Particle Ratio Fluctuations and Charge Balance Functions in Heavy Ion Collisions at RHIC

-OS-

Hui Wang For the STAR Collaboration

MICHIGAN STATE UNIVERSITY

Motivation

Charge Balance Function

- Sensitive to the charge formation time and relative diffusion
- A probe for charge production mechanism
 ■

Particle Ratio Fluctuations

- Related to strangeness and baryon number fluctuations
- CR Look for non-monotonic behavior of the fluctuations near critical point

Observable - Fluctuations

Our observable is ν_{dyn,Kπ}, which measures how
 correlated the event-by-event distributions are

$$\nu_{\mathrm{dyn},K\pi} = \frac{\left\langle N_{K} \left(N_{K} - 1 \right) \right\rangle}{\left\langle N_{K} \right\rangle^{2}} + \frac{\left\langle N_{\pi} \left(N_{\pi} - 1 \right) \right\rangle}{\left\langle N_{\pi} \right\rangle^{2}} - 2 \frac{\left\langle N_{K} N_{\pi} \right\rangle}{\left\langle N_{K} \right\rangle \left\langle N_{\pi} \right\rangle}$$

$$\alpha \text{NA49 uses } \sigma_{\text{dyn}} = \text{sgn}(\sigma_{\text{data}}^2 - \sigma_{\text{mixed}}^2) \sqrt{|\sigma_{\text{data}}^2 - \sigma_{\text{mixed}}^2|}$$

αWith enough statistics and large denominator $σ_{\rm dyn}^2 ≈ ν_{{\rm dyn},Kπ}$

K/п Fluctuations

p/π Fluctuations

 $(p + \bar{p})/(\pi^+ + \pi^-)$

STAR results are calculated via v_{dyn,pп} using the most central events (0 – 5%)

STAR results show a smooth decrease with decreasing incident energy

- There is good agreement between STAR and NA49 results
- The UrQMD model agrees with the data at low energy, but changes sign at high energy

11/5/2011

Hui Wang for STAR

p/K Fluctuations

$$(p + \overline{p}) / (K^+ + K^-)$$

- STAR results are calculated via v_{dyn,pK} using the most central events (0 5%)
- STAR results decrease smoothly with decreasing incident energy
- The seems to be disagreement between STAR and NA49 results at 7.7 GeV
- The UrQMD model overpredicts the fluctuations and changes sign at high energy

Scaling properties of fluctuation

Scaling Properties of Fluctuations

- Scale STAR results by actual number of particles used by STAR in the v_{dyn} calculations
- The energy dependence of p/π and p/K fluctuation can't be explained by simple multiplicity scaling

Charge Dependent K/π Fluctuation

11/5/2011

Hui Wang for STAR

Charge Dependent p/π Fluctuation

STAR results are calculated via v_{dyn}

- Both same and opposite sign fluctuations are negative
- CR Unstable particle decays like ∆ might introduce more correlations for opposite signs
 - UrQMD over-predicts the fluctuations

Charge Dependent p/K Fluctuations

11/5/2011

Hui Wang for STAR

Observable – Balance Function

← The balance function is a conditional probability that a particle *a* in the bin p_1 will be accompanied by a particle *b* of opposite charge in the bin p_2

$$B(p_2 | p_1) = \frac{1}{2} \{ \rho(b, p_2 | a, p_1) - \rho(b, p_2 | b, p_1) + \rho(a, p_2 | b, p_1) - \rho(a, p_2 | a, p_1) \}$$

R It can be written as

$$B(\Delta \eta) = \frac{1}{2} \left\{ \frac{N_{+-}(\Delta \eta) - N_{++}(\Delta \eta)}{N_{+}} + \frac{N_{-+}(\Delta \eta) - N_{--}(\Delta \eta)}{N_{-}} \right\}$$

The width of balance function is calculated via weighted average

$$\left\langle \Delta \eta \right\rangle = \frac{\sum_{\text{all } \Delta \eta} B(\Delta \eta_i) \Delta \eta_i}{\sum_{\text{all } \Delta \eta} B(\Delta \eta_i)} \qquad \qquad W = \frac{100 \cdot \left(\left\langle \Delta \eta \right\rangle_{\text{shuffled}} - \left\langle \Delta \eta \right\rangle_{\text{data}} \right)}{\left\langle \Delta \eta \right\rangle_{\text{shuffled}}}$$

