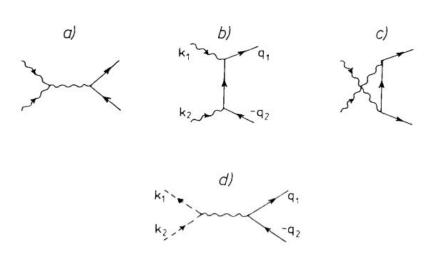
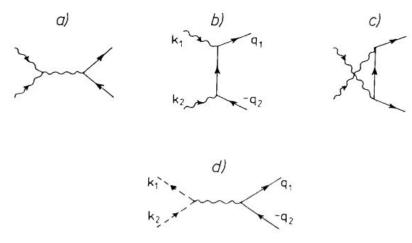


Strangeness Production in O+O Collisions at $\sqrt{s_{NN}}$ = 200 GeV

Iris Ponce for the STAR Collaboration


Yale University CPOD 2024

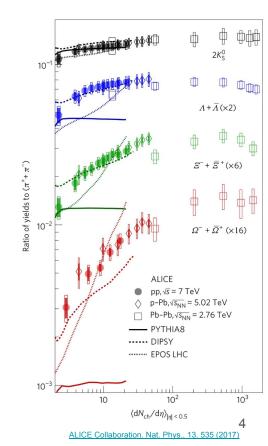
Strangeness Enhancement and the QGP


 Strangeness enhancement was one of the first observables predicted as a signature of the QGP.

P. Koch, B. Müller and J. Rafelski, "Strangeness in Relativistic Heavy Ion Collisions," Phys. Rep. 142, 167 (1986).

Strangeness Enhancement and the QGP

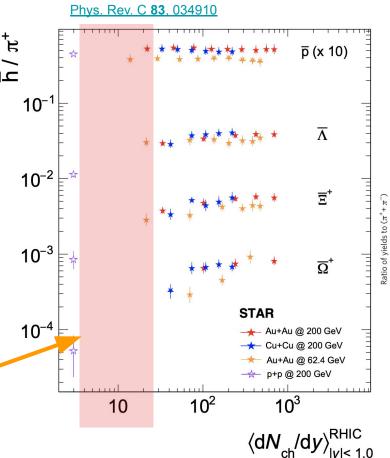
- Strangeness enhancement was one of the first observables predicted as a signature of the QGP.
- The thermal production of s-s pairs is favorable in the QGP since the s-s masses are close to the QGP transition temperature ~156 MeV.
 - M_{ss} ~192 MeV
 - There are abundant thermal gluons in the QGP medium.
- Multi-strange (Ξ^{\pm} , Ω^{\pm}) hadrons are more sensitive to the existence of QGP.

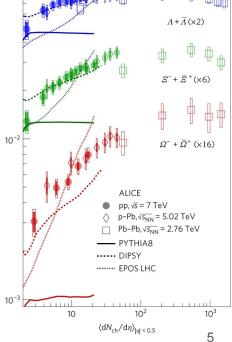


P. Koch, B. Müller and J. Rafelski, "Strangeness in Relativistic Heavy Ion Collisions," Phys. Rep. 142, 167 (1986).

Motivation

 A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A).

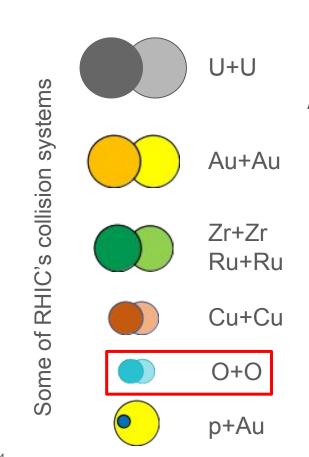




Motivation

- A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A).
 - o STAR has reproduced this ratio.

