

Higher Moments of Net-proton Multiplicity Distributions at STAR

Xiaofeng Luo (罗晓峰) (for the STAR Collaboration) Central China Normal University

SIAR

CPOD 2013, March 11-15, Napa Valley, USA

Outline

- > Introduction:
- > Results from RHIC Beam Energy Scan-I:
- > Theoretical Calculations: Lattice QCD and PQM Model.
- > Techniques Used in the Moment Analysis.
- > Summary

Matter may undergo phase transition when external condition (T, P etc.) are changed.

At the Critical Point (CP):

- > 2nd order phase transition.
- Diverges of the thermodynamics quantities, such as correlation length (ξ), susceptibilities (χ), heat capacity (C_V).
- Long wavelength fluctuations comparable with the light wavelength: Critical Opalescence.

Explore the Phase Structure of Nuclear Matter

Main Goals of Heavy Ion Collisions:

- Signals for phase transition/phase boundary.
- Search for Critical Point (CP).

ST 10 1

Bulk properties of QCD matter.

Lattice QCD :

> Crossover at $\mu_B = 0$, 1st order phase transition at large μ_B .

Y. Aoki, et al., Nature 443, 675 (2006).
S. Gupta, et al. Science 332, 1525 (2011).
A. Bazavov et al, PRD 85, 054503 (2012).
Y. Aoki et al., JHEP 0906, 088 (2009).

➢ QCD Critical Point (CP): The end point of first order phase transition boundary.

Z. Fodor, et al, JHEP04, 050 (2004) (hep-lat/ 0402006) M. A. Stephanov, Int. J. Mod. Phys. A 20, 4387 (2005) (hep-ph/0402115).

Observables:

- 1. Flucutations and correlations.
- 2. Collective flow: v1, v2...
- 3. Others...

Higher Moments (I): Sensitive to the Correlation Length

> Ideal probe of non-gaussian fluctuations.
 > Sensitive to the correlation length (ξ).

<
$$(\delta N)^2 > \sim \xi^2$$
 < $(\delta N)^3 > \sim \xi^{4.5}$
< $(\delta N)^4 > - 3 < (\delta N)^2 >^2 \sim \xi^7$

Search for CP in Heavy Ion Collisions (ξ ~2-3 fm)

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009); Phys. Rev. Lett. 107, 052301 (2011);

Higher Moments (II): Related to the Susceptibility

Experiment: Heavy Ion Collisions Theory: Lattice QCD, HRG... **Pressure:** STAR Experiment: *PRL105*, 022302(2010). $\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V, T, \mu_B, \mu_Q, \mu_S)$ 10⁶ Au+Au 200 GeV • * 0-5% 0.4<p_<0.8 (GeV/c) Events 10⁵ **30-40%** |y|<0.5 • 70-80% **Susceptibility:** I Jo³ Number of 10² 10² 10 $\chi_q^{(n)} = \frac{1}{T^4} \frac{\partial^n}{\partial (\mu_q / T)^n} P\left(\frac{T}{T_C}, \frac{\mu_q}{T}\right) \Big|_{T/T_C},$ -20 -10 0 10 20 q = B, Q, S(Conserved Quantum Number) Net Proton (ΔN_p) Susceptibility Susceptibility $\chi_q^{(1)} = \frac{1}{VT^3} \left\langle \delta N_q \right\rangle, \chi_q^{(2)} = \frac{1}{VT^3} \left\langle \left(\delta N_q \right)^2 \right\rangle$ $\kappa\sigma^2 \sim \frac{\chi^{(4)}}{\gamma^{(2)}}, S\sigma \sim \frac{\chi^{(3)}}{\gamma^{(2)}}, \frac{\sigma^2}{M} \sim \frac{\chi^{(2)}}{\gamma^{(1)}}$ $\chi_q^{(3)} = \frac{1}{VT^3} \left\langle \left(\delta N_q \right)^3 \right\rangle$ $\chi_q^{(4)} = \frac{1}{VT^3} \left(\left\langle \left(\delta N_q \right)^4 \right\rangle - 3 \left\langle \left(\delta N_q \right)^2 \right\rangle^2 \right)$ Study Phase Transition and Bulk properties of QCD matter. A. Bazavov et al .arXiv::1208.1220. 1207.0784. R.V. Gavai and S. Gupta, PLB 696, 459 (2011). F. Karsch et al, PLB 695, 136 (2011). S. Gupta, et al., Science, 332, 1525(2011). arXiv: 1203.0784; S. Borsanyi et al, JHEP1201,138(2011) Y. Hatta, et al, PRL. 91, 102003 (2003). 6

STAR

Observable: Higher Moments of Net-proton Distributions

Net-proton fluctuations can reflect the diverges of baryon number fluctuations at CP and can be used to search for the CP.

