Collision energy dependence of C_{5} and C_{6} of netproton distributions at RHIC-STAR

Ashish Pandav for the STAR collaboration

National Institute of Science Education and Research, HBNI, INDIA

Outline

1. Introduction
2. Observable
3. The STAR Experiment
4. Analysis
5. Results
6. Summary

Introduction: QCD Phase Diagram \& BES

Goal: Study the phase diagram of QCD.
BES: Varying beam energy varies Temperature (T) and Baryon Chemical Potential (μ_{B}). Fluctuations in various observables are sensitive to phase transition and critical point.

Results from $\mathrm{Au}+\mathrm{Au}$ collisions at all BES-I energies

Observables

] Higher order cumulants of net-proton distributions (proxy for net-baryon).

$$
\begin{aligned}
& C_{1}=<N> \\
& C_{2}=<(\delta N)^{2}> \\
& C_{3}=<(\delta N)^{3}> \\
& C_{4}=<(\delta N)^{4}>-3<(\delta N)^{2}>^{2} \\
& C_{5}=<(\delta N)^{5}>-5<(\delta N)^{3}><(\delta N)^{2}> \\
& C_{6}=<(\delta N)^{6}>-15<(\delta N)^{4}><(\delta N)^{2}>-10<(\delta N)^{3}>^{2}+30<(\delta N)^{2}>^{3}
\end{aligned}
$$

U Higher order cumulants probe the nature of phase transition.
Crossover (small μ_{B}) First order (large μ_{B})
Key aspect: Sign change of higher order cumulants.
C_{2}, C_{3}, C_{4} : positive for data(7.7200 GeV) and model(LQCD, FRG, HRG, UrQMD, JAM) more distinct signatures needed

[^0]Goal: Identification of $\mathrm{O}(4)$ chiral criticality on the phase boundary.

HotQCD, Phys. Rev. D101,074502 (2020)
Wei-jie Fu et. Al, arXiv:2 101.06035
B. Friman et al, Eur.Phys.J. C71 1694 (2011)
C_{5}, C_{6} : negative for LQCD, FRG, PQM - crossover C_{5}, C_{6} : positive for HRG and UrQMD (No QCD transition)

Multiplicity distribution bi-modal (contribution from two phases)
Ratio of proton factorial cumulant $\kappa_{n+1} / \kappa_{n}$ is negative for higher orders
$\kappa_{1}=C_{1}$
$\kappa_{2}=-C_{1}+C_{2}$
$\kappa_{3}=2 C_{1}-3 C_{2}+C_{3}$
$\kappa_{4}=-6 C_{1}+11 C_{2}-6 C_{3}+C_{4}$
$\kappa_{5}=24 C_{1}-50 C_{2}+35 C_{3}-10 C_{4}+C_{5}$
$\kappa_{6}=-120 C_{1}+274 C_{2}-225 C_{3}+$

$\quad 85 C_{4}-15 C_{5}+C_{6}$

$$
\begin{aligned}
& P(N)=(1-\alpha) P_{a}(N)+\alpha P_{b}(N) \text { : Two Component Model } \\
& \begin{array}{ll}
\kappa_{n} \approx(-1)^{n} \alpha \bar{N}^{n} & \text { for } \alpha \ll 1, n>1 \\
& \text { where } \bar{N}=<N_{a}>-<N_{b}>
\end{array}
\end{aligned}
$$

STAR proton cumulants $C_{1}, C_{3}, C_{4}(0-5 \%$ centrality $)$ at 7.7 GeV used as input to fix parameters of bimodal distribution.

$$
\frac{\kappa_{n+1}}{\kappa_{n}} \approx-\bar{N} \approx-25
$$

The STAR Detector

Main Detectors: Time Projection Chamber and Time-of-Flight. Full azimuthal angle coverage. $|\eta|<1$ coverage.

2010-2017: BES-I at RHIC
Data Set Details

$V_{\mathrm{s}_{\mathrm{NN}}}(\mathrm{GeV})$	Events $\left(1 \mathrm{O}^{6}\right)$	Year	μ_{B} (MeV)
200	900	2010,2011	25
62.4	43	2010	73
54.4	550	2017	83
39	92	2010	112
27	14	2011	206
19.6	14	2014	264
14.5	7	2010	315
11.5	2.2	2010	420
7.7			206

Goal: to map the QCD phase diagram $25<\boldsymbol{\mu}_{\mathrm{B}}<\mathbf{4 2 0 M e V}$