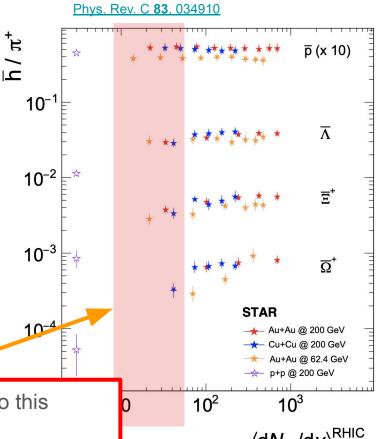
However, there is a notable data gap in the low multiplicity region


ALICE Collaboration, Nat. Phys., 13, 535 (2017).

Increasing System

Motivation

- A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A).
 - o STAR has reproduced this ratio.
- Oxygen is one of the smallest ions used at RHIC.
 - Fill in the hyperon to pion ratio in the low multiplicity gap
 - Allows a more straightforward geometry mapping with centrality than those asymmetric small system collisions like He+Au, or d+Au


6

Motivation

- A smooth increase in the ratio of strange hadron production to the pion yield as a function of multiplicity has been found in various collision systems (p+p, p+A, A+A).
 - o STAR has reproduced this ratio.
- Oxygen is one of the smallest ions used at RHIC.
 - Fill in the hyperon to pion ratio in the low multiplicity gap
 - Allows a more straightforward geometry mapping with centrality than those asymmetric

O+O's multiplicity can extend to this unexplored region

0+0	Reference Multiplicity	
0-10%	37	
10-20%	29	
20-40%	18	
40-60%	11	
60-80%	6	

O+O Run Information at STAR

- The Solenoidal Tracker at RHIC (STAR) has been operating since 2000.
- From 2021 on, STAR had two detector upgrades: iTPC and eTOF


Picture: Alex & Maria Schmah

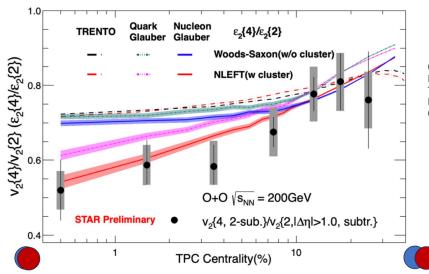
Q. Xu. (STAR Collaboration). 8th Workshop on Hadron Physics (2016)

O+O Run Information at STAR

- The Solenoidal Tracker at RHIC (STAR) has been operating since 2000.
- From 2021 on, STAR had two detector upgrades: iTPC and eTOF
 - The O+O run is one of the first runs with the iTPC installed
 - Improved coverage: $|\eta| < 1.5$ from $|\eta| < 1.0$
 - Lower pT coverage 125 MeV => 60 MeV
- There are ~650M O+O minimum bias events total.
 - ¼ of the O+O run was taken with the magnetic field reversed.
 - Testing calibration and TPC distortions

Picture: Alex & Maria Schmah

Q. Xu. (STAR Collaboration), 8th Workshop on Hadron Physics (2016)


Flow Measurements in O+O collisions shown in QM2023

Bulk Results:

Similar N_{part} to ³He-Au

$$v_2(O+O) < v_2(d+Au) \approx v_2(^3He+Au)$$

 $v_3(O+O) \approx v_3(d+Au) \approx v_3(^3He+Au)$

- v_{p}/ε_{p} are similar between O+O and ³He+Au, within a quark Glauber model
- $v_{2}\{4\}/v_{2}\{2\}$ show clear decrease in ultra-central collisions, consistent with ε_{2} {4} $/\varepsilon_{2}$ {2}, indicating enhanced fluctuations due to possible many-nucleon correlations.

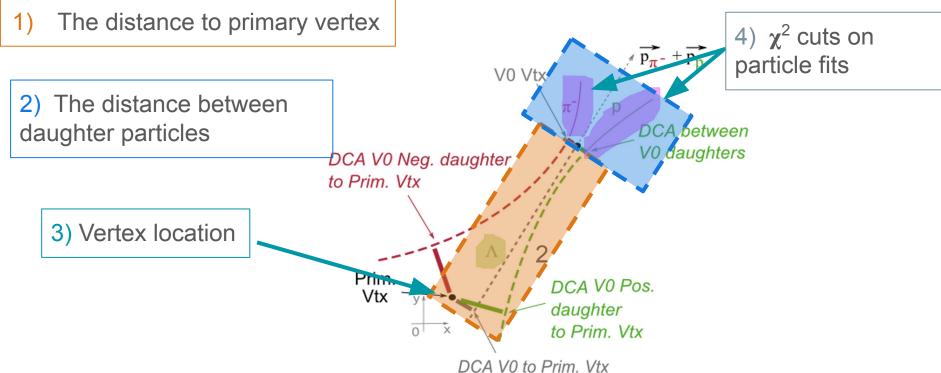
Ouark Glauber: PRC 94, 024914 (2016)

