Workshop on Critical Point and Onset of Deconfinement -2022

Results from STAR BES

Md Nasim (for the STAR collaboration)

Indian Institute of Science Education and Research, Berhampur

In part supported by

Office of Science

Motivation

(MeV)

Temperature

156

78

0

LHC

SPS

RHIC

AGS

FAIR

NICA

Hadron Gas

500

SIS

Gas-Liquid

Baryonic Chemical Potential $\mu_{\rm B}$ (MeV)

1000

1500

Quark-Gluon Plasma

Probing the QCD matter:

- Strangeness production at high μ_B
- Hadronic re-scattering
- Spin polarization
- Hyperon-nucleon interaction

Mapping the **QCD** phase diagram:

- Phase-boundary
- Critical point
- Onset of de-confinement
- Signature of 1st-order phase transition

The STAR Experiment

- Detector upgrades: iTPC, eTOF, EPD
- Tracking: TPC (|η| <1.5)
- PID: TPC and ToF(|η| <0.9)
- Full azimuthal coverage

Beam Energy Scan Phase-II

Data taking for phase-II of BES was completed in 2021.

Data collected by STAR covers μ_B from 20-800 MeV

Probing the **QCD** matter

- Strangeness production & hadronic re-scattering
- Spin polarization
- Hyperon-nucleon interaction

Strangeness Production at 3 GeV

Effect of Hadronic Re-scattering

Probing the **QCD** matter

- Strangeness production & hadronic re-scattering
- Spin polarization
- Hyperon-nucleon interaction

Global Hyperon Polarization

- Probe for initial angular momentum and magnetic field
- Increasing global polarization with decreasing energy

Precision measurements using BES-II data follow the global trend

BES-II Results: 3, 7.2, 19.6, 27 GeV

D. Kharzeev, Nucl Phys A 803, 227 (2008), F. Becattini, et. al., Phys Rev. C. 77, 024906 (2008)

Global Spin Alignment of Vector Mesons

Probing the QCD matter

- Strangeness production & hadronic re-scattering
- Spin polarization
- Hyperon-nucleon interaction

Hyper-nuclei

- Bound system of nucleon and hyperon
- Probe for hyperon-nucleon interaction

B. Dönigus, Eur. Phys. J. A (2020) 56:280 A. Andronic et al. PLB (2011) 697:203–207

BES-II data provide a great opportunity to study hyper-nuclei production in heavy-ion collisions

Hyper-nuclei Yield and Lifetime

Mapping the QCD phase diagram

- Phase-boundary
- Critical point and 1st order phase transition
- Onset of de-confinement

Medium Temperature with Dileptons

Contributions to dielectron mass spectrum from both QGP radiation and p decays

LMR : dominated by p mediated dielectrons IMR : dominated by QGP radiation

STAR

Unlike photons, the measured temperature from the dielectron invariant mass spectrum is not affected by the blue-shift effect

Medium Temperature with Dileptons

Precision measurement of dielectron mass spectra at 27 and 54.4 GeV

LMR : Extracted medium temperature ~ Chemical freeze-out temperature

IMR : Extracted QGP medium temperature ~ 300 MeV

Mapping the QCD phase diagram

- Phase-boundary
- Critical point and 1st order phase transition
- Onset of de-confinement

Net-proton Fluctuation

At critical point:

- Correlation length diverges
- Distributions are non-Gaussian

○ Au+Au $\sqrt{s_{NN}}$ = 7.7- 39 GeV Hints of non-monotonic dependence of C₄/C₂ vs $\sqrt{s_{NN}}$

 $\circ~$ Au+Au $\sqrt{s_{_{NN}}}~$ = 3 GeV : measured C_4/C_2 consistent with UrQMD

STAR: PRL, 126, 092301 (2021), PRC,104, 024902 (2021)

Nuclei Ratio vs Energy

The ratio $N_t \times N_p / N_d^2$ is sensitive to the local density fluctuation of neutrons

- signature of 1st order phase transition and/or critical point

K.-J. Sun, et al Phys. Lett. B 781, 499 (2018); E. Shuryak et al, Phys. Rev. C 101, 034914 (2020),

STAR: arXiv 2209.08058

0.8

0.7

0.6

0.5

0.4

03

Nuclei Ratio vs Energy

The ratio $N_t \times N_p / N_d^2$ is sensitive to the local density fluctuation of neutrons

