

Event Plane Correlated Triangular Flow in $\sqrt{s_{NN}} = 3.0$ GeV Fixed Target Au+Au Collisions at STAR

Cameron Racz for the STAR Collaboration UC Riverside (cracz001@ucr.edu)

Supported in part by the

The STAR Collaboration https://drupal.star.bnl.gov/STAR/presentations

Motivation

- Triangular flow (v_3) is a measure of the average triangular anisotropy which is typically thought to arise from event-by-event fluctuations in the collision geometry [1]; hence it should have no correlation to the reaction plane.
- A UrQMD + hydro model has also suggested it should go to zero near $\sqrt{s_{NN}} \sim 5$ GeV [2].
- However, results from HADES show a clear correlation between v_3 and the first order event plane at 1.23 AGeV [3].
- Theoretical calculations yield a slope $dv_3/dy|_{y=0} \sim -0.025$ at 3.0 GeV for impact parameter b = 6 9 fm for a conjectured hard equation of state [4].
- This presentation shows results from the STAR collaboration of v_3 correlated with the first order event plane at $\sqrt{s_{NN}} = 3.0$ GeV.

[1] B. Alver and G. Roland 2010 Phys. Rev. C 81 054905

[2] J. Auvinen and H. Petersen 2013 Phys. Rev. C 88 064908

[3] B. Kardan (HADES) 2019 Nucl. Phys. A 982 431-434

[4] P. Hillmann et al 2018 J. Phys. G: Nucl. Part. Phys. 45 085101

Dataset

~ 180 M events at $\sqrt{s_{NN}}$ = 3.0 GeV Au+Au FXT

Particle Identification

- π Ionization energy loss in TPC and velocity from the TOF
- p Ionization energy loss in TPC

Analysis Method

- Event plane method with first order event plane (ψ_1) .
- ψ_1 reconstructed using inner 8 rings of the Event Plane Detector (EPD); $-5.8 < \eta < -3.23$.
- 3 sub-event method used to calculate event plane resolution (R_{31} ; shown here).
- Two reference sub-events are the outer 8 EPD rings and part of the TPC; $-3.23 < \eta < -2.54$ and $-1 < \eta < 0$, respectively.
- Triangular Flow is calculated as $v_3 = \langle \cos(3(\phi \psi_1)) \rangle / R_{31}$

Results

<u>Summary</u>

- First measurement of v_3 correlated with ψ_1 at $\sqrt{s_{NN}} = 3.0$ GeV is presented for π and p.
- A centrality and p_T dependent, rapidity-odd v_3 is found for p while v_3 is likely small for π .
- This v_3 is not likely to originate from initial state fluctuations since it is correlated to ψ_1 ; there must be a separate source.
- For *p* at 10 40% centrality, $0.4 \le p_T \le 2.0$ GeV (not shown here), we measure $dv_3/dy|_{y=0} = -0.025 \pm 0.005$, which currently supports the conjectured hard equation of state at this energy.
- Future plans for this study include analysis of data at higher energies, extending to more species (*d*, *t*), and comparing results with the cumulant method.