STAR

TRENTO: PRC.92.011901(2015) Calculated by Giuliano

S. Huang (STAR Collaboration). QM2023

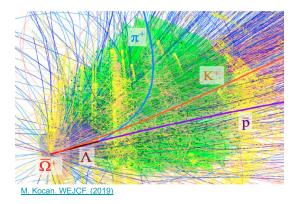
Particles To Be Reconstructed


I am interested in reconstructing particles with s-quarks, as listed below.

Particle	Strangeness	Mass (MeV)	Decay Mode	Branching Ratio
$\phi(1020)$	0	$1,019.461 \pm 0.020$	K^+K^-	49.5 %
K_s^0	±1	497.611 ± 0.013	$\pi^+\pi^-$	69.20~%
Λ	-1	$1,115.683\pm0.006$	$p\pi^-$	64.1 %
Ξ-	-2	$1,\!321.71{\pm}0.07$	$\Lambda\pi^-$	99.887%
Ω	-3	$1,672.45 \pm 0.29$	ΛK^-	67.8%

- This presentation will focus on Λ's.
- The Ξ^-, Ω^-, ϕ , and K^0_S results will follow soon.

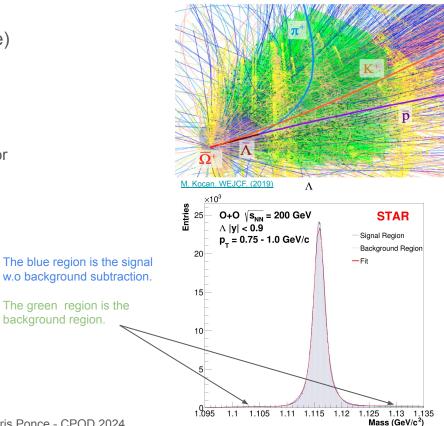
Reconstruction Details and Topological Cuts



Iris Ponce - CPOD 2024

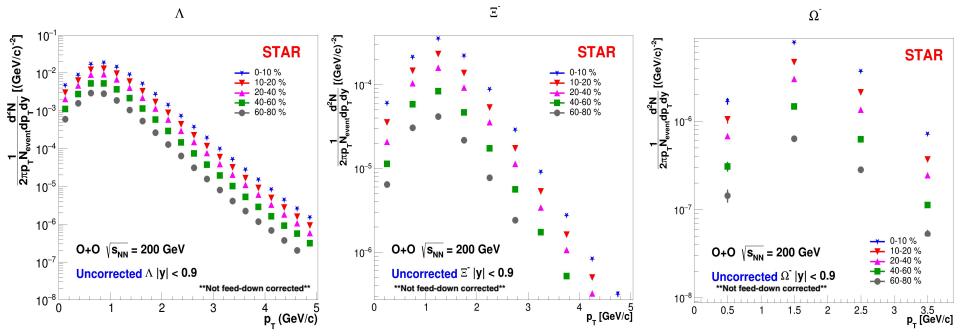
Reconstructing Lambdas and Signal Extraction

- Using Kalman Filter Particle (KF Particle) reconstruction algorithm.
 - Standard reconstruction for decayed particles.
 - Initially developed for other heavy ion experiments but was adapted in 2018 for STAR.

