Selected results from the STAR experiment

Petr Chaloupka

for the STAR collaboration

Czech Technical University in Prague

1

Primordial QCD Matter in LHC Era, 2/13/2013 Cairo, Egypt

Outline

- Introduction
 - RHIC, STAR
 - properties of QCD matter
- RHIC Beam Energy Scan
 - selected results
- Heavy Flavor production
 - open charm
 - quarkonia
- STAR near term upgrades
- Anti-He⁴ at RHIC
- Conclusions

Properties of nuclear matter

Quantum chromodynamics (QCD)

- fundamental description of strong interaction
- extensively tested in the perturbative regime
- little is known about soft regime and emergent phenomena

Analogy with solid state physics

- QED fundamental theory
- Rich, dynamically generated, set of phenomena
 - Example: water

15 phase, 16 triple points,2 critical points

Phase transition

Lattice QCD calculations:

• critical energy density

 $\epsilon_c \approx 1 \; GeV/fm^3$ $T_c \approx 175 \; MeV$

- predict smooth cross-over at large T and $\mu_B=0$.
- at high T reaching 80 % of non-interacting gas limit
- remaining interaction- change of initial expectation of perfect gas to (strongly) interacting liquid (sQGP)

Nucl. Phys. B605 (2001) 579

QCD phase diagram

QCD phase diagram

Collision evolution

Chemical freeze-out (Tch) inelastic collisions cease Kinetic freeze-out (Tfo < Tch) elastic collisions cease

Relativistic Heavy Ion Collider

Relativistic Heavy Ion Collider

	3/				
		-12km	Year	System	√s _{NN} [GeV]
	RHI		2000	Au+Au	130
		C	2001	Au+Au	200
	PHENIX I I I I I I I I I I I I I I I I I I	Aller St.	2002	p+p	200
		The COLOR AND ST	2003	d+Au	200
		Nin	2004	Au+Au p+p	200, 62.4 200
⁸ ()			2005	Cu+Cu	200, 62.4, 22
♀ 14 ×	AuAu 200 mb		2006	p+p	62.4, 200, 500
) 12	UU 193	- 4 rate	2007	Au+Au	200
10 ever	CuAu 200 dAu 200 AuAu 39 AuAu 27 AuAu 19	d Lum (nt	2008	d+Au p+p Au+Au	200 200 9.2
atec 9	AuAu 11	2	2009	p+p	200, 500
Integr 5	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ &$		2010	Au+Au	200, 62.4, 39, 11.5, 7.7
2			2011	Au+Au p+p	200, 19.6,27 500
0			2012	U+U Cu+Au p+p	193 200 200.510
	Year				

STAR experiment

TPC and TOF

Time Projection Chamber (TPC):

charged particle tracking 2π coverage in $|\eta| < 1.3$ dE/dx PID: π /K separation up to $p_T \sim 0.6$ GeV/c

Time Of Flight (TOF):

Timing resolution <100ps $1/\beta$ PID

TOF + TPC :

 π /K: $p_{_T} \sim 1.6$ GeV/c and proton $p_{_T} \sim 3.0$ GeV/c

Collision geometry

Number of participants (N_{part}): number of incoming nucleons in the overlap region

Number of binary collisions (N_{bin} or N_{coll}): number of equivalent inelastic nucleon-nucleon collisions

Derived from multiplicity information and a simple version of Glauber theory

Elliptic flow

Elliptic flow

Elliptic flow at RHIC

Nucl.Phys. A757 (2005) 102-183

- Includes strange particles
- Close to perfect hydro predictions

- Large v₂ compared to SPS
- Fine structure" v₂(pT) for different mass particles

Partonic collectivity

Is v₂ generated on hadronic or partonic level?

STAR: PRL **95**, 122301 (2005) PHENIX: PRL **98**, 162301 (2007)

Partonic collectivity

Is v₂ generated on hadronic or partonic level?