STAR: Physical Review Letters 105, 022302 (2010).

First measurement of the higher moments of net-proton distributions at RHIC.

> There has no evidence for the existence of QCD critical point with μ_B <200 MeV. 7

Y. Hatta, et al., Phys.Rev.Lett. 91, 102003 (2003).

Applications of Higher Moments Analysis

Continue the story....

Search for the QCD Critical Point....

RHIC Beam Energy Scan-Phase I

STAR Detector Time Projection Chamber (TPC) **₩₩**₩ **Large Uniform Acceptance** Excellent Particle Identification

STAR

Varying beam energy varies Temperature and Baryon Chemical Potential.

(RHIC BES-Phase I: Au+Au collisions at $\sqrt{s_{NN}}$ =7.7, 11.5, 19.6, 27, 39, 62.4, 200 GeV. M. Aggarwal, arXiv:1007.2613 (2010).

√s (GeV)	μ _B (MeV)	T (MeV)		
7.7	422	140		
11.5	316	152		
19.6	206	160		
27	156	163		
39	112	164		
62.4	73	165		
200	24	166		

J. Cleymans et al., Phys. Rev. C 73, 034905 (2006)

Access a broad region of QCD phase diagram by RHIC BES program.

STAR is an ideal detector to perform correlation and fluctuation analysis to study the QCD phase diagram.

k liki x BAV

Data Analysis

Energy (GeV)	7.7	11.5	19.6	27	39	62.4	200
Statistics (Million)	~3	~6.6	~15	~30	~87	~47	~242
Year	2010	2010	2011	2011	2010	2010	2010

> PID : Energy loss (dE/dx) in Time Projection Chamber of STAR detector is used to identify protons with high purity within $0.4 < p_T < 0.8$ (GeV/c) and at mid-rapidity |y|<0.5.

Proton Phase Space

Skellam distributions (dash lines)
 :assuming distributions of protons
 and anti-protons are indep. Poission.

$$P(N) = (\frac{N_{\bar{p}}}{N_{p}})^{N/2} I_{N} (2\sqrt{N_{\bar{p}}}N_{p}) e^{-(N_{\bar{p}}+N_{p})}$$

Input parameters :measured average number of protons and anti-protons.

➤ The shape of the net-proton distributions vary with the centrality and energy.

➤ These are uncorrected eventby-event distributions of net-protons and the moments beyond mean are obtained by correcting for the finite centrality bin width effect.

1st order polynomial fit:
 Central Limit Theorem (CLT)
 expectations for Cumulants.

$$C_n \propto V$$

V: Volume of the system.

> All cumulants show general linear dependence on N_{part} .

- $\succ C_1 \sim C_3 \text{ (odd order) and } C_2 \sim C_4$ (even order).
- ➤ The differences between odd and even order cumulants decrease when the energy decrease.

(The produced number of anti-protons decrease with decreasing energy.) $_{13}$

> Deviations below Poisson expectations are observed beyond statistical and systematic errors in 0-5% most central collisions for $\kappa\sigma^2$ and So above 7.7 GeV.

➤ UrQMD model show monotonic behavior for the moment products, in which non-CP physics, such as baryon conservation, hadronic scattering effects, are implemented.

➢ Higher statistics are needed in order to draw physics conclusion at lower beam energies.

Comparison between Data and PQM Model

B. Friman, et al, EPJC 71, 1694 (2011).

PQM Model: Polyakov Quark Meson Model

> PQM model calculations agree with data.

> Need more statistics at lower beam energies.

QCD Critical Point: Lattice Calculation

> µ^E_B/T^E~1-2.
> More statistic are needed.

S. Gupta, CPOD2013

X. Luo, et al, arXiv: 1302.2332

1. Centrality Bin Width Correction (CBWC):

Moments are corrected for centrality bin-width effects by using $\frac{1}{2}$ the weighted average of the moments inside each centrality bin.

J. Phys.: Conf. Ser. 316, 012003 (2011) [arXiv: 1106.2926]

2. New Centrality: Refmult3

Determine the centrality using charged particles but excluding proton/anti-proton used in the analysis to avoid auto-correlation.

3. Statistical Error Estimations: Delta theorem method.

J. Phys. G 39, 025008 (2012) [arXiv: 1109.0593]

4. Centrality Resolution Effect. This effect will be shown by model calculations and we are still investigating in data.

Initial geometry: N_{part,} overlap volume...

How does the initial geometry fluctuations affect the higher order fluctuations analysis ?

Theoretical calculations:

The independent emission Source Model

Henning Heiselberg, nucl - th/0003046

 Multiplicity N arise from independent Source, such as participant nucleon (Np).

$$N = \sum_{i=1}^{N_p} n_i$$

 n_i is the multiplicity from ith source.

