Azimuthal anisotropic flow of identified hadrons in Au + Au collisions at BES-II energies at STAR

Prabhupada Dixit (For the STAR Collaboration) Indian Institute of Science Education and Research (IISER) Berhampur

Critical Point and Onset of Deconfinement (CPOD), 2022

Supported in part by the

Introduction & motivation

STAR detectors

Analysis details

Results

- $\Rightarrow p_T$ dependence of v_n
- * Centrality dependence
- * NCQ Scaling
- $\star v_3/v_2^{3/2}$ ratio

Outline

Introduction & motivation

Elliptic flow coefficient (v₂) : Initial spatial anisotropy (dominant source) + Event-by-event fluctuations Triangular flow coefficient (v₃) : Event-by-event fluctuations in the overlap region

$$\frac{dN}{d(\phi - \Psi_n)} = N_0 \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(\phi - \Psi_n) \right]$$

Importance of v₂ and v₃

Sensitive to the initial state and transport properties of the medium.

C. Shen et al JPG 38 (2011) 124045 Measurements of v₂ and v₃ are important to constrain the models.

 $v_n = \langle \langle \cos n(\phi - \Psi_n) \rangle \rangle$

Introduction & motivation

Results from RHIC BES-I

 ϕ mesons seem to deviate from the NCQ scaling at $\sqrt{s_{NN}} < 19.6$ GeV. (P) But statistics is not significant to draw any conclusion. (D

with high precession specifically at low energy regime.

STAR Phys. Rev. C 93 (2016) 14907

- \star High Statistics data from BES-II enable us to measure v₂ and v₃ of multi-strange hadrons and ϕ mesons
 - Prabhupada Dixit, CPOD-2022

STAR STAR detectors and particle identification

- Full azimuthal coverage
- Excellent particle identification capability

BES-II upgrades

- iTPC upgrade: Larger pseudorapidity coverage (-1.5 < η < 1.5)
- Better dE/dx and momentum resolution.
- Better track quality.

- selection cuts, particle identification cuts, quality track selection cuts etc.

The nth order flow coefficient is given by

 $v_n = \langle \langle \cos n(\phi - \Psi_n) \rangle \rangle$

Event plane determination (\cap)

$$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{Q_y}{Q_x} \right)$$
$$Q_x = \sum_i w_i \cos(n\phi_i)$$
$$Q_y = \sum_i w_i \sin(n\phi_i)$$

- determined directly from the experiment.
- plane.

To minimize non-flow correlation

 \bigstar Sub-event plane method is used to calculate v_n. \star η gap of 0.1 is taken between two sub-event planes Ψ_A $(-1.5 < \eta < -0.05)$ and Ψ_B (0.05 $< \eta < 1.5$). \bigstar To calculate v_n of a particle in negative η region, event

The weight factor $w_i = p_T \times \phi$ -weight. ϕ -weight: accounts for the azimuthal acceptance correction of the detectors.

Analysis details

• The reaction plane of the collision can not be • The event plane is used as a proxy for the reaction

plane from positive η side is used and vice versa.

Prabhupada Dixit, CPOD-2022

v_n measurements for (multi-)strange hadrons and ϕ mesons

Invariant mass method

N. Borghini and J.-Y. Ollitrault, Phys. Rev. C 70, 064905 (2004)

 $v_n^B(M_{inv}) = p_0 + p_1 M_{inv}$

Analysis details

Prabhupada Dixit, CPOD-2022

Results: p_T dependence of v₂ @19.6 GeV

* The statistical errors are reduced by a factor of ~3 compared to BES-I.

☞ Mass ordering observed in the low p_T region (p_T < 1.5 GeV/c) : Radial flow Baryon to meson separation observed in the high p_T region : Quark coalescence

 $response Strong centrality dependence of v_2 \longrightarrow$ Spatial anisotropy is a dominant cause for v_2

Results: Centrality dependence of v₂ @19.6 GeV

Prabhupada Dixit, CPOD-2022

Results: Centrality dependence of v₂ @14.6 GeV

Results: Centrality dependence of v₃ @19.6 GeV

Prabhupada Dixit, CPOD-2022

Results: NCQ scaling in v₂ @19.6 GeV

rightarrow The scaling for v₂ holds within 20% for particles and within 10% for anti-particles (except at low p_T for $\overline{\Lambda}$ and \overline{p})

Partonic collectivity in the initial stage of the system and hadronization via coalescence.

Results: NCQ scaling in v₃ @19.6 GeV

rightarrow The modified scaling for v₃ holds within 30% for particles and within 15% for anti-particles.

PHENIX Phys. Rev. C 93, 051902 (2016)

polynomial fit to the ratios.

Prabhupada Dixit, CPOD-2022

Results: NCQ scaling in v₂ @14.6 GeV

rightarrow The scaling for v₂ holds within 15% for the (multi-)strange hadrons except low p_T $\overline{\Lambda}$. φ mesons are following the NCQ scaling at 14.6 GeV. (P) The rising trend in the Ks⁰ v₂ at (m_T - m₀)/n_q > 1 GeV/c² may arise due to the non-flow contribution. Non-flow estimation is underway.

Prabhupada Dixit, CPOD-2022

* See S. Zhou's talk for light hadrons v₂ at 14.6 GeV

Results: $v_3/v_2^{3/2}$ ratio @19.6 GeV

The ratio $v_3/v_2^{3/2}$ shows non-trivial p_T dependence. $v_3/v_2^{3/2}$ ratios are sensitive to the initial state fluctuations and transport properties of E. Retinskaya et al. Phys. Rev. C 89, 014902 (2014) the medium.

Prabhupada Dixit, CPOD-2022

 \mathbb{R} New results of v₂ and v₃ of (multi-)strange hadrons and ϕ mesons are presented.

p_T dependence of v₂

- in low energies at 19.6 GeV using strange and multi-strange hadrons.
- Centrality dependence of vn
- $response Strong centrality dependence of v_2 : initial spatial anisotropy is a dominant cause for v_2.$ Weak centrality dependence of v₃: event-by-event fluctuation is a dominant cause for v₃.

NCQ scaling

The NCQ scaling holds for both particles and anti-particles. The scaling holds for ϕ mesons at 14.6 GeV. coalescence.

$v_3/v_2^{3/2}$ ratio

restartion The ratio shows weak dependence of p_T above p_T > 1.0 GeV/c. \mathbb{C} Can be used to constrain the initial state fluctuations and η /s of the medium.

Summary

Solution Using high statistics BES-II data, precise measurements of v₂ of identified hadrons in 19.6 and 14.6 GeV Au+Au collisions have been presented, with improved statistical significance by a factor of 3 compared to BES-I.

respective Confirmation of usual trend of mass ordering in v₂ at low p_T and baryon-meson separation at high p_T

The scaling suggests the collectivity in the partonic phase of the system and hadronization via quark

Thank you ...