nature of the initial state in nucleon and nucleus