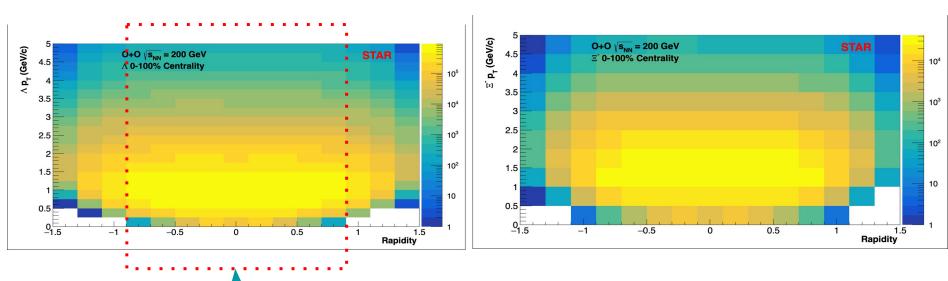


Reconstructing Lambdas and Signal Extraction

- Using Kalman Filter Particle (KF Particle) reconstruction algorithm.
 - Standard reconstruction for decayed particles.
 - Initially developed for other heavy ion experiments but was adapted in 2018 for STAR.

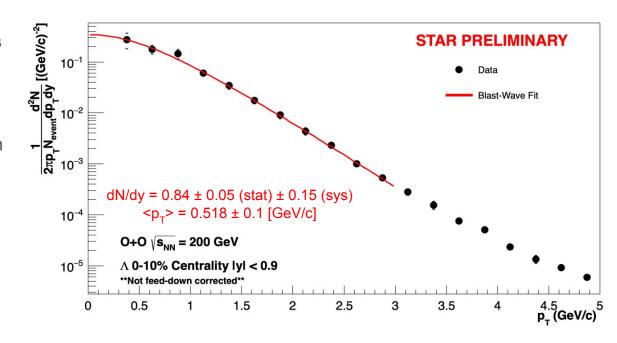

For the Λ Signal Extraction:

- The signal (without background subtraction) region is $[\mu-3\sigma,\mu+3\sigma]$, and the background region is [0 to μ -3 σ , μ +3 σ to Xmax].
- Fitting function: 2nd poly + double Gauss function.

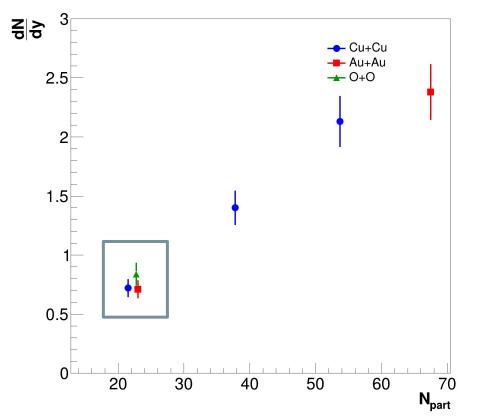

Uncorrected Raw Spectra for Hyperions in O+O

- The large statistics, improved p_T and rapidity coverage enables
 STAR to have good statistics for multi-strange hadrons.
- There is good coverage through 0 80% centralities.

What does our rapidity coverage looks like?


The iTPC provides extended coverage.

The rest of the talk will focus on this phase-space.

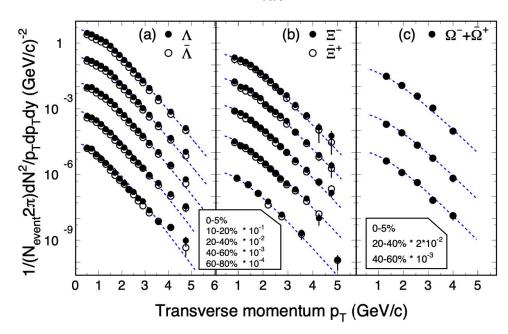

Corrected p_T spectrum for Λ 's in O+O

- The p_T spectra is calculated from the Λ's invariant mass distributions for the different momenta.
- The reconstruction efficiency is calculated using monte carlo which is embedded in real data and then propagated through the detector simulation.
- The Λ spectra is the average of both magnetic field configurations.

Comparing the O+O yield to similar Collision Systems

Most central O+O collisions have a similar N_{part} as peripheral Au+Au collisions.

