PRECISION MEASUREMENT OF NET-PROTON NUMBER FLUCTUATIONS IN AU+AU COLLISIONS AT RHIC

Ashish Pandav for STAR Collaboration Lawrence Berkeley National Laboratory May 21, 2024

CPOD2024 Berkeley, CA May 20 - 24, 2024

1. Introduction 2. Experimental analysis 3. Results 4. Summary

Outline

INTRODUCTION: QCD PHASE DIAGRAM

Phase diagram of strongly interacting matter] Largely conjectured

CUMULANTS:

•Cumulants: n = net-proton multiplicity in an event $C_1 = \langle n \rangle$ Skewness: Asymmetry $C_2 = \langle \delta n^2 \rangle \qquad * \delta n = n - \langle n \rangle$ $C_3 = \langle \delta n^3 \rangle$ $C_4 = <\delta n^4 > -3 <\delta n^2 >$ Negative Skew Positive Skew $C_5 = \langle \delta n^5 \rangle - 10 \langle \delta n^3 \rangle \langle \delta n^2 \rangle$ $C_6 = \langle \delta n^6 \rangle - 15 \langle \delta n^4 \rangle \langle \delta n^2 \rangle - 10 \langle \delta n^3 \rangle^2 + 30 \langle \delta n^2 \rangle^3$ • Factorial cumulants (irreducible correlation function): $\kappa_1 = C_1$ $\kappa_2 = -C_1 + C_2$ $\kappa_3 = 2C_1 - 3C_2 + C_3$ $\kappa_4 = -6C_1 + 11C_2 - 6C_3 + C_4$ $\kappa_5 = 24C_1 - 50C_2 + 35C_3 - 10C_4 + C_5$ $\kappa_6 = -120C_1 + 274C_2 - 225C_3 + 85C_4 - 15$

Kurtosis: Peakedness

$$5C_{5} + C_{6}$$

CUMULANTS AND CP SEARCH:

Related to correlation length: $C_2 \sim \xi^2$, $C_4 \sim \xi^7$ Finite size/time effects reduces ξ Higher order **—** more sensitivity q = B, Q, S**Related to susceptibilities:** $\frac{C_{4q}}{C_{2q}} = \frac{\chi_4^q}{\chi_2^q}, \frac{C_{6q}}{C_{2q}}$ $=\frac{\chi_6^q}{\chi_2^q}$ Direct comparison with lattice QCD, HRG, QCD-based model calculations

R.V. Gavai and S. Gupta, PLB696, 459(11) S. Ejiri, F. Karsch, K. Redlich, PLB633, 275(06) A. Bazavov et al., PRL109, 192302(12) S. Borsanyi et al., PRL**111**, 062005(13)

M. A. Stephanov, PRL 107 (2011) 052301

Assumption: Thermodynamic equilibrium

Non-monotonic $\sqrt{s_{NN}}$ dependence of C_4/C_2 of conserved quantity existence of a critical region

EXPERIMENTAL SEARCH FOR CP: BES SCAN AT STAR-RHIC

Phase I of BES program (BES-I): Au+Au collisions

J. Cleymans, et. al, PRC. 73, 034905 (2006)

<mark>√s_{NN} (Ge</mark> V)	Events (10 ⁶)	<mark>µ_B (Me</mark> V)
200	220	25
62.4	43	75
54.4	550	85
39	92	112
27	31	156
19.6	14	206
14.5	14	262
11.5	7	316
7.7	2.2	420
3.0	140	750

STAR : PRL 127, 262301 (2021), PRC 104, 24902 (2021) : PRL 128, 202302 (2022), PRC 107, 24908 (2023) HADES: PRC 102, 024914 (2020)

Observed hint of non-monotonic trend in BES-I (3 σ): consistent with model expectation with a CP Robust conclusion require confirmation from precision measurement from BES-II. Extend reach to even lower collision energies with FXT energies