Collision system and energy	Au +Au at $\sqrt{ } s_{N N}=7.7-200 \mathrm{GeV}$
Collision centrality	$0-40 \%, 70-80 \%$
Centrality selection	Using charged particle multiplicity excluding protons
Charged Particle Selection	Protons and antiprotons to construct net-protons
Detectors for PID	Time Projection Chamber (TPC) and Time-of Flight (TOF)

Phase Space Coverage

PID Detector	Transverse Momentum Range $\left(p_{T}\right)$	Rapidity (y)
TPC	0.4 to $0.8 \mathrm{GeV} / \mathrm{c}$	$\|\mathrm{y}\|<0.5$
TPC+TOF	0.8 to $2.0 \mathrm{GeV} / \mathrm{c}$	$\|\mathrm{y}\|<0.5$

Uniform acceptance in p_{T} vs. rapidity at midrapidity for all particles.

Centrality Selection

\square Use charged particle multiplicity within $|\eta|<1$, excluding particles of interest to avoid self correlation effects.

Corrected for luminosity and Z-vertex effects, compared to the MC Glauber model.

- Reconstruction efficiency correction - binomial model

- Statistical uncertainties:
> Bootstrap method
- Centrality bin width correction

$$
\begin{aligned}
& C_{n}=\sum_{r} w_{r} C_{n, r} \text { where } w_{r}=n_{r} / \sum_{r} n_{r}, n=1,2,3,4 \ldots \\
& \text { Here, } n_{r} \text { is no. of events in } r^{\text {th }} \text { multiplicity bin } \\
& \hline
\end{aligned}
$$

STAR: arXiv: 2101.12413
X. Luo, Phys. Rev. C 91, (2015) 034907
T. Nonaka et al, Phys. Rev. C 95, (2017) 064912 X. Luo et al, J.Phys. G40, 105104 (2013)
X. Luo, J. Phys. G 39, 025008 (2012)
X.Luo et al, Phys.Rev. C99 (2019) no.4, 044917
A.Pandav et al, Nucl. Phys. A 991, (2019) 121608

Energy dependence of net-proton distributions

1) Net-proton distributions, top 5% central collisions, efficiency uncorrected.
2) Values of the mean increase as energy decreases, effect of baryon stopping. Larger width \rightarrow larger stat. errors: $\operatorname{err}\left(C_{r}\right) \propto \frac{\sigma^{r}}{\sqrt{N_{\text {evts }}}}$

Weak collision energy dependence observed for most central(0-40\%) C_{5} / C_{1}.
$C_{5} / C_{1}(0-40 \%)$ deviates from zero at a level of $\leqslant 2 \sigma$.
$C_{5} / C_{1}(70-80 \%)>0$ for all energies.

Beam Energy Dependence of Net-Proton C_{6} / C_{2}

Deviations from zero at a level of $\lesssim 2 \sigma$ observed for most central(0-40\%) C_{6} / C_{2}. $C_{6} / C_{2}(70-80 \%)>0$ for all energies.

Proton Factorial Cumulant κ_{5} and κ_{6} at 7.7 GeV

Average no. of participant nucleons($\left.\left\langle\mathrm{N}_{\text {part }}\right\rangle\right)$

PHYSICAL REVIEW C100, 051902(R) (2019)
$\kappa_{5}(0-5 \%)$ consistent with two component model expectation within uncertainties while $\kappa_{6}(0-5 \%)$ remains 1.8σ away. The ratios κ_{5} / κ_{4} and $\kappa_{6} / \kappa_{5}(0-5 \%)$ consistent with zero.
\square Beam energy dependence of net-proton C_{5} / C_{1} and C_{6} / C_{2} are presented for all BES-1 energies. Centrality dependence of proton factorial cumulants (κ_{5}, κ_{6}) at 7.7 GeV are also shown.
\square Some intriguing trends were observed, most central (0-40\%) net-proton C_{5} / C_{1} and C_{6} / C_{2} show deviations from zero at a level of $\leqq 2 \sigma$.
\square LQCD predicts negative C_{5} / C_{1} and C_{6} / C_{2} for QCD matter. Positive values for peripheral collisions ($70-80 \%$) and (tentatively) negative values for central collisions ($0-40 \%$) observed in measurements.
\square The proton factorial cumulant κ_{5} at $7.7 \mathrm{GeV}(0-5 \%)$ agrees with the expectation from a two component model within uncertainties while $\kappa_{6}(0-5 \%)$ remains 1.8σ away from expectation from such a model.

- High order fluctuations are crucial for determining the QCD phase structure. Precision measurements are necessary in order to confirm the observed trend in the fifth and sixth order cumulants.

THANK YOU

[^0]: CPOD2021-Ashish Pandav STAR: PRL 126, 092301 (2021), STAR: arXiv: 2101.124133

