

Collectivity at High Baryon Density from STAR BES-II

CPOD 2024 - The 15th Workshop on Critical Point and Onset of Deconfinement

Li-Ke Liu for the STAR Collaboration CCNU, GSI

1) Motivation

2) Experimental Setup

3) Results and Discussion

- Directed flow (v_1) measurements I)
- II) Elliptic flow (v_2) measurements
- Summary 4)

Outline

A. Bazavov et al., Phys. Rev. D 85, 054503 (2012); K. Fukushima and C. Sasaki, Prog. Part. Nucl. Phys, 72, 99 (2013)

Li-Ke Liu

Motivation

RHIC FXT: 3.0-7.7 GeV *u_R*: 750-420 MeV

> RHIC 200 GeV and LHC Small viscosity, high temperature **Evidence of Quark-Gluon Plasma**

Beam energy scan program Locate the first-order phase boundary Search for Critical Point

Initial spatial anisotropy \rightarrow Pressure gradient \rightarrow Momentum space anisotropy

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998) STAR Collaboration, Phys. Rev. Lett. 118, 212301 (2017) P. Danielewicz, R. Lacey, Science 298 (2002)

Li-Ke Liu

Anisotropic flow

GSI

Anisotropies in particle momentum distributions relative to the reaction plane

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi}\frac{d^{2}N}{p_{T}dp_{T}dy}\left(1 + \sum_{1}^{\infty} 2v_{n}\cos\left[n\left(\phi - \psi_{r}\right)\right]\right)$$
$$v_{1} = \cos\left(\phi - \psi_{r}\right) = \left\langle\frac{p_{x}}{p_{T}}\right\rangle \qquad \text{directed flow}$$
$$v_{2} = \cos\left[2(\phi - \psi_{r})\right] = \left\langle\frac{p_{x}^{2} - p_{y}^{2}}{p_{x}^{2} + p_{y}^{2}}\right\rangle \qquad \text{elliptic flow}$$

1) Equation of State of the medium

2) Constituent interactions and degree of freedom

Motivation: Anti-flow of v₁

1) Bounce-off: Positive flow in positive rapidity 2) Au+Au 3.83 GeV: anti-flow of kaon at low p_T (< 0.7 GeV/c) \rightarrow Kaon potential ?

Li-Ke Liu

0.1

- 1) 200 GeV: Partonic collectivity 2) 3.0 GeV: Hadronic interaction dominates
- 3) Change of degree of freedom: $3.0 \rightarrow 7.7 \text{ GeV}$?

Motivation: Elliptic flow

GSJ

Li-Ke Liu

Experimental Setup

STAR Detector Upgrade:

- Inner-Time Projection Chamber
 - Better track quality, Larger acceptance
- Endcap Time Of Flight 2)
 - Particle identification
- **Event Plane Detector** 3)
 - Event plane determination $(2.1 < |\eta| < 5.1)$

FXT Event Statistics

Au+Au (GeV)	3.0	3.2	3.5	3.9	4.5
Baryon chemical potential (~MeV)	750	700	670	635	590
Events analyzed (M)	260	206	107	94	128

Li-Ke Liu

FXT data can provide good precision for collectivity measurement

TPC

Particle Identification

eTOF

bTOF

Good particle identification capability based on TPC dE/dx and TOF m²

Particle Acceptance

- 1) K_s^0 , Λ are reconstructed by invariant mass method (KF particle package)
- 2) Particle rapidity coverage from -1 to 0 (blue boxes)

A. Banerjee, I. Kisel and M. Zyzak, Int. J. Mod. Phys. A 35, 2043003 (2020)

Li-Ke Liu

CPOD2024, Berkeley, May 20th – 25th

Rapidity dependence of v₁

Li-Ke Liu

Measurements of v₁ vs. rapidity for π^{\pm} , K^{\pm} , K_{S}^{0} , p, Λ at 3.0, 3.2, 3.5, and 3.9 GeV

Anti-flow of Kaon

E895 Collaboration, Phys. Rev. Lett. 85, 940 (2000)

1) 3.9 GeV: anti-flow observed for K_S^0 at $p_T < 0.7$ GeV/c 2) Positive directed flow slope of K_S^0 at $p_T > 0.7$ GeV/c **Strong p**_T **dependence of** K_{S}^{0} **v**₁ **slope**

Li-Ke Liu

CPOD2024, Berkeley, May 20th – 25th

G S]

Li-Ke Liu

p_T dependence of v₁ slope

Energy dependence of v₁ slope

Z

P_z

$$v_1 = \cos(\phi - \psi_r) = \left\langle \frac{p_x}{p_T} \right\rangle$$

v₁ reflect asymmetry along X direction

Li-Ke Liu

Px

Py

v₂ reflect asymmetry on X-Y plane

Anisotropic flow

$$v_{2} = \cos\left[2(\phi - \psi_{r})\right] = \left\langle \frac{p_{x}^{2} - p_{y}^{2}}{p_{x}^{2} + p_{y}^{2}} \right\rangle$$

p_T dependence of v₂ at 3.0 - 4.5 GeV

1) Clear energy dependence for $v_2(p_T)$ from negative to positive: Shadowing effect

2) JAM + baryonic Mean Field better describe the 3.2 GeV while underestimate 4.5 GeV data

Baryonic Mean Field: p dependent Soft EoS, the nuclear incompressibility K = 210 MeV

CPOD2024, Berkeley, May 20th – 25th

Li-Ke Liu

1) NCQ scaling completely breaks below 3.2 GeV 2) NCQ scaling becomes better gradually from 3.2 to 4.5 GeV

Li-Ke Liu

NCQ scaling of v₂ at 3 - 4.5 GeV

CPOD2024, Berkeley, May 20th – 25th

Li-Ke Liu

Energy dependence of $\langle v_{\gamma} \rangle$

In-plane expansion

- 1) Negative to positive flow: $3 \rightarrow 4.5$ GeV
- 2) NCQ scaled v₂ ratio of p/K^+ close to 1 at 3.9 and 4.5 GeV, while deviating largely from 1 at 3.2 GeV

STAR Collaboration, Phys. Rev. C 88, 14902 (2013), Phys. Rev. C 103, 34908 (2021)

CPOD2024, Berkeley, May 20th – 25th

G S]

1) Anti-flow for K_{S}^{0} , K^{\pm} and π^{+} observed at low $p_{T} (\leq 0.6 \text{ GeV/c})$ Shadowing effect is important, kaon potential is not necessary to reproduce kaon anti-flow

- 4.5 GeV
 - Shadowing effect diminishes
 - **Dominance of partonic interactions at 4.5 GeV** Ø

2) NCQ scaling breaks at 3.0 and 3.2 GeV, and gradually restores from 3.0 to

CPOD2024, Berkeley, May 20th – 25th

Baryonic Mean Field: non-p dependent Soft EoS, the nuclear incompressibility K = 210 MeV

Li-Ke Liu

CPOD2024, Berkeley, May 20th – 25th

Backup

