Light Nuclei v_1 and v_2 in Au+Au Collisions at $\sqrt{s_{NN}} = 3$ GeV from STAR

Xionghong He (for the STAR collaboration)

Institute of Modern Physics, Chinese Academy of Sciences

CPOD2021 - International Conference on Critical Point and Onset of Deconfinement (March 15 - March 19, 2021)

Supported in part by

Outline

I. Introduction

II. STAR fixed-target experiment and light nuclei identification

III. Results and discussions

IV. Summary

I. QCD phase diagram

Correlations are essential feature of interacting many body system.

Light nuclei : nucleon-nucleon correlation affecting the chemical composition, thermodynamical properties

When and how are light nuclei formed in heavy-ion collisions?

I. Light nuclei in relativistic heavy-ion collisions

Coalescence model

Formed later, combination of nucleons with close position and momentum.

$$E\frac{d^3N}{dp^3} = B_A \left(E_p \frac{d^3N_p}{dp_p^3} \right)^2 \left(E_n \frac{d^3N_n}{dp_n^3} \right)^N$$

Atomic mass number scaling of collective flow $v_n : v_n^A(p_T, y) \approx A v_n^p \left(\frac{p_T}{A}, y\right)$

I. Deuteron v_1 slope at midrapidity

I. Light nucleus v₂ from STAR

Phys. Rev. C 94, 034908 (2016)

Atomic-mass-number scaling of v_2 at low p_T , favored by coalescence production model.

Xionghong He (for STAR collaboration)

II. Fixed target experiment at STAR

II. Data and light nuclei selection

Data recorded in 2018, ~250M events.

Light nuclei : d, t, ³He, and ⁴He $z = \ln\left(\frac{(dE/dx)_{measured}}{(dE/dx)_{expected}}\right)$

Momentum dependence PID, the TOF was used at high momentum.

II. Light nuclei acceptance

- p_T range (GeV/c) : d [0.8, 3.5], t [1.2, 4.0], ³He [1.2, 4.0], ⁴He [1.6, 4.0]
- Part of the tritons and ⁴He within -0.1<y<0 can't be covered due to the TOF acceptance

Xionghong He (for STAR collaboration)

III. p_T dependence of light nucleus v_1

Light nucleus $v_1(p_T)$ follow atomic-mass-number scaling at different rapidity bins.

III. p_T dependence of light nucleus v_2

The p_T dependence of proton v_2 is not monotonic, do not following mass-number scaling.

III. Rapidity dependence of \boldsymbol{v}_1 and \boldsymbol{v}_2

coalescence : can negative proton v₂ produce positive light nucleus v₂? Proton : $\frac{dN^p}{d\varphi} \sim 1 + 2v_1 \cos(\varphi - \psi_{RP}) + 2v_2 \cos(2(\varphi - \psi_{RP}))$ Light nuclei (neutron $\frac{dN^n}{d\varphi} = \frac{dN^p}{d\varphi}$): $\frac{dN^A}{d\varphi} \sim \left(\frac{dN^p}{d\varphi}\right)^A$

III. Coalescence in momentum space

Negative proton v_2 can produce positive light nucleus v_2 .

III. JAM+ nucleon coalescence

JAM : Jet AA Microscopic transport Model, meanfield

Coalescence of two nucleons:

relative coordinate and momentum distances Δr<4.0 fm, Δp<0.3 GeV/c

Can qualitatively describe the data.

III. Energy dependence of dv₁/dy

At $\sqrt{s_{NN}}$ = 3 GeV, the light nucleus v₁ slopes follow the atomicmass- number scaling .

III. Energy dependence of dv_1/dy

- Hadronic model JAM reproduces light nuclei v₁ at 3 GeV
- Different scaling behavior at low and high collision energies → change of dominant interactions See Shaowei's talk (March 15)

Summary

- v_1 and v_2 measurements for *d*, *t*, ³He, and ⁴He from Au+Au collisions at $\sqrt{S_{NN}}$ = 3 GeV
 - At midrapidity, light nucleus v₁(y) slope and v₁(p_T) follow the atomic-massnumber scaling, as expected in coalescence scenario

 \succ v₂ values at midrapidity (|y|<0.1) are negative and not scaling

- Simple coalescence picture qualitatively describes the light nucleus v₁ and the sign change of v₂(y), as a function of rapidity
- From high collision energy, $\sqrt{s_{NN}} > 15$ GeV, to low energy, < 8GeV, atomic mass scaling for light-nuclei v₁ and v₂ is different, which may imply different dominant interactions :

at high μ_B , hadronic interactions at low μ_B , partonic interactions

Back up

• Deuteron v₁ from beam energy scan

Phys. Rev. C 102, 044906 (2020)

• Light nucleus v₂ from beam energy scan

Phys. Rev. C 94, 034908(2016)

