CPOD 2017

Critical Point and Onset of Deconfinement

Charles B. Wang Center - Stony Brook University August 7-11, 2017

STAR Event Plane Detector Upgrade

Prashanth Shanmuganathan

(For the STAR Collaboration) Lehigh University

Talk Outline

- Motivation for an Event Plane Detector
- Design and Construction
- 2017 Engineering Run Achievements
- Preparations for full Installation (2018)

STAR

BES Program at STAR

Goals of BES :

Explore QCD phase diagram

- Search for a Critical Point
- Signatures of Phase Transition
- Map turn-off of QGP signatures

Upgrades

iTPC eTOF • Improved PID capabilities

 Higher Statistics (CAD) & Improved Trigger

*LEReC: Accelerator Upgrade Electron Cooling for low energy RHIC running Increase luminosity

• Fluctuation analyses Esha, Monday 10:00 Llope, Thursday 9:00

- Moments, Forward-Backward correlations and Balance functions
- Needed =>Independent Centrality Measurement
- Flow measures & Correlations Singha, Tuesday 9:00 Wen, Wednesday 9:00 Upsal, Wednesday 11:00
 - Directed Flow & Higher Harmonics, Global Λ Polarization, HBT, CME & CMW
 - Needed => Improved Event Plane Resolution
 - Iso-Baric Run next year (Ru+Ru & Zr+Zr)
- Fixed Target Collisions Meehan, Friday 9:00
 - Improved independent reaction plane measurement
- Trigger on Good Collisions in high luminosity environment (BES-II)

Independent Centrality Measurements: Moments

 Near CP ratios of cumulants (κσ² or Sσ) of the net-particle multiplicity distributions should diverge

=>2-3σ deviation from Poisson distribution seen

STAR

Independent Centrality Measurements: Moments

 Near CP ratios of cumulants (κσ² or Sσ) of the net-particle multiplicity distributions should diverge

=>2-3σ deviation from Poisson distribution seen

STAR

Independent Centrality Measurements: Moments

 Near CP ratios of cumulants (κσ² or Sσ) of the net-particle multiplicity distributions should diverge

=>2-3σ deviation from Poisson distribution seen

Limitation in Analysis

- Large uncertainty (Limited statistics)
- Need wider p_T acceptance
- Need wider y acceptance
- Centrality determined within midrapidity
 - => Sacrificed TPC acceptance

7

Event Plane Estimation: Directed Flow

- Hydro calculations suggests minimum in baryon dv_1/dy vs. beam energy is softening of EOS
- Softening of EOS can be interpreted as 1st order phase transition
 - Proton dv_1/dy shows a minimum
 - Λ baryons dv_1/dy shows similar trend

Event Plane Estimation: Directed Flow

Limitation in analysis

- Poor reaction plane resolution
- Systematic analysis of centrality dependence
- Large uncertainty (Limited statistics)

- Hydro calculations suggests minimum in baryon dv_1/dy vs. beam energy is softening of EOS
- Softening of EOS can be interpreted as 1st order phase transition
 - Proton dv_1/dy shows a minimum

10-40% BES-I

10-15% BES-

<u>10-15% BES-II –</u> 10-15% BES-II+EPD

• Λ – baryons dv_1/dy shows similar trend

Event Plane Estimation : Polarization Measurements

- Lambda global polarization as a probe of fluid vorticity
- Λ and anti-Λ shows positive polarization
- Analysis is challenged by statistics and Event Plane Resolution
- Enhanced precision using 1 billion minimum bias events and EPD

10

Forward $dN_{ch}/d\eta$ Measurements

PHOBOS PRC 83, 024913

Expected multiplicity in EPD \sim 150-400

Prashanth S - CPOD 2017

Forward $dN_{ch}/d\eta$ Measurements

PHOBOS PRC 83, 024913

Expected multiplicity in EPD \sim 150-400

STAR

Design and Construction

EPD Design Features

- EPD is proposed to complement/replace the Beam-Beam-Counter (BBC):
 - Higher Granularity
 - Larger Acceptance
 - To be placed in the location of BBC (z = ± 375 cm from the center of TPC)
 - Radially 4.5 cm to 90 cm from beam axis
 - Improved Trigger Capabilities at high-luminosity collisions for BES-II

EPD Design

15

• 16 Radial segments

- 2-16 Radial segments have 24 azimuthal segments
 - spanning angle of 15⁰
- 1st Radial segment has 12 azimuthal segments
 - spanning angle of 30⁰

- Radial segmentation driven by many aspects like directed flow, zvertex position, trigger etc
- Azimuthal segmentation is driven by higher flow harmonics
- Tile structure is optimized for less than 10% multi-hit probability in a same tile at 19.6 GeV from PHOBOS measurements

Prashanth S - CPOD 2017

EPD Measures Centrality Outside of Mid-Rapidity

*Red region: Analysis/Study*Yellow region: Centrality estimation

Prashanth S - CPOD 2017

A small change in phasespace => Qualitatively different results

EPD Measures Centrality Outside of Mid-Rapidity => Allows Full use of TPC acceptance