Integrating the Λ p_T spectra from 0 => ∞ the yield (dN/dy) is 0.84 ± 0.05 ± 0.15

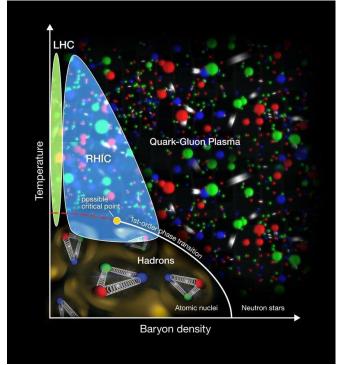

**O+O yield is not feed-down corrected.

Next Steps for Analysis

- Extend the analysis to other hyperons.
 - The raw p_T spectra have been made but is pending the corrections.
- Calculate the yields from corrected spectra.
- Calculate the pion yield.
- Apply feed-down corrections to spectra for yield calculations.
 - Compute the pion/hyperon ratio in the low multiplicity region
- Use thermal model for freeze-out parameter (e.g. μ_B , T_{ch}) extraction.

Transverse momenta distribution for Au+Au at $\sqrt{s_{NN}}$ = 200 GeV

STAR Collaboration. Phys. Rev. Lett. 98, 062301 (2007)

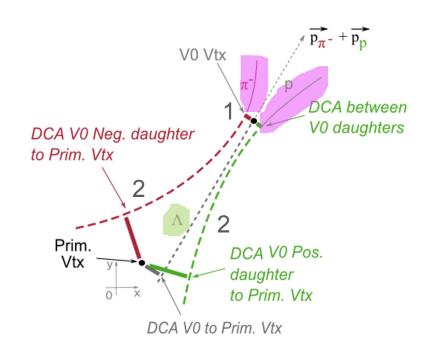

Conclusions

- The O+O at $\sqrt{s_{NN}}$ = 200 GeV is a newer data set for STAR.
- The O+O dataset can fill in the gaps in the low multiplicity regions in the ratio of strange hadron production to the pion yield for the STAR data.
- I presented the first yield calculation for ∧'s in the 0-10% centrality region for O+O.
- With the great statistics there will be interesting results for the near future!

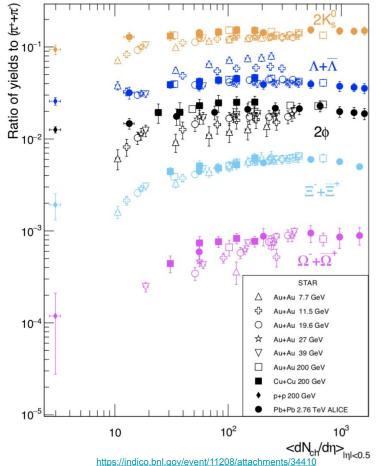
Some of STAR's other strangeness results at CPOD

- Y. Zhou presented measurements of K_s^0 , Λ , Ξ^- production at $\sqrt{s_{NN}} = 3 4.5$ GeV in Au + Au collisions.
 - Soon there will be more measurements from BESII too.
- Y. Leung presented on hypernuclei production at √s_{NN} = 3 27 GeV in Au+Au.
- Plus several other analysis!
- Covering different phase-space of the QCD diagram!

https://www.bnl.gov/newsroom/news.php?a=1210



Backup


Reconstruction Details and Topological Cuts

- 1) MaxDistanceBetweenParticlesCut (DCA
- between daughters): 5 cm
- 2) **LCut** (distance to primary vertex): > 1 cm
- 3) **Chi2Cut2D** (cut on χ^2 of the particle fit): > 20
- 4) **ChiPrimaryCut** (cut on χ^2 of the tracks to the PV to divide tracks into primary and secondary) : > 3.
- 5) **ChiPrimaryCut2D** (cut on χ^2 of the track to the PV): > 3.
- 6) **LdLCut2D** (cut on the distance to PV normalized on the error): > 3
- 7) **Vz** < | 145 | cm
- 8) Vr < 2 cm
- 9) **nHitsFit** > 15

Full spectra with BES yields

https://indico.bnl.gov/event/11208/attachments/34410/55818/zhu BNL nuclear seminar 2021.pdf