Measurements of net-proton fluctuation for p + p collisions at $\sqrt{s} = 200$ GeV from the STAR experiment

Dept. of Phys., Univ. of Tsukuba Risa Nishitani for the STAR Collaboration

In order to understand the QCD phase diagram, Beam Energy Scan program phase II is being carried out at RHIC-STAR. Recently, the higher-order fluctuations of net-proton multiplicity distributions in 0-5% central Au+Au collisions are found to behave non-monotonically with respect to the collision energy, which could be a signal from the QCD critical point. Moreover, the negative sign of the sixth-order fluctuations observed for Au+Au central collisions at $\sqrt{s_{NN}} = 200$ GeV could be possibly related to the nature of a smooth crossover phase transition at small $\mu_{\rm B}$ as predicted by lattice QCD calculations.

In this study, cumulants of net-proton distributions for p + p collisions at $\sqrt{s} = 200$ GeV are measured to determine a physics baseline compared to Au+Au collisions. Multiplicity dependence of the nth order cumulant, C_n ($n \le 6$), and their ratios will be presented. The new results of C_3/C_2 and C_4/C_2 with higher statistics data are compared to the published results from minimum bias p+p collisions. Furthermore, the first measurements of C_5 and C_6 for p+p collisions will be presented. Comparison with Pythia and thermal model calculations will be discussed.