STAR BES-II PROGRAM: PRECISION MEASUREMENTS

Au+Au Collisions at RHIC

Collider Runs			Fixed-Target Runs				
Sl. no.	$\sqrt{s_{NN}}$ (GeV)	No. of collected events (millions)	μ _B (MeV)	S1. no.	$\sqrt{s_{NN}}$ (GeV)	No. of collected events (millions)	μ _B (MeV)
1	200	380	25	1	13.7 (100)	50	280
2	62.4	46	75	2	11.5 (70)	50	316
3	54.4	1200	85	3	9.2 (44.5)	50	372
4	39	86	112	4	7.7 (31.2)	260	420
5	27	585	156	5	7.2 (26.5)	470	440
6	19.6	595	206	6	6.2 (19.5)	120	490
7	17.3	256	230	7	5.2 (13.5)	100	540
8	14.6	340	262	8	4.5 (9.8)	110	590
9	11.5	257	316	9	3.9 (7.3)	120	633
10	9.2	160	372	10	3.5 (5.75)	120	670
11	7.7	104	420	11	3.2 (4.59)	200	699
				12	3.0 (3.85)	260 + 2000	750

 $3 \leq \sqrt{s_{NN}} (GeV) \leq 200 \rightarrow 750 \geq \mu_B (MeV) \geq 25$

High precision, widest μ_R coverage to date

STAR BES-II PROGRAM: PRECISION MEASUREMENTS

Au+Au Collisions at RHIC

Collider Runs			Fixed-Target Runs				
Sl. no.	$\sqrt{s_{NN}}$ (GeV)	No. of collected events (millions)	μ _B (MeV)	S1. no.	$\sqrt{s_{NN}}$ (GeV)	No. of collected events (millions)	μ _B (MeV)
1	200	380	25	1	13.7 (100)	50	280
2	62.4	46	75	2	11.5 (70)	50	316
3	54.4	1200	85	3	9.2 (44.5)	50	372
4	39	86	112	4	7.7 (31.2)	260	420
5	27	585	156	5	7.2 (26.5)	470	440
6	19.6	595	206	6	6.2 (19.5)	120	490
7	17.3	256	230	7	5.2 (13.5)	100	540
8	14.6	340	262	8	4.5 (9.8)	110	590
9	11.5	257	316	9	3.9 (7.3)	120	633
10	9.2	160	372	10	3.5 (5.75)	120	670
11	7.7	104	420	11	3.2 (4.59)	200	699
BES-II collider results ready			12	3.0 (3.85)	260 + 2000	750	

 $3 \leq \sqrt{s_{NN}} (GeV) \leq 200 \rightarrow 750 \geq \mu_B (MeV) \geq 25$

High precision, widest μ_B coverage to date

STAR BES-II PROGRAM: PRECISION MEASUREMENTS

Au+Au Collisions at RHIC

Collider Runs					Fixed-T
Sl. no.	$\sqrt{s_{NN}}$ (GeV)	No. of collected events (millions)	μ _B (MeV)	S1. no.	$\sqrt{s_{NN}}$ (GeV)
1	200	380	25	1	13.7 (100)
2	62.4	46	75	2	11.5 (70)
3	54.4	1200	85	3	9.2 (44.5)
4	39	86	112	4	7.7 (31.2)
5	27	585	156	5	7.2 (26.5)
6	19.6	595	206	6	6.2 (19.5)
7	17.3	256	230	7	5.2 (13.5)
8	14.6	340	262	8	4.5 (9.8)
9	11.5	257	316	9	3.9 (7.3)
10	9.2	160	372	10	3.5 (5.75)
11	7.7	104	420	11	3.2 (4.59)
	BES-II c	ollider resu	Its ready	12	3.0 (3.85)

 $3 \leq \sqrt{s_{NN}} (GeV) \leq 200 \rightarrow 750 \geq \mu_B (MeV) \geq 25$

Events used for net-proton fluctuation studies (Collider runs) BES-II vs BES-I

$\sqrt{s_{NN}}$ (GeV)	Events BES-I (10 ⁶)	Events BES-II (10 ⁶)
7.7	3	45
9.2	_	78
11.5	7	110
14.5	20	178
17.3	-	116
19.6	15	270
27	30	220

