¹ ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H directed flow measurement in ² $\sqrt{s_{NN}} = 3$ GeV Au+Au collisions from STAR

3

4

Chenlu Hu (for STAR Collaboration)

Institute of Modern Physics, China

February 2021

Abstract: Collective flow has been commonly used for studying the prop-5 erties of matter created in high-energy heavy-ion collisions, due to its high sen-6 sitivity on early stage collision dynamics. The first-order Fourier coefficient of 7 azimuthal distributions of produced particles v_1 , also called directed flow, has 8 been analyzed for different particle species from the lightest mesons to light 9 nuclei in such collisions. In this talk, we report the first observation of the 10 hyper-nuclei ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H directed flow v_1 from $\sqrt{s_{NN}} = 3$ GeV mid-central 11 (5-40%) Au+Au collisions at RHIC. This is a part of the beam energy scan 12 program (fixed target mode) carried by the STAR experiment in 2018. About 13 2700 and 4200 $^{3}_{\Lambda}$ H candidates from its two-body and three-body π^{-} decay re-14 spectively, and about 5300 $^{4}_{\Lambda}$ H candidates from its two-body π^{-} decay are used 15 in this analysis. The directed flow of ${}^3_{\Lambda}$ H and ${}^4_{\Lambda}$ H are compared with those of the 16 copiously produced particles such as p, Λ , d, t, ³He and ⁴He. It is observed that 17 the slope of v_1 at midrapidity for the hyper-nuclei ${}^3_{\Lambda}$ H and ${}^4_{\Lambda}$ H follows a baryon 18 number scaling implying that coalescence process is a dominant mechanism for 19 the hyper-nuclei production in this collisions. 20