Collision energy dependence of C_5 and C_6 of netproton distributions at RHIC-STAR

Ashish Pandav for the STAR collaboration National Institute of Science Education and Research, HBNI, INDIA

CPOD2021 - THE INTERNATIONAL CONFERENCE ON CRITICAL POINT AND ONSET OF DECONFINEMENT, 15-19 MARCH 2021

Introduction: QCD Phase Diagram & BES

https://drupal.star.bnl.gov/STAR/stamotes/public/sn0493 https://drupal.star.bnl.gov/STAR/files/BES_WPII_ver6.9_Cover.pdf

Goal: Study the phase diagram of QCD.

BES: Varying beam energy varies Temperature (T) and Baryon Chemical Potential (μ_B). Fluctuations in various observables are sensitive to phase transition and critical point.

Results from Au+Au collisions at all BES-I energies

STAR

Observables

□ Higher order cumulants of net-proton distributions (proxy for net-baryon).

 $\begin{array}{l} C_1 = < N > \\ C_2 = < (\delta N)^2 > & \text{Here, } \delta N = N - < N > \\ C_3 = < (\delta N)^3 > \\ C_4 = < (\delta N)^4 > -3 < (\delta N)^2 >^2 \\ C_5 = < (\delta N)^5 > -5 < (\delta N)^3 > < (\delta N)^2 > \\ C_6 = < (\delta N)^6 > -15 < (\delta N)^4 > < (\delta N)^2 > -10 < (\delta N)^3 >^2 + 30 < (\delta N)^2 >^3 \end{array}$

□ Higher order cumulants probe the nature of phase transition. Crossover (small μ_B) First order (large μ_B)

Key aspect: Sign change of higher order cumulants.

 C_2, C_3, C_4 : positive for data(7.7-200 GeV) and model(LQCD, FRG, HRG, UrQMD, JAM) – more distinct signatures needed

1st order Phase Transition

Multiplicity distribution bi-modal (contribution from two phases) Ratio of proton factorial cumulant κ_{n+1}/κ_n is negative for higher orders

$$\begin{split} \kappa_1 &= C_1 \\ \kappa_2 &= -C_1 + C_2 \\ \kappa_3 &= 2C_1 - 3C_2 + C_3 \\ \kappa_4 &= -6C_1 + 11C_2 - 6C_3 + C_4 \\ \kappa_5 &= 24C_1 - 50C_2 + 35C_3 - 10C_4 + C_5 \\ \kappa_6 &= -120C_1 + 274C_2 - 225C_3 + \\ & 85C_4 - 15C_5 + C_6 \end{split}$$

(a) (b) 1.05 probability probability Ν N T/T_c probability (d) probability N Ν obability \mathcal{N} (e) 0.95 0.95 μ/μ_c 1.05

$$\begin{split} P(N) &= (1 - \alpha) P_a(N) + \alpha P_b(N) \text{: Two Component Model} \\ \kappa_n &\approx (-1)^n \alpha \overline{N}^n \quad \text{for } \alpha \ll 1, \ n > 1 \\ & \text{where } \overline{N} = < N_a > - < N_b > \end{split}$$

STAR proton cumulants C_1 , C_3 , C_4 (0-5% centrality) at 7.7 GeV used as input to fix parameters of bimodal distribution.

$$\frac{\kappa_{n+1}}{\kappa_n}\approx -\overline{N}\approx -25$$

CPOD2021-Ashish Pandav

STAR

The STAR Detector

Main Detectors: Time Projection Chamber and Time-of-Flight. Full azimuthal angle coverage. $|\eta| < 1$ coverage.