*Red region: Analysis/Study*Yellow region: Centrality estimation

Prashanth S - CPOD 2017

A small change in phasespace => Qualitatively different results

EPD - Improves Event Plane Resolution

BBC

EPD

36 tiles, only 18 inner tiles used

372 tiles16 eta segments24 phi segments (12 at highest eta)

3.3 < |η| < 5.0 **→ 2.1 < |η| < 5.1**

- 2 Wheels, each composed of 12 'super-sectors'
- Super-sectors :Scintillator wedges, milled to form 31 tiles each
 - Optically separated by TiO₂-loaded epoxy
- 3 turns of WLS fiber •
 - 3 turns ~doubles light output relative to 1 turn

Half milled Super-sector

Design- Light Collection

3D-printed custom connectors Prashanth S - CPOD 2017

- Wavelength-shifting fiber transports light to outer-edge connector
- Contact connection to 5.5-m optical fiber bundles
- Read out by 25 μ m-pixel silicon photomultipliers and custom front-end electronics
- Existing electronics are used to digitize and trigger

31 channel, 5.5 m long clear fiber bundle

Far end of optical bundles

16 channel SiPM board

Preparations for full Installation (2018)

- Super-sector construction at Ohio State
- Fiber bundle construction at Lehigh University
- Electronics design / production at Indiana University / USTC
- Mechanical infrastructure at Brookhaven
- On track to full completion by end of 2017

=>Will be ready for Isobars & BES-II

Cosmic and Source Test Stand (Ongoing work)

- Relative calibration of light yield in different SS or in tiles
- Position dependent light yield in (larger) tiles using Sr source
- Test light tightness
- Dark current measurements
- Mapping test in SS

EPD- Run 16 Prototype

- 24 channel prototype
- Data shows 53 photons per MIP

EPD- Run 17 Engineering Run

- ¼ of the wheel (1/8 of the detector) installed on the east side of STAR
- Commissioned during *p*+*p* 500 GeV collisions
- Clear MIP peaks seen in all tiles
- Uniform response from the detector
- Fully commissioned for Au+Au 54.4 GeV collisions

EPD- Run 17 Performance

- ✓ All 93 channels show MIP peeks
- ✓ Excellent uniformity in all channels

****** Low-ADC dark-current contribution is eliminated by cutting on time

Rough MIP matching to set bias voltage

STAR

STAR

EPD- Run 17 Performance

Multiplicity in the barrel TOF vs the EPD

- ADC distribution fitted for multiple hits
- About 45 photoelectrons per MIP
- ADC distribution very well understood, including multiple-hit

contributions

SiPM Performance in STAR Upgrades

SiPM Performance in STAR Upgrades

EPD SiPM Dark Current

- Presently dark current ~1uA
 - MIP resolution unaffected.
- Much smaller radiation damage expected in Au+Au

EPD SiPMs Located far away from beam (~4m)

Trigger Capabilities

- Needed efficient minimum bias trigger detector for BES-II and Fixed Target program
 - Efficient Background reduction needed for high-luminosity RHIC collisions
- EPD design exceeds minimum radial segmentation needed for effective Trigger
- EPD performed well in Run 17, met our goals for going through the trigger chain
 - Data is being analyzed

Summary

- Opens up phase-space: Significant azimuthal & radial segmentation (372 x 2 channels)
- Measure Centrality outside mid-rapidity
- Provides better Event Plane Resolution
- EPD can improve Trigger efficiency
- Excellent performance in 'engineering' run 2017. Expect publishable results
- To be completed end of this year (Isobar and BES II collisions)
- Electron Colling together with STAR detector upgrades provide good control of statistical fluctuations and systematics for BES II

BES I ➡ BES II

Qualitative Statements **>>** Quantitative Measurements

Backup

Prashanth S - CPOD 2017

31

Front End Electronics

16 Channel SiPM board

16 Channel Pre-Amp

SiPM Single Pixel response

- Gain 1pC/pixel, linear up to 1300 pixels
- Resolution is much more than adequate

EPD Project Scope

- Super Sectors (1/12th of a wheel)
 - 1.2 cm Eljen scintillator wedges, milled to form 31 tiles
 - optically separated by TiO₂-loaded epoxy
 - Construction is in progress at OSU
- Coupling to electronics
 - 5.5-m-long Clear fiber bundles
 - All connector components custom-designed and 3D printed
 - Construction is in progress at Lehigh University
- Electronics
 - Hamamatsu SiPMs
 - Excellent resolution, linearity
 - About 50 photoelectrons per MIP (MPV)
- Engineering Run 17
 - 1/8th of the detector installed
- EPD will be ready for Run 18

FEEs designed by G. Visser

Motivation-II: Event Plane Estimation

Polarization Measurements

 $\overline{\Lambda}$ this study

Λ PRC76 024915 (2007)

Ā PRC76 024915 (2007)

10²

 $\sqrt{s_{_{NN}}}$ (GeV)

Limitation in analysis

- Poor reaction plane resolution ٠
- Systematic analysis of centrality dependence ٠
- Large uncertainty (Limited statistics) ٠