Balance Function

Weighted Average

R Most central (0-5%) events only

- Remove lowest bin when calculating <Δη> to reduce HBT/Coulomb effects
- Both data and UrQMD show a smooth decrease with increasing collision energy, indicating stronger correlations at small Δη
- Shuffled event widths also change with energy due to acceptance
- Balance function width is sensitive to flow and breakup temperature

W Parameter

1.8

 $|\eta| < 0.4$

W Parameter

Hui Wang for STAR

width

Summary

Real Particle Ratio Fluctuations

- К/п fluctuations show no energy dependence, while p/п and p/K fluctuations show a smooth decrease with energy. Overall, no non-monotonic behavior with energy is observed
- ♀ Simple multiplicity scaling doesn't hold for p/π and p/K fluctuation
- Opposite sign fluctuations are more negative due to resonance decay contribution

Realize Function

Related to delayed hadronization α Balance functions for $\Delta \eta$ narrow at higher collision energies, which is

UrQMD Model

m		ID	1-14-	ID	1	ID		m		ID		1
UD	nucleon	ID	delta	ID	lambda	m	sigma	ID	XI	ID	omega	
1	N_{938}	17	Δ_{1232}	27	Λ_{1116}	40	Σ_{1192}	49	Ξ_{1317}	55	Ω_{1672}	
2	N_{1440}	18	Δ_{1600}	28	Λ_{1405}	41	Σ_{1385}	50	Ξ_{1530}			
3	N_{1520}	19	Δ_{1620}	29	Λ_{1520}	42	Σ_{1660}	51	Ξ_{1690}			
4	N_{1535}	20	Δ_{1700}	30	Λ_{1600}	43	Σ_{1670}	52	Ξ_{1820}			
5	N_{1650}	21	Δ_{1900}	31	Λ_{1670}	44	Σ_{1775}	53	Ξ_{1950}			
6	N_{1675}	22	Δ_{1905}	32	Λ_{1690}	45	Σ_{1790}	54	Ξ_{2025}			
7	N_{1680}	23	Δ_{1910}	33	Λ_{1800}	46	Σ_{1915}					
8	N_{1700}	24	Δ_{1920}	34	Λ_{1810}	47	Σ_{1940}					
9	N_{1710}	25	Δ_{1930}	35	Λ_{1820}	48	Σ_{2030}					
10	N_{1720}	26	Δ_{1950}	36	Λ_{1830}							
11	N_{1900}			37	Λ_{1890}							
12	N_{1990}			38	Λ_{2100}							
13	N_{2080}			39	Λ_{2110}							
14	N_{2190}		ID	0^{-+}	· ID	1	- ID)	0^{++}	Π) 1 ⁺	-+
15	N_{2200}		101	π	104		111		<i>a</i>	11	1 0	
16	N_{2250}		101		104	p V*	111		u0 1/*	11.	+ u a r	1 ~~
			106	K	108	K^*)	K_0^*		3 K	1
			102	η	103	ω	105	5	f_0	11:	5 f	1
			107	η'	109	ϕ	112	2	f_0^*	11	6 <i>f</i>	"/ 1
			ID	1+-	ID	2++	- ID) (1	1)*	Π	D (1	-)*
			122	b_1	118	a_2	126	5	$ \rho_{1450} $	13	$0 \rho_1$	700
			121	K_1	117	K_2^*	125		K_{1410}^{*}	12	9 K_1^*	680
			123	h_1	119	f_2	127	ζ	ω_{1420}	13	$1 \omega_1$	662
			124	h'_1	120	f_2'	128		ϕ_{1680}	13	$2 \phi_1$	900

- № Hadronic transport model that include resonance/unstable particle decay
- Could stabilize one or more particle types from decay
- UrQMD does not include weak interactions thus no weak decays of particles
- Read a read

Sum-sign fluctuation

Blast Wave Model

STAR parameterization (STAR,PRC,72,14904(2005))

β_x, β_y

S. Schlichting and S. Pratt Phys. Rev. C 83, 014913 (2011)

Blast Wave Model

Hui Wang

and collective flow alone

Extract the initial separation of balancing charges at time of freeze out by fitting the observed charge balance functions

22