~10-18 fold improvement in statistics 9.2 and 17.3 GeV added to energy scan

High precision, widest μ_R coverage to date

STAR DETECTOR: BES-II UPGRADE

Wide and uniform acceptance

Excellent PID and tracking

Modest rates

inner Time Projection Chamber

endcap Time-Of-Flight

STAR Major Upgrades for BES-II

iTPC:

- \succ Improves dE/dx
- \triangleright Extends η coverage from 1.0 to 1.6
- \triangleright Lowers p_T cut-in from 125 to 60 MeV/c
- \triangleright Ready in 2019

Enlarge rapidity acceptance: $|\eta| \le 1.0 \rightarrow |\eta| \le 1.6$

- Improve particle identification: $p_T \ge 125$ MeV/c $\rightarrow p_T \ge 60$ MeV/c 2)
- Enhance centrality/event plane resolution, suppress auto correlations 3)
- Enable the fixed-target program: $\mu_B \leq 420 \text{ MeV} \rightarrow \mu_B \leq 750 \text{ MeV}$ 4)

- eTOF:

Full EPD has been installed

> Forward rapidity coverage \triangleright PID at $\eta = 1.05$ to 1.5 Borrowed from CBM-FAIR \triangleright Ready in 2019

EPD:

- Improves trigger
- Better centrality & event plane measurements
- \succ Ready in 2018

CENTRALITY:

- Defined using charged particle multiplicity measured by STAR
- Exclude protons and antiprotons to avoid self correlation

Two choices of centrality

Refmult3: Charged particle multiplicity excluding protons measured within $|\eta| < 1.0$

Refmult3X: Charged particle multiplicity excluding protons measured within $|\eta| < 1.6$ Possible due to iTPC upgrade

Larger multiplicity leads to better centrality resolution: Refmult3X (BES-II) > Refmult3 (BES-II) > Refmult3 (BES-I)

PROTON SELECTION:

 p_{T} (GeV/c)

Purity: Proton -Antiproton .5

TPC and TOF detector used for identifying protons over $p_T = 0.4 - 2.0 \ GeV/c$, and |y| < 0.5

 $p_T = 0.4 - 0.8 \ GeV/c$ (PID using TPC) Using dE/dx measurements $\rightarrow |n\sigma| < 2$

 $p_T = 0.8 - 2.0 \ GeV/c \ (using TPC+TOF)$ In addition to TPC, mass² from TOF used $\rightarrow 0.6 < mass^2 < 1.2 \ GeV^2/c^4$

Bin-by-bin proton/antiproton purity > 99%

EVENT-BY-EVENT NET-PROTON DISTRIBUTION:

Raw net-proton distributions from BES-II: Uncorrected for detector efficiency

Mean increases with decreasing collision energy: Effect of baryon stopping

Larger width leads to larger Stat. uncertainties

Stat. error $C_r \propto \frac{\sigma'}{\sqrt{N}}$

CORRECTIONS:

• Corrected for detector efficiency

Binomial detector efficiency response considered

~10% higher proton efficiency compared to BES-I

Better control on uncertainty on efficiency: 2% compared to 5% in BES-I

• Corrected for PID cut efficiency

$$PID_{eff} = S_a/S_{tot}$$

$$S_a = \text{area under } |n\sigma_p| < 2.0$$

$$S_{tot} = \text{total area under } n\sigma_p$$

distribution($|n\sigma_p| < 5.0$)

• Corrected for finite centrality bin width $C_n = \sum w_r C_{n,r}$ where $w_r = n_r / \sum n_r$, n=1,2,3,4...Here, n_r is no. of events in r^{th} multiplicity bin