Multiplicity Fluctuations:

$$\frac{\sigma_N^2}{M_N} = \frac{\sigma_n^2}{M_n} + \langle n \rangle \underbrace{\frac{\sigma_{N_p}^2}{M_{N_p}}}_{N_{part}}$$
N_{part} fluctuations.

Volume fluctuations (V)

arXiv: 1205.4756

$$\sigma_N^2 = \sigma_n^2 * V + < n >^2 \left(\frac{\sigma_V^2}{V}\right)$$

Volume fluctuations.

 σ_n^2 , < n >: Fluctuation per unit volume and independent of volume.

Refmult3 Definition in Model: Charged Kaon + Pion Multiplicities within certain η window.

- Central collisions has smaller N_{part} fluctuations (higher centrality resolution) than midcentral and peripheral collisions.
- N_{part} fluctuations will be largely suppressed at mid-central and peripheral collisions by increasing the particle multiplicities in centrality definition.

Model simulations: AMPT String Melting

- Large difference are observed in mid-central /peripheral and low energies for different Refmult3 definition (different centrality resolutions).
- > The saturation are reached around $|\eta| < 2$ and are close to the results with the N_{part} centrality.²¹

Similar behavior is observed as for Kurtosis*Variance.

STAR

Model Simulation: Energy Dependence

Significant differences are found at mid-central/peripheral collisions and low energies.

> For 0-5% central collisions, results are consistent within errors.

Summary

Measurements:

➤ We present the centrality and energy dependence for the first four moments/cumulants of the net proton multiplicity distributions in Au+Au collisions at RHIC BES-Phase I energies (7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV).

Comparisons with Skellam Expectations and Transport Model:

- > Deviations below Skellam expectation are observed in Au+Au collisions beyond the statistics and systematics errors for the moment products $\kappa\sigma^2$ and S σ above 7.7 GeV. Monotonic behavior for the moment products is observed in the UrQMD model.
- Experimental results are compared with Lattice QCD and PQM Model Calculations. Centrality resolution effect has been discussed by model simulation and we are still investigating this effect in the data.
- Higher statistics are needed in order to draw physics conclusion at lower beam energies.
- ➤ The second phase of beam energy scan program at RHIC is planned.

Backup Slides

What about the experimental data ?

STAR

- We can not measure Npart or Volume but charged particles. \geq
- \triangleright Do the similar test as we have done in model. Vary the η window in the Refmult3 definition to suppress the Npart (volume) fluctuations.

Run 10, Au+Au 7.7 GeV Run 10, Au+Au 200 GeV 90000 1.2 80000 70000 60000 0.8 50000 40000

TPC acceptance limit, $\sim |\eta| < 1.5$, large efficiency drop beyond $|\eta| < 1$

HIJING+GEANT Simulation

- The efficiency of proton and anti-proton as obtained for HIJING+GEANT simulations.
- The detector effects (efficiency, acceptance etc) seems small based on the Hijing+Geant simulations.

Skellam Expectations

If proton and anti-proton are independent Poissonian distributions, the distributions of net-protons is Skellam distributions, which is the case in Hadron Resonance Gas Model.

$$P(N) = \left(\frac{N_{\bar{p}}}{N_{p}}\right)^{N/2} I_{N} \left(2\sqrt{N_{\bar{p}}}N_{p}\right) e^{-(N_{\bar{p}}+N_{p})^{2}}$$

 N_{pbar} : Mean number of anti-protons N_p : Mean number of protons

The Poisson baselines (skellam distributions) are only determined by measured average number of protons and anti-protons. This baseline will be used in our data analysis.

Then we have the skallam expectations for various moments/cumulants measurements:

$$C_{2n} = N_p + N_{\overline{p}}$$

$$S\sigma = \frac{C_3}{C_2} = \frac{N_p - N_{\overline{p}}}{N_p + N_{\overline{p}}}, \kappa\sigma^2 = \frac{C_4}{C_2} = 1$$

The skallam expectations may have energy and centrality dependence.

 Effect of resonance decay on Sσ and κσ² is small. (based on the right two plots).
 Effect of inclusion of neutrons is small: Indicates: Net-proton fluctuation can reflect

the net-baryon fluctuation.➢ Error estimation: X. Luo, arXiv:1109.0593

Process Final State Interaction (FSI) between hadrons or not can be controlled by "ART" program in the AMPT model.

Effects of Final State Interaction (FSI) on S σ and $\kappa\sigma^2$ are small.

(based on the results in the right two plots).

Other Baryons

M. Kitazawa and M. Asakawa – arXiv: 1107.2755

STAR

(anti-)Proton number fluctuations modified in hadron phase. Random Isospin distribution of nucleons -(-) + - + 0 + -

Individual Moments change Products of Moments similar

B. Mohanty, CPOD 2011.

UrQMD