

Probe the QCD Phase Boundary with Elliptic Flow in Relativistic Heavy Ion Collisions at STAR

Shusu Shi for the STAR collaboration

Central China Normal University

Outline

Introduction and Motivation

STAR detector and Data analysis

Results and Discussions

- > v₂ method comparison
- Energy dependence
- Model comparison
- \succ v₂ of particles and anti-particles
- NCQ scaling test

Summary

Introduction

The RHIC Beam Energy Scan (BES)

Energy Dependence of NCQ Scaling

F. Liu, K.J. Wu, and N. Xu: J. Phys. G 37 094029(2010)

AMPT model results:

Scaling in v_2 : partonic dof dominant;

No scaling in v_2 : hadronic dof dominant

=>

A tool to search for the possible phase boundary!

> The beam energy dependence of the partonic cross sections will not affect the v_2 scaling argument.

=>

Important for Beam Energy Scan program.

STAR Detectors

Magnet

ГРС

EEMC

Method Comparison

\succ v₂ method

- Event Plane method TPC EP (| η |<1.0) FTPC EP (2.5<| η |<4.0)
 - BBC EP (3.8<| ŋ |<5.2)
- Cumulant method
 v₂{2}, v₂{4}
- Different methods show different sensitivity to non-flow and fluctuations
- The difference between v_2 {2} and v_2 {4} decreases with decrease in beam energy
- non-flow and fluctuations

Energy Dependence

- \succ v₂{4} results
- Three centrality bins
- The shape of v₂(p_T) looks similar in all beam energies
- ▷ p_T < 2GeV/c</p>
- The v₂ values increase with increase in beam energy

ALICE data: Phys. Rev. Lett. 105, 252302 (2010)

Model Comparison

The data at 11.5 and 39 GeV fall between UrQMD and AMPT model incorporating additional partonic interactions for partonic cross section of 3 mb.

The AMPT default
 version and UrQMD
 explains the data at 7.7
 GeV fairly well when pT < 1
 GeV/c

The data is closer to the AMPT default and UrQMD models in the lower beam energy.

-> Hadronic interactions are more dominant in the lower beam energy

 $\pi + vs_{\bullet} \pi$

v₂(π⁻) > v₂(π⁺) in Au + Au collisions at 11.5 and 7.7 GeV
 Same magnitude of v₂ at 39 GeV

p(Λ) vs. Anti-p(Λ)

Shusu Shi CPOD 2011, Wuhan, China, 7-11 November 2011

Particles vs. Anti-particles

The difference between particles and anti-particles is observed

NCQ Scaling Test: m_T - m

- Universal trend for most of particles

Small or zero v_2 for ϕ meson -> without formation of partonic matter Hadronic interactions are dominant when $\sqrt{s_{NN}} \le 11.5 \text{ GeV}$

Ref: B. Mohanty and N. Xu: J. Phys. G 36, 064022(2009)

Summary

- The v₂ of charged hadron in the lower beam energy is closer to AMPT default and UrQMD models Hadronic interactions are more dominant in lower beam energy
- The difference between particles and anti-particles increases with decrease of beam energy
- φ meson deviates the trend of other particles at 11.5
 GeV: Mean deviation from pion distribution: 2.6 σ

Hadronic interactions are dominant when $\sqrt{s_{_{NN}}} \le 11.5 \text{ GeV}$

Outlook

The v₂ of strange hadrons (K_s⁰, Λ, φ, Ξ, Ω) in Au+Au collisions at 19.6 and 27 GeV will come soon