Scaling by number of constituent quarks

STAR: PRL **95**, 122301 (2005) PHENIX: PRL **98**, 162301 (2007)

v₂ from Au+Au 200GeV

High precision result from 200 GeV for Au+Au

- including strange and multistrange particles
- central collision clear baryon/meson splitting at medium p_T
- key role of ϕ heavy meson
 - partonic collectivity confirmation
- flow of heavy quarks? (charm, bottom)- check of thermalization

High p_T **probes**

- Study interaction of created matter with passing particle
- high p_T partons created at initial stage pQCD

High p_T probes

- Study interaction of created matter with passing particle
- high p_T partons created at initial stage pQCD
- suppression of high momentum particles jet quenching
- control over cold matter effects via d+Au

High p_T probes

- Study interaction of created matter with passing particle
- high p_T partons created at initial stage pQCD
- suppression of high momentum particles jet quenching
- control over cold matter effects via d+Au

Nuclear modification factor

comparing particle production to p+p

$$R_{AA}(p_{T}) = \frac{\text{Yield}_{AA}(p_{T})}{\langle Nbin \rangle_{AA}} \text{Yield}_{pp}(p_{T})}$$
Average number
of p-p collision
in A-A collision

R 1.2 R = 11.0 0.8 "hard" R < 1 0.6 0.4 "soft" 0.2 0.0 3 5 2 6 4 Tranverse Momentum (GeV/c)

Region of interest: $p_T \gtrsim 5 \text{ GeV}$

No effect:

R=1 at high p_T

A+A similar to p+p superposition

Suppresion:

R<1 at high p_T

$$R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\langle Nbin \rangle_{AA} \text{Yield}_{pp}(p_T)}$$

observed R_{AA} at RHIC:

$$R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\langle Nbin \rangle_{AA} \text{Yield}_{pp}(p_T)}$$

observed R_{AA} at RHIC:

$$R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\langle Nbin \rangle_{AA} \text{Yield}_{pp}(p_T)}$$

observed R_{AA} at RHIC:

$$R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\langle Nbin \rangle_{AA} \text{Yield}_{pp}(p_T)}$$

observed R_{AA} at RHIC:

$$R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\langle Nbin \rangle_{AA} \text{Yield}_{pp}(p_T)}$$

observed R_{AA} at RHIC:

$$R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\langle Nbin \rangle_{AA} \text{Yield}_{pp}(p_T)}$$

observed R_{AA} at RHIC:

- no suppression in peripheral collisions
- large suppression in central collision factor ~ 5

collision geometry:

Phys.Rev.Lett.91:172302,2003

Dihadron correlations

trigger particle

Different way of looking at jet quenching

• angular correlation between leading and associated hadron

Dihadron correlations

Different way of looking at jet quenching

• angular correlation between leading and associated hadron

 $\begin{array}{ll} trigger: & 4 < p_T(trig) < 6 \ GeV \\ associated: & 2 < p_T < p_T(trig) \end{array}$

Disappearance of awayside correlation in Au+Au

trigger particle

• Partner in hard scatter is absorbed in the dense medium

STAR, PRL 90(2003) 082302

Summary: matter at RHIC

Strong elliptic flow

- Collective flow of created matter
- Constituent quark number degrees of freedom apparent in scaling laws of elliptic flow

Jet quenching

• Energy loss of high-p_T partons traversing the hot and dense matter

Particle production through recombination/coalescence

• Dominates over fragmentation at medium p_T

Paradigm shift:

non-interacting gas => strongly coupled QGP (sQGP)

RHIC Beam Energy Scan

Beam Energy Scan

arXiv:1007.2613

Main goal

- Study the **QCD phase diagram**:
- Search for the signals of **possible phase boundary**
- Search for the possible QCD critical point

BES Phase-I

Year	√s _№ (GeV)	Events (10 ⁶)
2010	39	130
2011	27	70
2011	19.6	36
2010	11.5	12
2010	7.7	5

STAR – uniform acceptance

Disappearance of R_{CP} **suppression**

$$\mathbf{R}_{CP} = \frac{d^2 N dp_T d\eta / \langle N_{bin} \rangle (central)}{d^2 N dp_T d\eta / \langle N_{bin} \rangle (peripheral)}$$

- R_{CP} suppression NOT seen at lower energies!
- The QGP signature turned off?
- Relative contribution of soft physics and hard scattering

Disappearance of R_{CP} **suppression**

$$\mathbf{R}_{CP} = \frac{d^2 N dp_T d\eta / \langle N_{bin} \rangle (central)}{d^2 N dp_T d\eta / \langle N_{bin} \rangle (peripheral)}$$

- R_{CP} suppression NOT seen at lower energies!
- The QGP signature turned off?
- Relative contribution of soft physics and hard scattering

Evolution of v₂ and NCQ scaling

NCQ scaling of v_2 is interpreted as a sign of partonic collectivity.

 New feature: Significant difference between baryon-antibaryon v₂ at lower energies

Evolution of v₂ and NCQ scaling

NCQ scaling of v_2 is interpreted as a sign of partonic collectivity.