X. Luo, T Nonaka, PRC 99 (2019) X. Luo et al, J.Phys. G 40, 105104 (2013),

Percentage stat. and sys. error in net-proton cumulants at 0-5% centrality

$\sqrt{s_{NN}}$	7.7 GeV		19.6	GeV
	% stat.	% sys.	% stat.	%
	error	error	error	er
$C_{2/}C_{1}$	0.1%	0.3%	0.06%	0.
C _{3/} C ₂	2.1%	1.3%	0.7%	1
C _{4/} C ₂	61%	29%	22%	1

Reduction factor in uncertainties on 0-5% C_4/C_2 : **BES-II vs BES-I**

7.7 C	19.6	GeV	
stat. error	sys. error	stat. error	sys. e
4.7	3.2	4.5	4

LATEST NET-PROTON FLUCTUATION

RESULTS FROM BES-II:

CENTRALITY DEPENDENCE AND COMPARISON WITH BES-I

Net-proton Cumulants

CENTRALITY DEPENDENCE AND COMPARISON WITH BES-I

- Results from Refmult3X (BES-II) < Refmult3 (BES-II) < Refmult3 (BES-I)
- 3. For 0-5% C_4/C_2 , weak effect of centrality resolution seen.

Average Number of Participant Nucleons $\langle N_{_{part}} \rangle$

1. Precision measurements: smooth variation across centrality and collision energy observed. 2. Higher centrality resolution leads to lower ratios (especially in mid central collisions):

ENERGY DEPENDENCE OF C_4/C_2 : COMPARISON WITH BES-I

ENERGY DEPENDENCE OF C_4/C_2 : COMPARISON WITH BES-I

•BES-II results consistent with BES-I within uncertainties.

Deviation between BES-II and BES-I data

$\sqrt{s_{NN}}$ (GeV)	0-5%	70-80%
7.7	1.0 <i>σ</i>	0.9σ
11.5	0.4σ	1.3σ
14.6	2.2σ	2.5σ
19.6	0.7σ	0.0σ
27	1.4 <i>o</i>	0.2σ

Effect of Centrality Resolution on C_4/C_2

EFFECT OF CENTRALITY RESOLUTION ON C_4/C_2

- 1. **0-5% centrality** C_4/C_2 results show good agreement between Refmult3 and Refmult3X: weak effect of centrality resolution.
- 2. BES-II results shown hereafter are with Refmult3X

Net-proton cumulant ratios

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022)

Net-proton cumulant ratios

Cumulant Ratios

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022)

1. Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing $\sqrt{s_{NN}}$.

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022)

- 1. Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing $\sqrt{s_{NN}}$.
- 2. Non-CP models used for comparison: A. Hydro: Hydrodynamical model

Net-proton cumulant ratios

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022)

- 1. Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing $\sqrt{s_{NN}}$.
- 2. Non-CP models used for comparison:
- A. Hydro: Hydrodynamical model
- B. HRG CE: Thermal model with canonical treatment of baron charge

Net-proton cumulant ratios

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022)

- 1. Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing $\sqrt{s_{NN}}$.
- 2. Non-CP models used for comparison:
- A. Hydro: Hydrodynamical model
- **B.** HRG CE: Thermal model with canonical treatment of baron charge
- C. UrQMD: Hadronic transport model
 - (All models include baryon number conservation)

ENERGY DEPENDENCE: MODEL COMPARISON Proton/antiproton Net-proton cumulant ratios

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022)

Cumulant Ratios

- 1. Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing $\sqrt{s_{NN}}$.
- 2. Non-CP models used for comparison: A. Hydro: Hydrodynamical model
- B. HRG CE: Thermal model with canonical treatment of baron charge
- C. UrQMD: Hadronic transport model
 - (All models include baryon number conservation)
- 3. Proton factorial cumulant ratios deviates from poisson baseline at 0.

Antiproton κ_3/κ_1 , κ_4/κ_1 closer to 0.