K. H. Ackermann et al. Nucl. Instrum. Meth. A 499, 624 (2003)

2010 - 2017: BES-I at RHIC Data Set Details

√s _{nn} (GeV)	Events (10 ⁶)	Year	μ _B (MeV)
200	900	2010, 2011	25
62.4	43	2010	73
54.4	550	2017	83
39	92	2010	112
27	31	2011	156
19.6	14	2011	206
14.5	14	2014	264
11.5	7	2010	315
7.7	2.2	2010	420

Goal: to map the QCD phase diagram $25 < \mu_B < 420 MeV$

Data Set Details

Collision system and energy	Au+Au at $\sqrt{s_{NN}} = 7.7 - 200 \text{GeV}$	
Collision centrality	0-40%, 70-80%	
Centrality selection	Using charged particle multiplicity excluding protons	
Charged Particle Selection	Protons and antiprotons to construct net-protons	
Detectors for PID	Time Projection Chamber (TPC) and Time-of Flight (TOF)	

Centrality Selection

 Use charged particle multiplicity within |η| < 1, excluding particles of interest to avoid self correlation effects. □ Corrected for luminosity and Z-vertex effects, compared to the MC Glauber model.

CPOD2021- Ashish Pandav

Analysis Techniques (Corrections And Uncertainties) Reconstruction efficiency correction - binomial model

□ Centrality bin width correction

$$C_n = \sum_r w_r C_{n,r}$$
 where $w_r = n_r / \sum_r n_r$, $n=1,2,3,4...$
Here, n_r is no. of events in r^{th} multiplicity bin

- □ Statistical uncertainties:
- Bootstrap method

- □ Sources of systematic uncertainties:
- Particle identification
- Background estimates (DCA)
- Track quality cuts
- Efficiency variation

STAR: arXiv: 2101.12413 X. Luo, Phys. Rev. C 91, (2015) 034907 T. Nonaka et al, Phys. Rev. C 95, (2017) 064912 X. Luo et al, J.Phys. G 40, 105104 (2013) X. Luo, J. Phys. G 39, 025008 (2012) X.Luo et al, Phys.Rev. C99 (2019) no.4, 044917 A.Pandav et al, Nucl. Phys. A 991, (2019)121608

Energy dependence of net-proton distributions

1) Net-proton distributions, top 5% central collisions, efficiency uncorrected. Values of the mean increase as energy decreases, effect of baryon stopping. Larger width \rightarrow larger stat. errors: err(C_r) $\propto -\frac{1}{\sqrt{2}}$

Beam Energy Dependence of Net-Proton C_5/C_1

Weak collision energy dependence observed for most central(0-40%) C_5/C_1 .

 $C_5/C_1(0-40\%)$ deviates from zero at a level of $\leq 2\sigma$.

 $C_5/C_1(70-80\%) > 0$ for all energies.

Blue bars: statistical uncertainties Grey shaded bands: systematic uncertainties

CPOD2021- Ashish Pandav

Beam Energy Dependence of Net-Proton C_6/C_2

Deviations from zero at a level of $\leq 2\sigma$ observed for most central(0-40%) C_6/C_2 .

 $C_6/C_2(70\mathchar`-80\%)>0$ for all energies.

Proton Factorial Cumulant κ_5 and κ_6 at 7.7 GeV

PHYSICAL REVIEW C100, 051902(R) (2019)

 κ_5 (0-5%) consistent with two component model expectation within uncertainties while κ_6 (0-5%) remains 1.8 σ away. The ratios κ_5/κ_4 and κ_6/κ_5 (0-5%) consistent with zero.

Summary

- □ Beam energy dependence of net-proton C_5/C_1 and C_6/C_2 are presented for all BES-1 energies. Centrality dependence of proton factorial cumulants (κ_5 , κ_6) at 7.7 GeV are also shown.
- □ Some intriguing trends were observed, most central (0-40%) net-proton C_5/C_1 and C_6/C_2 show deviations from zero at a level of $\leq 2\sigma$.
- □ LQCD predicts negative C_5/C_1 and C_6/C_2 for QCD matter. Positive values for peripheral collisions (70-80%) and (tentatively) negative values for central collisions (0-40%) observed in measurements.
- □ The proton factorial cumulant κ_5 at 7.7 GeV (0-5%) agrees with the expectation from a two component model within uncertainties while κ_6 (0-5%) remains 1.8 σ away from expectation from such a model.
- High order fluctuations are crucial for determining the QCD phase structure.
 Precision measurements are necessary in order to confirm the observed trend in the fifth and sixth order cumulants.

See next talk by Risa: Multiplicity dependence of net-proton C_5 and C_6 at STAR CPOD2021- Ashish Pandav

THANK YOU