- New feature: Significant difference between baryon-antibaryon v₂ at lower energies
- No clear baryon/meson grouping for antiparticles at <=11.5 GeV

Evolution of v₂ and NCQ scaling

NCQ scaling of v_2 is interpreted as a sign of partonic collectivity.

- New feature: Significant difference between baryon-antibaryon v₂ at lower energies
- No clear baryon/meson grouping for antiparticles at <=11.5 GeV
- NCQ scaling holds separately for particles and antiparticles.
- ϕ -meson v₂ deviates (~2 σ) from others for $\sqrt{\text{sNN}} \le 11.5$ GeV, more data needed

Mapping phase diagram

Strangeness reconstruction

- STAR excellent reconstruction capability
- PID (TPC+TOF): pion/kaon: $p_T \sim 1.6$ GeV/c, proton $p_T \sim 3.0$ GeV/c
- Strange hadrons: decay topology & invariant mass

Strange particle spectra

Chemical freeze-out

Kinetic freeze-out

- Higher kinetic temperature corresponds to lower value of average flow velocity and vice-versa.
- All beam energies the central collisions are characterized by a lower T_{kin} and larger $<\beta>$

Beam Energy Scan Summary

- Very successful Beam Energy Scan program
 - versatility of RHIC and STAR combination
- Disappearance of QGP signatures at low energies
 - Disappearance of R_{CP} suppression at lower energies.
 - Break down of v_2 NCQ scaling between particles and antiparticles.
- Signatures of critical point / 1st order transition
 - Not part of this talk
 - There are hints, but needs better statistics
- Mapping of QCD phase diagram
 - covers μ_B range from 20 400 MeV

Heavy Flavor Production

Heavy flavor physics at STAR

Why to use heavy quarks (c, b)

- Masses are only slightly modified by QCD.
- Sensitive to initial gluon density and gluon distribution.
 - Produced at initial collision stage

Heavy flavor physics at STAR

Why to use heavy quarks (c, b)

- Masses are only slightly modified by QCD.
- Sensitive to initial gluon density and gluon distribution.
 - Produced at initial collision stage
- Interact with the medium differently from light quarks.
- Suppression or enhancement pattern reveals critical features of the medium (temperature)
- Possible Cold Nuclear effects (CNM)

ENERGY LOSS

M.Djordjevic PRL 94 (2004)

Open heavy flavor production

3.89%

Indirect: semi-leptonic decays

- + can be triggered easily (high p_T)
- + Higher branching ratio
- Indirect access to the heavy quark kinematics
- Mixing contribution from all charm and bottom hadron decays

Open heavy flavor production

Indirect: semi-leptonic decays

- + can be triggered easily (high p_T)
- + Higher branching ration
- Indirect access to the heavy quark kinematics
- Mixing contribution from all charm and bottom hadron decays

Direct reconstruction

- + direct access to heavy quark kinematics
- hard to trigger
- smaller branching ratio
- large combinatorial background (need handle on decay vertex)

D⁰ and **D*** **p**_T spectra in **p**+**p**

• Both data sets are consistent with FONLL upper limit

- Test of pQCD calculations
- Baseline of heavy ion measurements is under control

available data from p+p at $\sqrt{s=200}$ and 500 GeV

D⁰ yields scaled by $N_{cc}/N_{D0} = 1/0.56$

D* yields scaled by $N_{cc}/N_{D*} = 1/0.22$

Charm total cross-section

57

Non-photonic electrons(NPE)

NPE – proxy to heavy flavor production

- measure e^{\pm} spectra from decays of heavy quarks

 $b \rightarrow e^{\pm} + anything(10.86\%)$ $c \rightarrow e^{\pm} + anything(9.6\%)$

Main source of **backgrounds** comes from **photonic electrons**

- Dalitz decay: $\pi^0 \rightarrow \gamma + e^+ + e^- (BR: \sim 1.2\%)$
- conversion electrons: $\gamma \rightarrow e^+ + e^-$
 - depends on the material budget

NPE in 200GeV Au+Au

- Strong suppression at high p_{T.}
- comparable to suppression of hadrons.
- Mixing of bottom/charm contributions .
- Cannot be explained by radiative energy loss only.
- R_{AA} uncertainty is dominated by p+p.
 - will improve with
 2009+2012 large
 statistics data

Charm flow

- Finite v_2 at low p_T is an indication of strong charm- medium interaction.
- Consistent results from NPE and D⁰
- Increase of v_2 at high p_T possibly due to jet correlation and pathlength dependence of energy loss.