ENERGY DEPENDENCE: MODEL COMPARISON Proton/antiproton Net-proton cumulant ratios

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022)

- 1. Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing $\sqrt{s_{NN}}$.
- 2. Non-CP models used for comparison: A. Hydro: Hydrodynamical model
- **B.** HRG CE: Thermal model with canonical treatment of baron charge
- C. UrQMD: Hadronic transport model
- (All models include baryon number conservation)
- 3. Proton factorial cumulant ratios deviates from poisson baseline at 0. Antiproton κ_3/κ_1 , κ_4/κ_1 closer to 0.

ENERGY DEPENDENCE: MODEL COMPARISON Proton/antiproton Net-proton cumulant ratios factorial cumulant ratios STAR STAR $(1)\frac{\kappa_2}{\kappa_1}$ 10 $(1) C_2 / C_1$ BES-II **BES-**

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022)

- 1. Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing $\sqrt{s_{NN}}$.
- 2. Non-CP models used for comparison: A. Hydro: Hydrodynamical model
- B. HRG CE: Thermal model with canonical treatment of baron charge
- C. UrQMD: Hadronic transport model
 - (All models include baryon number conservation)
- 3. Proton factorial cumulant ratios deviates from poisson baseline at 0. Antiproton κ_3/κ_1 , κ_4/κ_1 closer to 0.

ENERGY DEPENDENCE: MODEL COMPARISON Proton/antiproton Net-proton cumulant ratios factorial cumulant ratios STAR STAR $(1) \frac{K_2}{K_1}$ $(1) C_2 / C_1$ **BES-II**

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022)

- 1. Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing $\sqrt{s_{NN}}$.
- 2. Non-CP models used for comparison: A. Hydro: Hydrodynamical model
- B. HRG CE: Thermal model with canonical treatment of baron charge
- C. UrQMD: Hadronic transport model
 - (All models include baryon number conservation)
- 3. Proton factorial cumulant ratios deviates from poisson baseline at 0. Antiproton κ_3/κ_1 , κ_4/κ_1 closer to 0.
- 4. Qualitative trend described by model. Quantitative differences exist b/w data and non-CP model.

ENERGY DEPENDENCE OF C_4/C_2 : QUANTIFYING DEVIATION

ENERGY DEPENDENCE OF C_4/C_2 : QUANTIFYING DEVIATION

 C_4/C_2 shows minimum around ~20 GeV comparing to non-CP models, 70-80% data

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022)

ENERGY DEPENDENCE OF C_4/C_2 : QUANTIFYING DEVIATION

 C_4/C_2 shows minimum around ~20 GeV comparing to non-CP models, 70-80% data **1.** Maximum deviation: $3.2 - 4.7\sigma$ at $\sqrt{s_{NN}} = 20$ GeV ($1.3 - 2\sigma$ at BES-I) **2.** Overall deviation from $\sqrt{s_{NN}} = 7.7 - 27$ GeV: $1.9 - 5.4\sigma (1.4 - 2.2\sigma \text{ at BES-I})$

HRG CE: P. B Munzinger et al, NPA 1008, 122141 (2021) Hydro: V. Vovchenko et al, PRC 105, 014904 (2022)

SUMMARY AND OUTLOOK:

Summary:

- reported. Centrality and energy dependence discussed. Compared to BES-I, we have better statistical precision, better centrality resolution, better control on systematics!
- and 70-80% data is observed at $\sqrt{s_{NN}}$ = 20 GeV with a significance level of $3.2 4.7\sigma$.

Outlook:

- 1. Extend measurements to even higher orders of fluctuations: C_n , κ_n (n = 1 6).
- 2. Examine transverse momentum dependence and rapidity dependence of fluctuations.
- 3. Complete the measurements in Au+Au collisions at fixed target (FXT) energies.

1. Precision measurement of net-proton number fluctuations in Au+Au collisions from STAR BES-II

2. Measured net-proton C_4/C_2 in 0-5% central collisions do not show deviation above non-CP model calculations. Maximum deviation in 0-5% data w.r.t. various non-CP model calculations

ACKNOWLEDGEMENTS:

RHIC operation for successfully completing collection of BES-II data,

Organizers for giving this opportunity.

Thank you all for listening.

39

BACK UP