- signature of 1st order phase transition and/or critical point

Mapping the QCD phase diagram

- Phase-boundary
- Critical point
- Onset of de-confinement

STAR Collectivity Measurements from BES

- NCQ-scaling holds for particles (~20%)
- φ meson v₂ follows NCQ scaling
 - -Signature of partonic collectivity

P. Dixit & S. Zhou Wed, 30/11

statistical uncertainties @ 19.6 GeV (BES-II)

 Different v₁ slopes of p and p-bar (transport quark effect)

STAR Collectivity Measurements from BES

- NCQ-scaling holds for particles (~20%)
- φ meson v₂ follows NCQ scaling
 - -Signature of partonic collectivity

P. Dixit & S. Zhou Wed, 30/11

Factor 2.5-4 reduction in statistical uncertainties @ 19.6 GeV (BES-II)

 Different v₁ slopes of p and p-bar (transport quark effect)

Collectivity Measurements from BES

STAR

 UrQMD with baryonic mean-field potential qualitatively consistent with data at 3 GeV

Collectivity Measurements from BES

BES-II Results: 3 GeV

- Proton v₃ is correlated with ψ₁
- We expect v₃(ψ₁) ~ 0 due to event-by event fluctuations
- Non-zero v₃(ψ₁) may come from initial geometry related to baryon stopping

C. Racz, Wed, 30/11

Summary

- Au+Au $\sqrt{s_{NN}}$ =14.6 and 19.6 GeV (BES-II)
 - Precision measurements compared to BES-I
 - Signatures of deconfined quark matter are observed
- Au+Au $\sqrt{s_{NN}}$ = 3 GeV (BES-II, FXT)
 - Medium likely dominated by hadronic interactions

Our searches for the QCD critical point and 1st order phase transition continue.

Stay tuned for more BES-II results

List of STAR talks

1. Probing the hadronic phase via the measurement of resonances in Au+Au collisions at \$\sqrt{s_{NN}}\$= 19.6 GeV from STAR BES-II – **A. K. Sahoo**

- 2. Measurements of light hypernuclei production and properties in Au+Au collisions from STAR experiment X. Li
- 3. Elliptic flow of identified particles in Au+Au collisions at $\sqrt{\text{sNN}}$ = 14.6 GeV in BESII **S. Zhou**
- 4. Reaction Plane Correlated Triangular Flow in Au+Au Collisions at \sqrt{s_{NN}} = 3.0 GeV from STAR C. Racz
- 5. Azimuthal anisotropic flow of identified hadrons in Au+Au collisions in BES-II energies -P. Dixit
- 6. Beam Energy Dependence of Triton Production and Yield Ratio (Nt Np/Nd^2) in Au+Au Collisions at RHIC- D. Zhang
- 7. Measurements of Local Parton Density Fluctuations via Proton Clustering from STAR Beam Energy Scan D. Neff

Thanks...

Back-Up

Global Spin Alignment of Vector Mesons

Contributions to ϕ -meson ρ_{00} from theory

Physics Mechanism	$ ho_{00}$	
Electric field ¹	< 1/3	~10-5
Electric part of vorticity tensor ¹	< 1/3	~10-4
Fragmentation of polarized quarks ²	≥ 1/3	~10-5
Magnetic components of EM and vorticity fields ^{1,2,3}	< 1/3	~10-5
Helicity polarization ⁴	< 1/3	
Locally fluctuating axial charge currents ⁵	< 1/3	
Local vorticity loop + coalescence ⁶	< 1/3	
Vector meson strong force field ^{1,7}	> 1/3	

Gavin Wilks SQM2022,

Sheng et al., Phys. Rev. D 101, 096005 (2020).
 Liang et al., Phys. Lett. B 629, 20–26 (2005).
 Yang et al., Phys. Rev. C 97, 034917 (2018).
 Gao et al., Phys. Rev. D 104, 076016 (2021).
 Müller et al., Phys. Rev. D 105, L011901 (2022).
 Xia et al., Phys. Lett. B 817, 136325 (2021).
 Sheng et al., Phys. Rev. D 102, 056013 (2020).

Deuteron Number Fluctuation

Difference with net-proton: Different freeze out

Smooth energy dependence of C_4/C_2

Kinetic Freeze-out at 3 GeV

- Kinetic freeze-out parameters extracted using cylindrical blast-wave model
- Kinetic freeze-out temperature at 3 GeV is lower than other higher energies
- T_{kin}(deuteron) > T_{kin} (proton)