Quarkonia production

Charmonia: J/ ψ , ψ ', χ_c Bottomia: Y(1S,2S,3S), χ_b

11 11 11

Y

Quarkonia production

Other unknown effects

- Production mechanism of quarkonia
 - study p+p collision
- Cold Nuclear matter effects
 - nuclear shadowing, Cronin, nuclear absorption
 - study d+Au collision
- Hot nuclear matter effects
 - regeneration

Advantages of *Y*

- negligible absorption and regeneration

Does J/ψ flow ?

- J/ψ from recombination of thermalized charm quarks is expected to acquire flow
- v₂ consistent with non-flow for p_T > 2GeV/c
- disfavors production by coalescence from thermalized quarks.

arXiv:1212.3304

Y measurement

- Y considered cleaner probe
 - negligible absorption and regeneration
- p+p year 2009- dedicated Upsilon trigger
- Au+Au year 2010 three centrality bins
- **Y(1S+2S+3S) suppression observed**, increasing with centrality
- Consistent with prediction from a model requiring strong 2S and complete 3S suppression.

Heavy flavor summary

p+p reference data

• FONLL QCD describes the data rather well

Open charm

- Charm flows
 - significant v_2 for NPE, D^0 flow
- Significant suppression of NPE and D^0 at high p_T

Quarkonia

- From J/ψ coalescence dominance is disfavored at high p_T
- Upsilon suppression
 - Consistent with full S3 and strong S2 melting

STAR near term upgrades

Heavy flavor tracker (HFT)

Outlook for $D^0 v_2$ and R_{CP}

- Direct measurement of open-charm R_{CP} charm energy loss in QCD matter
- Direct measurement of open-charm v_2 **medium thermalization degree**
- Subtraction of charm component from NPE study bottom energy loss

Muon Telescope Detector

Use the magnet steel as absorber and TPC for tracking.

Acceptance: $|\eta|{<}0.5$ and 45% in azimuth

118 modules, 1416 readout strips, 2832 readout channels

Long-MRPC detector technology,

HPTDC electronics (same as STAR-TOF)

Muon Telescope Detector

MTD will allow detection of

- di-muon pairs from QGP thermal radiation, quarkonia, light vector mesons, resonances in QGP, and Drell-Yan production
- single muons from the semi- leptonic decays of heavy flavor hadrons
- advantages over electrons: no γ conversion, much less Dalitz decay contribution
- trigger capability for low to high $p_T J/\psi$ in central Au+Au collisions
- excellent mass resolution, separate different Upsilon states

Discovery of anti-He⁴ at RHIC

RHIC as an anti-matter machine

anti-He⁴ identification in TPC

- Level 3 trigger tagging of events with tracks of |Z| = 2.
- In total one billion AuAu events sampled.
- dE/dx overlap at higher momentum, TOF information is needed

PID from TOF+TPC

18 counts in total

- 15 from 200 GeV AuAu in 2010
 - background ~ 1.4
 - probability of misidentification ~ 10⁻¹¹
 - significance > 6
- 2 from 200 GeV AuAu in 2007
- 1 from 62 GeV AuAu in 2010

anti-He⁴ yield

- Production rate reduces by a factor of 1.6x10³ (1.1x10³) for each additional antinucleon (nucleon) added to the antinucleus (nucleus).
- Next stable are anti-⁶Li and anti-⁶He (suppression ~ 10^{-6}).
- anti-⁴He may remain the heaviest stable antimatter in the foreseeable future.

anti-He⁴ yield

• Point of reference for various searches for new phenomena in the cosmos.

• The production rate of ant-⁴He in nuclear collisions is consistent with thermodynamic and coalescent nucleosynthesis models.

76

If anti-α in the cosmos were from coalescence, the ratio of anti-α/α would be 10⁻¹⁶.
With a sensitivity of 10⁻⁹, even a single anti-α count seen by the AMS experiment would be a strong evidence of anti-star.

Conclusions

Matter at the top RHIC collision energy

- strongly interacting almost perfect liquid sQGP
 - collective behavior with partonic degrees of freedom

Successful completion of RHIC Beam Energy Scan

- observed that the QGP signatures disappear at lower energies,
- ongoing search for 1st order phase transition and critical point

Heavy flavor program

• rich collection of results and more will come with planned upgrades

STAR has entered the era of precision QCD measurements – lots of interesting results coming.

STAY TUNED....